Induced response of soil properties and Oribatid mites (Acari, Cryptostigmata) community structure after the conversion of tropical secondary forests into oil palm and rubber plantations

Authors

  • Julien Kouadio Julien Université Nangui Abrogoua
  • Raymond Yao Ray KOFFI Unité de Formation et de Recherche (UFR) des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire. Téléphone : +225 07 07 49 38 08
  • Saint Cyrille Kouamé MANOU Unité de Formation et de Recherche (UFR) des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire. Téléphone : +225 07 07 49 38 08
  • Basile Moustapha DIARRA Unité de Formation et de Recherche (UFR) des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire. Téléphone : +225 07 07 49 38 08
  • Paulin N’Da Ezin TOSSA Unité de Formation et de Recherche (UFR) des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire. Téléphone : +225 07 07 49 38 08
  • Randolphe Jean Kouassi ADY Unité de Formation et de Recherche (UFR) des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire. Téléphone : +225 07 07 49 38 08

DOI:

https://doi.org/10.24297/jaa.v13i.9315

Keywords:

soil quality , rubber and oil palm plantations, secondary forests conversion, Oribatid mite communities, Soil physico-chemical properties

Abstract

The aim of investigation was to address the impacts of tropical forests conversion into agricultural land on changes in Oribatid mites’ communities as well as soil physico-chemical properties across 2–4 texturally distinct soils in La Mé and Grand Lahou, Côte d’Ivoire. The fieldwork was conducted in the humid period on two study sites: 1– rubber landscape (secondary forest, 7-, 12- and 25-year-old rubber plantations) and 2– oil palm landscape (secondary forest, 13-, 20- and 39-year-old oil palm plantations). Three sampling areas were established on each land-use type and age class, for a total of 24 sampling areas. In each sampling area, soil cores for Oribatid mite’s extraction were taken at a depth of 10 cm across a 40–50 m transect. The soil physical and chemical properties were also measured. The results showed a decrease in Oribatid density (–29% and –71%), species richness (–29% and –42%), diversity (–29% and –59%), soil organic carbon (–56% and –17%), total nitrogen (–55% and –12%) and soil organic matter (–56% and –17%), and an increase in bulk density (+28% and +21%), respectively after the conversion of the secondary forests into rubber and oil palm plantations. Whatever the study site, the soil physico-chemical and biological properties were more stabilized in the clay and clay sandy textures compared to sandy clay and sandy soil textures. Our findings suggest the incorporation of woody trees with an understory of nitrogen-fixing legume species as a cover crop, which can create a sustainable agroforestry system with improved land quality.

Downloads

Download data is not yet available.

Author Biography

Julien Kouadio Julien, Université Nangui Abrogoua

Ecology and Ecosystem Management UFR-SN / Ecology Research Centre Université Nangui Abrogoua 02 BP 801 Abidjan 02 Côte d'Ivoire, cel +225 07 49 38 08

References

Adiko A.F.D. (2021) Libéralisation et pauvreté : le cas des producteurs d’hévéa en Côte d’Ivoire. https://orbi.uliege.be/handle/2268/259839. Accessed 02 July 2022

Allen K. (2015) Impacts of land-use conversion in Sumatra, Indonesia on soil nitrogen cycling, soil nutrient stocks and ecosystem dynamics. PhD Dissertation. Georg-August-University of Göttingen, Germany

Allen K., Corre M.D., Tjoa A. and Veldkamp E. (2015) Soil nitrogen cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS ONE. https://doi.org/10.1371/journal.pone.0133325

Anderson J.M. and Ingram J.S.I. (1993) Tropical soil biology and fertility: a handbook of methods, 2nd edn. CABI, Wallingford

Balogh J. and Balogh P. (1992) The Oribatid mites genera of the World (Vol. 1 and 2). The Hungarian National Museum Press, Budapest, Hungary.

Beckendorff A. (2016) Transformation of tropical forests to oil palm plantations in Sumatra, Indonesia–What are the effects on soil microorganisms and microarthropods (Oribatid mite) abundance, diversity and community structure? Bachelor Thesis. Institute of Zoology and Anthropology, Faculty of Biology and Psychology, Georg-August-University of Göttingen, Germany

Berthet P.L. (1964) Field Study of the Mobility of Oribatei (Acari), Using Radioactive Tagging. J. Anim. Ecol., 33: 443–449

Chiti T., Grieco E., Perugini L., Rey A. and Valentini R. (2014) Effect of the replacement of tropical forests with tree plantations on soil organic carbon levels in the Jomoro district, Ghana. Plant Soil, 375: 47–59. doi: 10.1007/s11104-013-1928-1

Colwell R.K., Mao C.X. and Chang J. (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology, 85: 2717–2727.

