Strongly Coretractable Modules and Some Related Concepts


  • Inaam Mohammed Ali Hadi University of Baghdad
  • Shukur Neamah Al-aeashi University of Kufa



Coretractable Module, Strongly Coretractable Module, Mono-Coretractable Module, Epi-Coretractable Module, Rickart Module and Nonsingular Module


Let R be a ring with identity and M be an R-module with unite. The module M is called strongly coretractable module if for each proper submodule N of M, there exists a nonzero R-homomorphism f:M/N→M such that Imf+N=M. In this paper, we investigate some relationships between strongly coretractable module and other related concepts.


Download data is not yet available.

Author Biographies

Inaam Mohammed Ali Hadi , University of Baghdad

Department of Mathematics, College of Education for Pure Sciences (Ibn-Al-Haitham), University of Baghdad, Iraq

Shukur Neamah Al-aeashi, University of Kufa

Department of Urban Planning, College of Physical Planning, University of Kufa, Iraq


1. Amini, B., Ershad, M. and Sharif, H., 2009. Coretractable Modules. J. Aust. Math. Soc. 86, 289–304.
2. Fuller, K.R., 1982. Rings and Categories of Modules, Springer, New York.
3. Hazewink, M., Gubareni, N. And Kirichenko, V.V. 2004. Algebras, Rings and Modules. Vol. I, Academic Publishers.
4. Ghorbani, A. And Vedadi, M. R. 2009. Epi-Retractable Modules and Some Applications, Bull. Iranian Math. Soc. 35 No. 1,155-166.
5. Tribak, R. 2015. On Weak Dual Rickart Modules and Dual Baer Modules, Journal Comm. Algebra, 3190-3206.
6. Ghorbani, A. 2010. Co-Epi-Retractable Modules and Co-Pri-Rings, Comm. Algebra 38, No. 10, 3589-3596.
7. Mijbass, A.S. 1997. Quasi-Dedekind Modules , Ph.D. Thesis, University of Baghdad , Iraq.
8. Yaseen, S.M.1993. On F-regular Modules, M. sc. Thesis, University of Baghdad, Iraq.
9. Lee, G. 2010. Theory Of Rickart Modules, Ph.D. Thesis, the Ohio State University, Ohio State, U.S.A.
10. Al-Saadi, S.A., Ibrahiem, T.A. 2014. Strongly Rickart Rings. Mathematical Theory and Modeling, Vol.4, No.8,95-105.
11. Shihab, B. N. 2004. Scalar Reflexive Modules. Ph.D. Thesis, University of Baghdad, Baghdad, Iraq.
12. I.M. Ali Hadi, Sh. N. aeashi, Strongly Coretractable Modules., to appear.
13. E. A. Mohammad Ali On Ikeda-Nakayama Modules" Ph.D. Thesis, University of Baghdad, Baghdad, Iraq, 2006.
14. Abbas, M. S., and Al-saadi, A. H. 2013. Purely Baer Modules. Al- Mustansiriyah J. Sci., Vol. 24, No 5, Pp. 186-198.
15. AL-Jubory, Th. Y. 2015. Modules with Closed Intersection Sum Property. Ph.D. Thesis, Al-Mustansiriya University, Baghdad, Iraq.




How to Cite

Ali Hadi , I. M., & Al-aeashi, S. N. (2017). Strongly Coretractable Modules and Some Related Concepts. JOURNAL OF ADVANCES IN MATHEMATICS, 12(12), 6881–6888.




Most read articles by the same author(s)