Controlling Chaos in the Lozi Map Using Hidden Variables: A Novel Approach for Stability Enhancement

Authors

  • Wafaa Hadi Abdul Suhib I Depatment of Mathematics, College of Education, University of Al-Qadisiyah, Iraq

DOI:

https://doi.org/10.24297/jam.v24i.9743

Keywords:

Lyapunov exponent, Iterative Equations, Bifurcation Points, Chaos Control, Hidden Variables

Abstract

In this paper, we provide a novel 3D system that demonstrates the existence of a hidden attractor. Although equilibrium points are present in the system, this hidden attractor cannot be found by examining equilibrium points or their surroundings, in contrast to self-excited attractors. Differential equation theory explains this behavior  by showing that the system has intricate dynamics that are not directly dependent on equilibrium points. We added a hidden variable to the system to make it more complex and improve its stability by adding the following equation to the original system: zn+1=wzn+r3xn, where the hidden variable interacts with the original system through control parameters r1, r2, and r3, increasing chaos or improving the system stability. where it appeared us more complex dynamic behaviors.

Downloads

References

D. Dudkowski, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov, and A. J. P. R. Prasad, "Hidden attractors in dynamical systems," vol. 637, pp. 1-50, 2016(10.1016/j.physrep.2016.05.002)

Jafari, S.; Pham, V.-T.; Golpayegani, S.M.R.H.; Moghtadaei, M.; Kingni, S.T. The relationship between chaotic maps and some chaotic systems with hidden attractors. Int. J. Bifurc. Chaos 2016, 26, 1650211. (DOI:10.1142/S0218127416502114)

G. J. P. L. A. Lu, "Chaotic dynamics of the fractional-order Lü system and its synchro-nization," vol. 354, no. 4, pp. 305-311, 2006(DOI:10.1016/j.physleta.2006.01.068)

Li, H.Z.; Hua, Z.Y.; Bao, H.; Zhu, L.; Chen, M.; Bao, B.C. Two-dimensional memristive hyperchaotic maps and application in secure communication. IEEE Trans. Ind. Electron. 2021, 68, 9931–940(dOI: 10.1109/TIE.2020.3022539)

Li, K.X.; Bao, H.; Li, H.Z.; Ma, J.; Hua, Z.Y.; Bao, B.C. Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Inform. 2022, 18, 1726–1736 (DOI:10.1109/TII.2021.3086819)

M. Molaie, S. Jafari, J. C. Sprott, S. M. R. H. J. I. J. o. B. Golpayegani, and Chaos, "Simple chaotic flows with one stable equilibrium," vol. 23, no. 11, p. 1350188, 2013(DOI:10.1142/S0218127413501885)

S. Jafari, J. Sprott, V.-T. Pham, C. Volos, and C. J. N. D. Li, "Simple chaotic 3D flows with surfaces of equilibria," vol. 86, no. 2, pp. 1349-1358, 2016(DOI:10.1142/S0218127419501438).

S. Jafari, J. Sprott, and F. J. T. E. P. J. S. T. Nazarimehr, "Recent new examples of hidden attractors," vol. 224, no. 8, pp. 1469-1476, 2015(DOI:10.1140/epjst/e2015-02472-1).

Wang.J.;Yang Gu, Kang Rong, Quan Xu, Xi Zhang , Memristor-Based Lozi Map with Hidden Hyperchaos Mathematics 2022, 10, 3426. (DOI:10.3390/math10193426)

Wang, N.; Zhang, G.S.; Kuznetsov, N.V.; Bao, H. Hidden attractors and multistability in a modified Chua’s circuit. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105494(DOI:10.1016/j.cnsns.2020.105494)

W. Deng and C. J. J. o. t. P. S. o. J. Li, "Synchronization of chaotic fractional Chen system," vol. 74, no. 6, pp. 1645-1648, 2005(DOI:10.1143/JPSJ.74.1645)

Downloads

Published

2025-06-14

How to Cite

Abdul Suhib I, W. H. . (2025). Controlling Chaos in the Lozi Map Using Hidden Variables: A Novel Approach for Stability Enhancement. JOURNAL OF ADVANCES IN MATHEMATICS, 24, 24–28. https://doi.org/10.24297/jam.v24i.9743

Issue

Section

Articles