Non-Abelian Constructivist Lagrangian


  • J. Chauca Aprendanet, Petrópolis, Brazil; Quarks, Petrópolis, Brazil
  • R. Doria Aprendanet, Petrópolis, Brazil; Quarks, Petrópolis, Brazil



A whole Yang-Mills symmetry is proposed. A grouping physics is constituted. It consists in inserting a given Yang-Mills field Aaμ in a fields set {Aa μI } constituted by other fields families, I = 1, . . . , N. Each field becomes part of a whole. A set action physics happens preserving the Yang-Mills symmetry. However the usual properties of an isolated field are extended to antireductionist properties. An associative physics is formed. A Yang-Mills whole quantum system is constituted. A whole Yang-Mills physics isobtained. The quantum corresponding to a specific Aa μI field inserted in a whole develops features depending on thefields set {Aa μI } associativity. Properties established from a so-called constructivist gauge theory are identified. Usual YM interactions are enlarged to YM interrelationships. Classical equations are studied under set action. A Yang-Mills whole unity is constituted by a constructivist Lagrangian. The reductionist approach substituted by constructivism. Physics under set transformations. A cause and effect relationship is expressed based on whole unity. The whole is that moves to future. Minimal action principle, Noether theorem, Bianchi identities are derived. A fields set with diversity, interdependence, nonlinearity, chance is expressed.


Download data is not yet available.


C. N. Yang and R. L. Mills. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev., 96:191-195, Oct 1954.

R. Shaw. The Problem of Particle Types and Other Contributions to the Theory of Elemetitary Particles. PhD thesis, Cambridge, UK, 1955.

C. N. Yang. Selected Papers (1945-1980) of Chen Ning Yang: With Commentary. World Scientific, 2005.

G. Hooft. 50 Years of Yang-Mills Theory. World Scientific, 2005.

S. K. Donaldson. Yang-Mills Theory and Geometry. Imperial College, London, 2005.

H. Weyl. The Theory of Groups and Quantum Mechanics. Dover Books on Mathematics. Dover Publications, 1950.

R. M. Doria and C. Pombo. Two potentials, one gauge group: A possible geometrical motivation. Il Nuovo Cimento B WJ71-1996, 96(2):153-158, 1986.

C.M. Doria, R. M. Doria, and J. A. Helayël-Neto. A kaluza-klein interpretation of an extended gauge theory. Brazilian Journal of Physics, 17(7):351, 1987.

C. M. Doria, R. M. Doria, and J. A. Helayël-Neto. A fibre-bundle treatment of a class of extended gauge models. Comm. in Theor. Phys., 17:505-508, 1992.

R. M. Doria, S. A. Dias, and J. M. Valle. A constraint analysis for an n = 1/2, d = 2 supersymmetric model. Brazilian Journal of Physics, 21(1):351, 1990.

C. A. S. Almeida and R. M. Doria. Brazilian Journal of Physics, 21(3), 1991.

C. M. Doria, R. M. Doria, and F. A. B. Rabelo de Carvalho. A superspace origin for an extended gauge model. Acta Physica Hungarica, 73(1):51-58, 1993.

R. M. Doria, J. A. Helayël-Neto, and S. Mokhtari. An extended gauge model as a possible origin for nonlinear ARAC-models. EPL (Europhysics Letters), 16(1):23, 1991.

R. M. Doria, F. Carvalho, and S .P. Sorella. Landau gauge and anti-BRS symmetry. Modern. Phys. Lett. A, 6:3705-3710, 1991.

R.M. Doria. Non-abelian whole gauge symmetry. Journal of Advances in Physics, 10(3), 2834-2870, 2015.

S. Kamefuchi, L. O’Raifeartaigh, and Abdus Salam. Change of variables and equivalence theorems in quantum field theories. Nuclear Physics, 28(1):529-549, 1961.

J. Domingos, R. M. Doria, and R. Portugal. ω matrix of generalized gauge models. Acta Physica Hungarica, 73(2):205-223, 1993.

R. M. Doria and J. A. Helayël-Neto. Tensors and invariants in a generalized scalar model. Acta Physica Hungarica,

(2):243-256: 1993.

R. M. Doria and F. A. Rabelo de Carvalho. UCP Preprint, 1988.

R. Doria, Gauge theory is not group theory, in preparation.

Peter W. Higgs. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett., 13:508-509, Oct. 1964.

F. Englert and R. Brout. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett., 13:321-323, Aug 1964.

G. S. Guralnik, C.R. Hagen, and T. W. B. Kibble. Global conservation laws and massless particles. Phys. Rev.

Lett., 13:u85-587, Nov 1964.

Francis Englert. Nobel lecture: The beh mechanism and its scalar boson. Rev. Mod. Phys., 86:843-850, Jul 2014.

R.Doria, M. Werneck Oliveira, Rev. Bras. Fís. 1, 20 (1990).

Newest experimental higgs results. http://www. Accessed: 2016.

R. Doria. Non-Abelian whole Gauge Symmetry. Journal of Advances in Physics, Vol. 10 n 3, 2834-2870, 2015.

R. Doria, I. Leite, S. Machado, I. Soares, Non-Linear Abelian Scenarios and Yang-Mills Theory Journal of Advances in Physics, Vol13,10 (2017).

Saulo Moreira, Não-Linearidades e Eletrodinâmica e Sistemas Quânticos Abertos, Tese Doutorado, Brazilian Centre for Physics, (2017).

Renato Doria and M. J. Neves. A non-abelian model SU(N)×SU(N). Journal of Advances in Physics, 8(1):1988-2004, 2012.

R. Doria and S. Machado, Yang-Mills families. JOURNAL OF ADVANCES IN PHYSICS, 13(6), 4927–4955.

R.M. Doria, Non-abelian whole gauge symmetry. Journal of Advances in Physics, 10(3):2834-2870, 2015.

R. Doria and F.A. Rabelo de Carvalho, UCP Preprint, 1988.

R. Doria, J. Frenkel, and J.C. Taylor. Counter-example to non-abelian Bloch-Nordsieck conjecture. Nuclear Physics B, 108(1):93-110, 1980.

R.M. Doria. A counter example to the Bloch-Nordsiek theorem for quark-gluon scattering. Nuclear Physics B, 213(2):266-284, 1983.

H. David Politzer. Reliable perturbative results for strong interactions? Phys. Rev. Lett., 30:1346-1349, Jun 1973.

David J. Gross and Frank Wilczek. Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett., 30:1343- 1346, Jun 1973.




How to Cite

Chauca, J. ., & Doria, R. . (2023). Non-Abelian Constructivist Lagrangian. JOURNAL OF ADVANCES IN PHYSICS, 21, 200–230.