Commodafrica (2018) IRC 2018 : La production de caoutchouc en Côte d'Ivoire triplera d'ici 2023, à 2 Mt. http://www.commodafrica.com/23-10-2018-irc-2018-la-production-de-caoutchouc-en-cote-divoire-triplera-dici-2023-2-mt. Accessed 12 March 2020.

Conti F.D. (2015) Conservation agriculture and soil fauna: only benefits or also potential threats? A review. EC Agriculture, 2.5: 473–482.

DeBlécourt M., Brumme R., Xu J., Corre M.D. and Veldkamp E. (2013) Soil Carbon Stocks Decrease following Conversion of Secondary Forests to Rubber (Hevea brasiliensis) Plantations. PLoS ONE 8(7). doi: 10.1371/journal.pone.0069357.

Demessie A., Singh B.R. and Lal R. (2013) Soil carbon and nitrogen stocks under chronosequence of farm and traditional agroforestry land uses in Gambo District, Southern Ethiopia. Nutr. Cycl. Agroecosyst., 95: 365–375. doi: 10.1007/s10705-013-9570-0

Dervash M.A., Bhat R.A., Mushtaq N. and Singh D.V. (2018) Dynamics and importance of soil mesofauna. International Journal of Advance Research in Science and Engineering, 7(4): 2010–2019

Despréaux D. and Nicolas D. (2001) Les cultures pérennes sont-elles menacées ? Oléagineux Corps gras Lipides, 8(6): 562–564. https://doi.org/10.1051/ocl.2001.0562

Diabaté S., Koutou A., Wongbé Y., Brou K.G., Gogbé B.F. and Kouadjo C.G. (2014) Étude comparée de la réaction phénolique chez quatre clones de palmiers à huile dans le pathosystème Elaeis guineensis–Fusarium oxysporum f.sp. elaeidis au stade prépépinière. J. Anim. Plant Sci., 21: 3241–3250.

Diabaté S., Kouadio L.D., Brou K.G., Wongbé Y., Konan J.N., Konan K.E. and Abo K. (2015) Étude de l’influence du facteur antécédent cultural palmiers et cocotiers sur l’évolution de la fusariose vasculaire chez six clones de palmiers à huile de Côte d’Ivoire. J. Appl. BioSci., 92: 8570–8577. doi:10.4314/jab.v92i1.1

Drescher J., Rembold K., Allen K., Beckschäfer P., Buchori D., Clough Y., Faust H., Fauzi A.M., Gunawan D., Hertel D., Irawan B., Jaya I.N.S., Klamer B., Kleinn C., Knohl A., Kotowska M.M., Krashevska V., Krishna V., Leuschner C., Lorenz W., Meijide A., Melati D., Nomura M., Pérez-Cruzado C., Qaim M., Siregar I.Z., Steinebach S., Tjoa A., Tscharntke T., Wick B., Wiegand K., Kreft H. and Scheu S. (2016) Ecological and socioeconomic functions across tropical land use systems after rainforest conversion. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 371. http://dx.doi.org/10.1098/rstb.2015.0275

Ettian M.K., Soulemane O. and Tahou T.M. (2009) Influence du régime alimentaire sur l’intervalle de parturition des aulacodes en captivité dans la région de Grand-Lahou (Côte d’Ivoire, Afrique de l’Ouest). J. Anim. Plant Sci., 4: 311–319

Fages C. (2019) Chronique des matières premières : La Côte d'ivoire veut tripler sa production d'huile de palme sans déforester. http://www.rfi.fr/fr/emission/20190301-cote-ivoire-veut-tripler-production-huile-palme-deforester, Accessed 12 March 2020

FAO (2020) Evaluation des ressources forestières mondiales 2020, principaux résultats. Etude FAO : suivi des ressources forestières mondiales pour la période 1990-2020. Organisation des Nations Unies pour l’alimentation et l’agriculture, Rome, Italy, 16p.

