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Abstract   

Let R be a ring with identity and M be an R-module with unite. The module M is called strongly coretractable 

module if for each proper submodule N of M, there exists a nonzero R-homomorphism f:M/N→M such that 

Imf+N=M. In this paper we investigate some relationships between strongly coretractable module and other 

related concepts.  
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1. Introduction  

Throughout this paper all modules are unital right R-modules, where R is a ring with identity. An R-module M is 

called coretractable if for each a proper submodule N of M, there exists a nonzero R-homomorphism f:M/N→M. 

Equivalently M is called coretractable if for each proper submodule N of M , there exists a nonzero mapping 

f∈EndR(M) such that f(N)=0 ; that is N⊆kerf [1]. The class of strongly coretractable is introduced and studied in 

[12], where an R-module M is called strongly coretractable if for each proper submodule N of M, there exists a 

nonzero R-homomorphism f:M/N→M such that Imf+N=M. This paper consists of three sections. In section two, 

many characterizations of strongly coretractable under certain classes of module as finitely generated Artinian, 

finitely generated projective, finitely multiplication and Rickart are studied. In section three, we present many 

characterizations of strongly coretractable under other classes of module such as: finitely generated faithful 

multiplication and finitely generated faithful module over Noetherian ring also under nonsingular modules.  

2. Strongly Coretractable Modules with Rickart Module 

In this section , we introduce some results concerned with strongly coretractable modules and Rickart modules 

where an R-module M is called a Rickart module if for all f ∈ S=End(M) , kerf <⊕M and M is called a dual-Rickart 

(or a d-Rickart) if for all f ∈ S , Imf <⊕M [15] . First, we need to recall that an R-module M is called endoregular 

if S is von Neumann regular ring [9]. But by [9, Theorem (1.3.27)], S is von Neumann regular ring equivalent to 

kerf and Imf are direct summand of M, for each f∈S. Hence by definitions of Richart and dual Rickart module, M 

is endoregular coincides with M is Richart and dual Rickart. 

 Proposition (2.1): Let M be a Noetherian R-module. Then the following statements are equivalent:   

(1) M is a strongly coretractable module; 

(2) M is a semisimple module; 

(3) M is a Rickart and dual Rickart module; 

(4) EndR(M) is a von Neumann regular ring (M is endoregular module). 

Proof: (1⟺2) Since M is Noetherian module. So M is finitely generated, and hence the result follows by [12, 

Corollary (2.16)]. 

 (2⟹3), (3⟺4) are clear. 

 (3⟹2) Since M is a dual Rickart and Noetherian, thus M is a semisimple by [9, Proposition (3.3.13), P.105]                                        

Remark (2.2): A Noetherian and Rickart R-module may be not coretractable module. For example, consider Z 

as Z-module is Noetherian and Rickart module, but it is not coretractable module. 
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Proposition (2.3): Let R be a commutative Noetherian ring (or R is an Artinian). Then the following statements 

are equivalent:   

(1) R is a strongly coretractable ring; 

(2) R is a semisimple ring; 

(3) R is a Rickart and dual Rickart ring; 

(4) R is a von Neumann regular ring. 

Proof: It follows directly by Proposition (2.1).                                                          

Corollary (2.4): Let M be a finitely generated R-module over Noetherian ring R. Then the following statements 

are equivalent:  

(1) M is a Rickart and dual Rickart module; 

(2) M is semisimple module; 

(3) M is strongly coretractable module. 

(4) EndR(M) is a von Neumann regular ring. 

Proof: Since M is a finitely generated module over Noetherian ring. So M is Noetherian module and hence by 

Proposition (2.1), the result is obtained                                                                                                                 

Proposition (2.5):  Let M be a finitely generated Artinian R-module over a commutative ring. Then the following 

statements are equivalent:  

(1) M is an endoregular module;  

(2) M is a semisimple module;  

(3) M is a strongly coretractable module. 

Proof: (1⟺2) It follows by [9, Proposition (4.2.12), P.125]. 

 (2⟺3) It follows by [12, Corollary (2.16)].                                                             

Remark (2.6): The condition M is a finitely generated module cannot be dropped in Proposition (2.5), for 

example the Z-module Zp∞ is not finitely generated and Artinian strongly cortractable, but it is not Rickart and 

so it is not endoregular. 

Lemma (2.7): Let M be a finitely generated multiplication R-module over commutative von Neumann regular 

ring R . Then S=EndR(M) is a von Neumann regular ring. 

