Precise Determination of Quantum Size Effect, Reactivity Size and Energy Levels of CdSe Nanoparticles Using Egypt Pyramids Model for Nanotechnology

Authors

  • Dr. Tarek El Ashram Professor of Materials Physics College of Science Jazan University, KSA Port Said University, Egypt http://orcid.org/0000-0002-5613-3035

DOI:

https://doi.org/10.24297/jap.v23i.9732

Keywords:

CdSe., Energy levels, Tarek's law, Nanotechnology, Egypt Pyramids Model

Abstract

Nowadays, nanotechnology produces a variety of materials and devices, which are important for different applications. However, without a predictive successful model, it takes much more effort, money, and time to get the desired structure suitable for a certain application. Therefore, we aim to apply a new model called Egypt Pyramids Model for Nanotechnology (EPMN) on the two structures of the semiconductor compound CdSe to explain its electronic structures and properties of bulk and nanostructures. Here we show that by applying EPMN on CdSe, the quantum size effect QSE and reactivity size RS were calculated to be 5.45, 2.42, 12.61, 5.6 nm for cubic and hexagonal CdSe, respectively. The observed peaks in absorption and photoluminescence spectra, 678, 529, 457, and 325 nm, match very well the calculated transitions 626.18, 527.59, 455.82, and 326.27 nm, respectively.

Downloads

References

Brus, L. E., J Chem Phys, 79, 11, (1983).

Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P., Science, 256, 5062, (1992).

Tolbert, S. H.; Alivisatos, A. P., Annu Rev Phys Chem, 46, 595-625, (1995).

Y. W. Cao, U. Banin, J. Am. Chem. Soc. 122, 9692, (2000).

X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Nature, 404, 59 (2000).

L. Manna, E. C. Scher, A. P. Alivisatos, J. Am. Chem. Soc.Ul, 12700, (2000).

L. Qu, Z. A. Peng, X. Peng, Nano Letters, 1, 6, (2001).

T. Mokari, U. Banin, Chem. Matt., l5, 3955, (2003).

Quantum Dot Market; (2021).

Abdellatif, A. A. H.; Younis, M. A.; Alsharidah, M.; Al Rugaie, O.; Tawfeek, M. H., Int J Nanomed, 17, (2022).

Yekimov, A. I.; Onushchenko, A. A., JETP Lett+, 34, 6, (1981).

Yekimov, A. I.; Onushchenko, A. A., Sov Phys Semicond+, 16, 7, (1982).

Dingle, R., Advances in Solid State Physics, Queisser, H. Ed.; Vol. XV; Vieweg, (1975).

Efros, A. L.; Efros, A. L., Sov Phys Semicond+, 16, 7, (1982).

Yekimov, A. I.; Onushchenko, A. A.; Plyukhin, A. G.; Efros, A. L., Sov. Phys. JETP, 61, 4, (1985).

Baskoutas S, Terzis AF., J Appl Phys 99, 013708, (2006).

Segets D, Lucas JM, Taylor RNK, Scheele M, Zheng H, Alivisatos AP, et al, Acs Nano; 6, 9021–32, (2012).

Moreels I, Lambert K, Smeets D, De Muynck D, Nollet T, Martins JC, et al, Acs Nano; 3, 3023–30. (2009).

Sotirios Baskoutas and Andreas F. Terzis, J. Appl. Phys. 99, 013708, (2006).

G. Dong et al, Frontiers in Materials, 2, 1, (2015).

Tarek El Ashram, J. of Advances in Physics, 13, 8, (2017).

Tarek El Ashram, Alfarama Journal of Basic & Applied Sciences, 5, I, (2024).

Tarek El Ashram, Journal of Advances in Physics, 23, (2025).

S. K. J. Al-Ani, H.H. Mohammed, E.M.N. Al-Fwade. Renewable Energy, 25, (2002).

S. Kang, C.K. Kumar, Z. Lee, K. Kim, C. Huh, E. Kim. Applied Physics Letters, 93, (2008).

A. J. Nozik. Physica E, 14, (2002).

K. Rajeshwar, N.R. de Tacconi, C.R. Chenthamarakshan. Chemistry of Materials, 13, (2001).

F. C. Luo. Journal of Vacuum Science and Technology, 16, (1979).

D. K. Ghosh, P.J. Samanta. Infrared Physics, 26, (1986).

Lev Isaakovich Berger, Semiconductor Materials, CRC Press. p. 202, ISBN 0-8493-8912-7, (1996).

Ninomiya S, Adachi S, J Appl Phys, 78, 7, (1995).

Li K, Lu Y, Fu XL, He J, Lin X, Zheng J et al InfoMat 3, 10, (2021).

Luo L-B, Xie W-J, Zou Y-F, Yu Y-Q, Liang F-X, Huang Z-J, Zhou K-Y et al., Opt Express, 23, 10, (2015).

Ashraf Malik H, Aziz F, Asif CM, Raza E, Najeeb MA, Ahmad Z et al, J Lumin, 180, (2016).

International Center for Diffraction Data, “PCPDFWIN,” vol. PCPDFWIN v 2.3, 19081-2389, (2002).

Prachi Chopade, Shweta Jagtap and Suresh Gosavi, Woodhead Publishing Series in Electronic and Optical Materials, Science Direct, P. 105-153, (2020).

Mahesh Verma, D. Patidar, K. B. Sharma and N. S. Saxena, Journal of Nanoelectronics and Optoelectronics, 10, (2015).

R. B. Kale and C. D. Lokahande, Semicond. Sci. Technol., 20, (2005).

G. Ramalingam, N. Melikechi, P. Dennis Christy, S. Selvakumar, and P. Sagayaraj, Journal of Crystal Growth, 311, 11, (2009).

Prachi Chopade, Somnath Bhopale, Shweta Jagtap, Mahendra More, and Suresh Gosavi, J. of Mat. Sc. Mat. in Elec., 35, 161, (2024).

Fida Muhammad, Muhammad Tahir, Muhammad Zeb, Muttanagoud N. Kalasad, Suhana Mohd Said, Mahidur R. Sarker, Mohd Faizul Mohd Sabri and Sawal Hamid Md Ali, Scientific Reports, 10, 4828, (2020).

Robert K. Swank, Phy. Rev., 153, 3, (1967).

Junjie Hao, Haochen Liu, Jun Miao, Rui Lu, Ziming Zhou, Bingxin Zhao, Bin Xie, Jiaji Cheng, Kai Wang and Marie-Helene Delville, Scientific Reports, 9, 12048, (2019).

Azam Sobhani and Masoud Salavati-Niasari, J. Mater. Sci: Mater Electron., 26, 6836, (2015).

Neupane Dipesh, Kathmandu University Journal of Science, Engineering and Technology, 8, II, (2012).

Downloads

Published

2025-05-27

How to Cite

El Ashram, D. T. (2025). Precise Determination of Quantum Size Effect, Reactivity Size and Energy Levels of CdSe Nanoparticles Using Egypt Pyramids Model for Nanotechnology. JOURNAL OF ADVANCES IN PHYSICS, 23, 75–82. https://doi.org/10.24297/jap.v23i.9732

Issue

Section

Articles