FIRCA (2012) Fonds Interprofessionnel pour la Recherche et le Conseil Agricoles. Guide C.H.T.2 du 01 mars 2012, 56p.

Guillaume T., Damris M. and Kuzyakov Y. (2015) Losses of soil carbon by converting tropical forest toplantations: erosion and decomposition estimated by δ13C. Glob. Change Biol., 21: 3548–3560.

Hammer Ø., Harper D.A.T. and Ryan P.D. (2001) PAST: Paleontological statistics software package for education and data analysis, Palaeontologia Electronica.

Haq M.A. (2016) Oricultural farming practice: a novel approach to agricultural productivity. Journal of Acarological Society of Japan, 25: 51–75.

Hemati Z., Selvalakshmi S., Xia S. and Yang X. (2020) Identification of indicators: monitoring the impacts of rubber plantations on soil quality in Xishuangbanna, Southwest China. Ecol. Indic., https://doi.org/10.1016/j.ecolind.2020.106491

Honciuc V. and Manu M. (2010) Ecological study on the edaphic mites populations (Acari: Mesostigmata-Gamasina; Oribatida) in urban areas from Romania. Rom. J. Biol. – Zool., 55(1): 3–17

IFFN (2021) Communiqué de presse relatif à la présentation des résultats du 29 juin 2021 de l’inventaire forestier et faunique national, 2p.

Jacquemard J.C. (2011) Le palmier à huile. Éditions Quæ, Versailles Cedex, France, 240 p.

Kerfahi D., Binu M., Tripathi B.M., Dong K., Go R. and Adams J.M. (2016) Rainforest conversion to rubber plantation may not result in lower soil diversity of bacteria, fungi, and nematodes. Microb. Ecol., doi 10.1007/s00248-016-0790-0

Köhl M., Lasco R., Cifuentes M., Jonsson Ö., Korhonen K.T., Philip M., Jose de Jesus Navar J.D.J. and Stinson G. (2015) Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment. For. Ecol. Manage., 352 : 21–34.

Konan K.E., Koné B., Adon N.B., Diabaté S., Koutou A. and Ballo K. (2006) Bien cultiver le palmier à huile en Côte d’Ivoire. Fiche palmier No. 1, Centre National de Recherche Agronomique, Côte d’Ivoire.

Krantz G.W. and Walter D.E. (2009) A Manual of Acarology (3rd ed.). Texas Tech., University Press, Lubbock, USA.

Krashevska V., Klarner B., Widyastuti R., Maraun M. and Scheu S. (2015) Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities. Biol. Fertil. Soils. doi: 10.1007/s00374-015-1021-4

Krashevska V., Klarner B., Widyastuti R., Maraun M. and Scheu S. (2016) Changes in structure and functioning of protist (Testate Amoebae) communities due to conversion of lowland rainforest into rubber and oil palm plantations. Plos One. doi: 10.1371/journal.pone.0160179

Krause A. (2020) Changes in trophic niches of Oribatid mites with transformation of tropical rainforest systems – From rainforest into rubber and oil palm plantations in Sumatra, Indonesia. Thesis Dissertation. Doctoral program Biodiversity and Ecology, Georg-August University School of Science, Göttingen, Germany.

Le Danff J-P. (2002) La convention sur la diversité biologique : tentative de bilan depuis le sommet de Rio de Janeiro. Vertigo, 3(3). https://doi.org/10.4000/vertigo.4168

Lisafitri Y., Widyastuti R. and Widyastuti D.A. (2015) Population dynamics of Oribatid mites in the oil palm plantation area at Bajubang Batanghari Jambi. J. Tanah Lingk., 17: 33–38.

Luskin M.S. and Potts M.D. (2011) Microclimate and habitat heterogeneity through the oil palm life cycle. Basic Appl. Ecol., 12: 540–551. doi: 10.1016/j.baae.2011.06.004

Mandal A., Das S. and Ghosh T.C. (2019) Abundance and diversity of soil Oribatid mites (Acari: Oribatida) from North-East India- A review. Asian J. Conserv. Biol., 8(2): 199–207

Maraun M., Salamon J.A., Schneider K., Schaefer M. and Scheu S. (2003) Oribatid mite and Collembolan diversity, density and community structure in a moder beech forest (Fagus sylvatica): effects of mechanical perturbations. Soil Biol. Biochem., 35: 1387–1394.