Proof: Since M is a finitely generated multiplication module, hence M is a scalar R-module by [11, Corollary 

(1.1.11)]. Hence M is a scalar faithful �̅�-module where�̅�=R/annM, and by [13, Lemma (6.1)], EndR(M)≅ R/annM 

which is a von Neumann regular ring.                                                                                                    

Corollary (2.8): Let M be a finitely generated multiplication R-module. Then the following statements are 

equivalent:   

(1) M is a coretractable module; 

(2) M is a semisimple module; 

(3) M is a strongly coretractable module; 

Proof: It follows by Lemma (2.7) and [12, Proposition (2.1)].                                    

Proposition (2.9): Let M be a finitely generated projective R-module over von Neumann regular ring. Then the 

following statements are equivalent:  

(1) M is a coretractable module; 
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(2) M is a semisimple module; 

(3) M is a strongly coretractable module. 

Proof: By [9, Corollary (2.2.22), P.41], M is a Rickart module satisfying C2 condition, hence by [9, Corollary (2.2.20), 

P.41], S=End(M) is a von Neumann regular. Thus, the result follows by [12, Proposition (2.1)].                                                                    

    Recall that " An R-module M is called co-epi-retractable if it contains a copy of any of its factor modules " [6]. 

However, for more convenient, we call it mono-coretractable module. 

Proposition (2.10): Let M be a Rickart R-module. Then M is mono-coretractable module if and only if M is 

semisimple module. 

Proof: (⟹) Let K be a proper submodule of M. Since M is mono-coretractable module, then there exists f:M⟶M, 

f ≠0, f(K)=0 and K=kerf. But M is Rickart module, then kerf<⊕M. Therefore K <⊕ M which implies that M is a 

semisimple module.  

(⟸)  It is clear.                                                                                                         

Corollary (2.11): Let M be a Rickart R-module with C2 condition. Then the following statements are equivalent:   

(1) M is a mono-coretractable module; 

(2) M is a semisimple module; 

(3) M is a coretractable module; 

(4) M is a strongly coretractable module.  

Proof: (1 ⟺ 2) By Proposition (2.10). 

 (2⟺3⟺4) Since M is a Rickart with C2 condition by [9, Theorem (2.2.20), P.40], EndR(M) is a Von Neumann 

regular. Hence the statements are equivalent by [12, Proposition (2.1)].                                                                                                                  

The condition M is Rickart is necessary in Corollary (2.11), for example Z-module Z4 is not Rickart, Z4 is 

coretractable module but it is not strongly coretractable module also it is mono-coretractable module, but it is 

not semisimple.  

Corollary (2.12): Let R be a von Neumann regular ring. Then the following statements are equivalent:  

(1) R is a coretractable ring; 

(2) R is a semisimple ring; 

(3) R is a strongly coretractable ring; 

(4) R is a mono-coretractable ring. 

Proof: Since R is von Neumann regular ring. Then R is Rickart ring with C2 condition by [9, Corollary (2.2.12)], 

and hence we get the result by Corollary (2.11).     

 

Corollary (2.13): Let R be a Rickart ring. Then the following statements are equivalent: 

(1) R is a mono-coretractable ring; 

(2) R is a semisimple ring; 

(3) R is a coretractable ring; 

(4) R is a strongly coretractable ring. 

Proof: (1⟺2) It follows by Proposition (2.10). 

 (2⟺3) Since R is Rickart ring, hence R is nonsingular by [9, P.24], and so coretractable module coincides with 

semisimple by [1, Propsition2.3]. 
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 (2⟺4) It is clear by [12, Corollary (2.16)], since R is finitely generated. 

The following Lemma will be needed in the next Proposition; 

Lemma (2.14):  Let M be an R-module such that for all proper submodule N of M such that M/N ≅ L≤⨁M, then 

M is mono-coretractable module. 

Proof: Let N and L be submodules of an R-module M. Since M/N≅L, so there exists α: M/N→L, α is an 

isomorphism. Let π: M →M/N be the natural projection and j: L→ M be the inclusion mapping. Put β=jαπ, 

β∈EndR(M), β≠0 and kerβ=N. Thus, M is a mono-coretractable module.     

Recall that an R-module M is called C-Rickart if kerf is closed submodule of M for all f∈EndR(M) [15]. 

Proposition (2.15): Let M be a C-Rickart module such that for all N proper submodule of M and M/N≅L≤⨁M. 

Then M is a semisimple and hence M is strongly coretractable module. 

Proof:  Let N be a proper submodule N of M such that M/N≅L≤⨁M, then M is mono-coretractable module by 

Lemma (2.14) and hence there exists β∈EndR(M), β ≠0 such that kerβ=N. But M is C-Rickart module, So N is 

closed submodule, thus every submodule of M is closed which implies M is semisimple by [2, Exercise(6(c)), 

P.139]. Thus, M is a strongly coretractable module.   

Recall that an R-module M is called a strongly Rickart if and only if kerf is fully invariant direct summand for all 

f ∈EndR(M) [10]. Recall that a submodule N of a module M is called stable if for each f ∈Hom (N, M), f(N)⊆N and 

M is called fully stable if every submodule of M is stable [41]. 

 Proposition (2.16): Let M be a strongly Rickart R-module. Then M is mono-coretractable module if and only if 

M is fully stable semisimple module and hence strongly coretractable module.  

Proof: (⟹) Since M is strongly Rickart module, ker𝜑 is stable direct summand submodule for each 𝜑 ∈EndR(M) 

by [10, Corollary (1.19)]. But M is mono-coretractable module, so for each proper submodule N of M, there exists 

𝜑 ∈EndR(M) such that N=ker𝜑 , thus N is a stable direct summand. Therefore, M is a fully stable and semisimple. 

(⟸) If M is semisimple, then it is clear that M is mono-coretractable module.  

3. More About Strongly Coretractable Modules and Related Concepts 

In this section, more properties about strongly coretractable module and related concepts are introduced such 

as finitely generated faithful multiplication, nonsingular, projective, dual-Baer and 𝜅-nonsingular modules. 

Proposition (3.1): Let M be a finitely generated faithful multiplication R-module. Then the following statements 

are equivalent:   

(1) R is a strongly coretractable ring; 

(2) M is a strongly coretractable module; 

(3) M is a semisimple module; 

(4) R is a semisimple ring. 

Proof: (1⟹2) Since R is strongly coretractable ring. R is a semisimple. Thus, M is semisimple R-module by [2, 

Corollary (8.2.2), P.196], and hence M is a strongly coretractable module.  

(2⟹1) Let M be a strongly coretractable module. Since M is finitely generated module, then M is semisimple 

module by [12, Corollary (2.16)]. Now, Let I be an ideal of R, then MI is a submodule of M and so MI ⨁W=M for 

some W≤M. But W=MJ for some ideal J in R, since M is a multiplication module. Thus MI ⨁MJ = M(I ⨁J) =MR 

and as M is finitely generated faithful multiplication module. I ⨁J=R; that is, I is a direct summand of R and 

hence R is semisimple ring. Therefore, R is strongly coretractable ring.  

(2⟺3) and (1⟺4) It follows by [12, Corollary (2.16)].                                         

Recall that an R-module M is said to be regular (sometimes called F-regular) if R/ann(x) is regular ring for all 

nonzero x∈M [8, P.29]. Equivalently, an R-module M is said to be regular (F-regular) if every submodule of M is 

a pure submodule [8, Theorem (1.7), P.35], where a submodule N of M is pure if MI∩N=NI for each ideal I of R 

" [2]. 
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Corollary (3.4): Let M be a finitely generated faithful multiplication R-module. If M is strongly coretractable 

module, then M is F-regular module and R is von Neumann regular ring. 

Proof: Since M is a finitely generated and strongly coretractable R-module. Then M is semisimple R-module and 

so R is semisimple ring by Proposition (3.1), then M is F-regular module and R is von Neumann regular by [8, 

Proposition2.8, p.41].                                                                         

Remark (3.5): The condition that M is finitely generated is necessary in Corollary (3.4). For example, M=Zp∞ as 

Z-module is a strongly coretractable, but it is not finitely generated and not multiplication. But R=Z is not regular 

ring , also M=Zp∞ is not F-regular module , since if I=PZ and N=<1/P + Z> ,  IZp∞ ∩ N = PZp∞ ∩< 1/P + Z > = 

Zp∞ ∩< 1/P + Z > = <1/P + Z > . But IN = PZ< 1/P + Z > = 0M .  

Theorem (3.6): Let M be a finitely generated faithful R-module over Noetherian ring R. Then the following 

statements are equivalent:  

(1) M is a strongly coretractable module; 

(2) M is a semisimple module; 

(3) R is a regular ring; 

(4) M is an F-regular module; 

(5) R is a semisimple ring; 

(6) R is a strongly coretractable ring. 

Proof: (1⟺2) and (5⟺6) follow by [12, Corollary (2.16)].  

(2⟹4) It follows by [8, Proposition (2.8), P.41].  

(4⟺3) Since M is a finitely generated module, so by [8, Theorem1.10, P37], M is F-regular if and only if R/annM 

is regular and hence M is F-regular if and only if R is regular since annM=0.  

(5⟹3) It is clear.  

(3⟹5) Since R is Noetherian, and R is a regular ring, then R is a semisimple ring. (5⟹1) Since R is semisimple 

ring. Then M is semisimple R-module by [2, Corollary (8.2.2), P.196], and so M is strongly coretractable module                                                                               

Theorem (3.7): Let M be a finitely generated faithful R-module over local ring R. Then the following statements 

are equivalent: 

(1) M is a strongly coretractable module; 

(2) M is a semisimple module; 

(3) M is an F-regular module; 

(4) R is a regular ring.  

Proof: (1⟺2) Clear.  

(2⟹3) and (3 ⟹2)   By Proposition (2.8) and Proposition (2.9) in [8, P.41].  

(3⟺4) Since M is a finitely generated module and annR(M) =0, then R=R/annM is regular if and only if M is F-

regular module by [8, Theorem (1.10), P.37].  

Proposition (3.8): Let R be a local ring. Then the following conditions are equivalent: 

(1) Every R-module is strongly coretractable; 

(2) Every finitely generated R-module is strongly coretractable; 

(3) Every finitely generated R-module is semisimple module; 

(4) R is semisimple ring; 

(5) Every R-module is regular module. 

Proof: (1⟹2⟹3⟹4) It is clear.  

(4⟹5) Since R is semisimple, so every R-module is semisimple by [2, Corollary (8.2.2), P.196], and hence every 

R-module is F-regular by [8, Proposition (2.8), P.41].  

(5⟹1) Since every F-regular R-module over a local ring is semisimple by [8, Proposition (2.8), P.41], and so every 

semisimple R-module is strongly coretractable.  
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Theorem (3.9): Let M be an R-module such that M has a non-torsion element (That is there exists x∈M such 

that ann(x)=0) and R is Noetherian ring. Then the following statements are equivalent:  

(1) R is a Von Neumann regular ring; 

(2) M is an F-regular module; 

(3) R is a semisimple ring; 

(4) R is a strongly coretractable ring. 

Proof: (1⟹2) Since R is Von Neumann regular ring. Then M is F-regular module by [8, Remark (1.2(2)), P.29].  

(2⟹1) Since M is F-regular module. So, R/ann(x) is Von Neumann regular ring for all x∈M. But M has a non-

torsion element, then ann(x)=0 for some x ∈ M. Therefore, R is a Von Neumann regular ring.  

(1⟹3) Since R is Von Neumann regular ring and Noetherian ring, then R is semisimple ring.  

(3⟹2) It is clear, since every module over semisimple ring is semisimple module by [2, Corollary (8.2.2), P.196], 

and hence M is a regular module.  

(3⟺4) Clear.                                                                                                            

Corollary (3.10): Let M be a free module over a Noetherian ring R. Then the following statements are equivalent:  

(1) R is a Von Neumann regular ring; 

(2) R is a semisimple ring; 

(3) R is a strongly coretractable ring; 

(4) M is a F-regular module. 

Proof: It is clear by Theorem (3.9).                                                                       

Recall that a module M is called continuous if every submodule of M is essential in a direct summand of M and 

every submodule L of M is isomorphic to a direct summand of M, then L is a direct summand of M [9].  

Recall that an R-module M is called epi-retractable if every submodule of M is a homomorphic image of M [4]. 

Proposition (3.11): Let M be a nonsingular R-module. Then the following statements are equivalent:  

(1) M is a coretractable module; 

(2) M is a semisimple module; 

(3) M is a strongly coretractable module; 

(4) M is a continuous and epi-retractable module; 

(5) M is a mono-coretractable module. 

Proof: (1⟺2) By [1, Corollary (2.4)].  

(2⟹3) and (3⟹1) are clear.  

(2⟺4) It follows by [4, Proposition 3.1].  

(2⟺5) Since M is semisimple module. Then it is clear that M is mono-coretractable module         

Proposition (3.12): Let R be a nonsingular ring and M be a projective R-module. Then the following statements 

are equivalent:  

(1) M is a coretractable module; 

(2) M is a semisimple module; 

(3) M is a strongly coretractable module; 

(4) M is a mono-coretractable module. 

Proof: (1⟺2)    By [1, Corollary 2.4].  

(2⟹3) and (3⟹1) Clear.  

(3⟹4) Since R is nonsingular ring and M is projective R-module, then M is nonsingular module. But M is strongly 

coretractable module, so M is semisimple module by Proposition (3.11). Therefore, M is mono-coretractable 

module.  
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(4⟹3) Since M is mono-coretractable module implies M is coretractable. But M is nonsingular module. Thus, 

M is semisimple by [1, Corollary (2.4)]. Therefore, M is strongly coretractable.                                                                                 

Proposition (3.13): Let M be a quasi-injective R-module and J(EndR(M)) =0. Then the following statements are 

equivalent:   

(1) M is a coretractable module; 

(2) M is a semisimple module; 

(3) M is a strongly coretractable module. 

Proof: (1⟹2) Since M is a coretractable module, every nonzero proper submodule N of M is not quasi-

invertable submodule, then by [7, Theorem (3.8), P.17], N is not essential submodule of M. Thus, M has no proper 

essential submodule. Therefore, M is a semisimple module.  

(2⟹3) and (3⟹1) are clear                                                                                  

Recall that a ring R is a completely coretractable ring (denoted by CC-ring) if every R-module is coretractable 

[1]. 

Proposition (3.14): Let R be a ring. Then the following statements are equivalent: 

(1) ⨁𝑖∈𝐼Ri is a strongly coretractable ring for every index set I, where Ri =R for all i∈I. 

(2) Every projective R-module is a strongly coretractable. 

(3) R is a strongly coretractable ring; 

(4) R is a semisimple ring; 

(5) Each R-module M is a strongly coretractable; 

(6) Each proper ideal I in R, annI=eR for some nonzero idempotent element e in R. 

(7) All R-modules are nonsingular modules and all R-modules are coretractable; that is R is a CC-ring; 

(8) R is a nonsingular and coretractable ring. 

 

Proof: (1⟹2) Let M be a projective R-module. Then there exists a free R-module F such that f: F →M is an 

epimorphism. Since F is a free module, then F≅ ⨁𝑖∈𝐼Ri, Ri=R. But by hypothesis  ⨁𝑖∈𝐼Ri is strongly coretractable 

module. Thus, F is strongly coretractable module, and so M is strongly coretractable module.  

(2⟹1), (5⟹3), (4⟹6), (7⟹8) and (3⟺4) are clear.  

(4⟹5) Since R is semisimple ring. Then every R-module is semisimple by [2, Corollary (8.2.2), P.196] implies 

every R-module is strongly coretractable. (6⟹4) Let I be a proper ideal of R. Since 1=e+(1-e), then eR⊕(1-e) R 

= R. Then it easy to check that I=(1-e) R and so I <⊕ R. Therefore, R is semisimple.  

(4⟹7) Since R is a semisimple ring. Then every R-module is a nonsingular, also R is semisimple implies that 

every R-module is a coretractable.  

(8⟹1) It follows by proposition (3.11).                                   

Recall that an R-module M is called dual-Baer if for a submodule N of M, there exists an idempotent e in 

S=EndR(M) such that D(N) = eS where D(N)= {f∈S: Imf⊆N} [9].  

Proposition (3.15): Let M be a dual-Baer and nonsingular R-module. Then the following statements are 

equivalent:   

(1) M is a retractable module; 

(2) M is a coretractable module; 

(3) M is a semisimple module;  

(4) M is a strongly coretractable.  

Proof: (1⟹3)   By [5, Corollary (2.19)].  

(3⟹1) It is clear for all proper submodule N of M, N <⨁M. Then N⨁W = M for some submodule W of M, so 

there exists f: N→M, f(n)=(n,0). Then M is retractable module.  

(2⟺3⟺4) Since M is nonsingular module, so the result follows by Proposition (3.11).                                                                                                   
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Recall that an R-module M is called purely Baer if for each left ideal I of S=EndR(M), rM(I) is a pure submodule of 

M [14]. 

Proposition (3.16): Let M be a finitely generated over principal ideal domain. Then the following statements 

are equivalent:  

(1) M is a purely Baer module; 

(2) M is a semisimple; 

(3) M is a strongly coretractable. 

Proof: (1⟺2) It follows by [14, Theorem (3.13)] and (3⟺2) It follows by [12, Corollary (2.16)].                                                       
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