Minor M.A. and Cianciolo J.M. (2007) Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Appl. Soil Ecol., 35: 140–153. doi: 10.1016/j.apsoil.2006.05.004

Miura S., Amacher M., Hofer T., San-Miguel-Ayanz J., Ernawati. and Thackway R. (2015) Protective functions and ecosystem services of global forests in the past quarter-century. For. Ecol. Manage., 352: 35–46. http://dx.doi.org/10.1016/j.foreco.2015.03.039

Mumme S., Jochum M., Brose U., Haneda N.F. and Barnes A.D. (2015) Functional diversity and stability of litter-invertebrate communities following land-use change in Sumatra, Indonesia. Biol. Conserv., 191: 750–758. doi: 10.1016/j.biocon.2015.08.033

Napierała A. and Błoszyk J. (2013) Unstable microhabitats (merocenoses) as specific habitats of Uropodina mites (Acari : Mesostigmata). Exp. Appl. Acarol., 60: 163–180.

Ndiaye O. and Fainke S. (2020) Carte d’identité: In Société Africaine de Plantations d’Hévéas / West Africa Rating Agency, 12p.

Nguyen T.T., Do T.T., Harper R., Pham T.T., Linh T.V.K., Le T.S., Thanh L.B. and Giap N.X. (2020) Soil health impacts of rubber farming: the implication of conversion of degraded natural forests into monoculture plantations. Agriculture. doi:10.3390/agriculture10080357

Noti M-I., André H.M., Ducarme X. and Lebrun Ph. (2003) Diversity of soil oribatid mites (Acari: Oribatida) from high Katanga (Democratic Republic of Congo): a multiscale and multifactor approach. Biodiv. Conserv., 12: 767–785.

Nurulita Y., Adetutu E.M., Kadali K.K., Shahsavari E., Zul D., Taha1 M. and Ball A.S. (2016) Assessment of the influence of oil palm and rubber plantations in tropical peat swamp soils using microbial diversity and activity analysis. J. Agric. Chem. Environ., 5: 53–65.

Obouayeba S., Gnagne Y.M., Wahounou P.J., Boko C., Sylla S., Kéli Z.J. and Déa G.B. (2006) Bien cultiver l’hévéa en Côte d’Ivoire. Fiche technique de l’hévéa n°1. Centre National de Recherche Agronomique, Abidjan, Côte d’Ivoire

Palmafrique (2017) Le palmier à huile dans l’économie Ivoirienne. Accessed 29 December 2017. http://www.palmafrique.com/lhuile-de-palme-dans-leconomie-ivoirienne/

Péné C.B. and Assa D.A. (2003) Variations interannuelles de la pluviométrie et de l’alimentation hydrique de la canne à sucre en Côte-d’Ivoire. Sécheresse, 14: 43–52.

Perraud A. (1971) Les sols. In: Avenard J.M., Eldln M., Girard G., Sircoulon J., Touchebeuf P., Guillaumet J.L., Adjanohoun E. and Perraud A. (eds) Le milieu naturel de la Côte d’Ivoire, vol 50. Office de la Recherche Scientifique et Technique Outre-Mer, Paris, pp 265–391

R Development Core team (2008) R: A language and environment for statistical computing. R Foundation for Statistical. Computing, Vienna, Austria. URL http://www.R-project.org.

Rossi M., André J. and Vallauri D. (2015) Le carbone forestier en mouvements. Éléments de réflexion pour une politique maximisant les atouts du bois. Lyon, Rapport REFORA, 40 p.

Silver W.L., Neff J., McGroddy M., Veldkamp E., Keller M. and Cosme R. (2000) Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems, 3: 193–209.

Singh A.K., Liu W., Zakari S., Wu J., Yang B., Jiang X.J., Zhu X., Zou X., Zhang W., Chen C., Singh R. and Nath A.J. (2021) A global review of rubber plantations: impacts on ecosystem functions, mitigations, future directions, and policies for sustainable cultivation. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2021.148948

Skubala P. and Maslak M. (2009) Succession of Oribatid fauna (Acari, Oribatida) in fallen spruce trees: deadwood promotes species and functional diversity. In: Trends in Acarology: pp123–128.

Sotta E.D., Corre M.D. and Veldkamp E. (2008) Differing N status and N retention processes of soils under old growth lowland forest in Eastern Amazonia, Caxiuanã, Brazil. Soil Biol. Biochem., 40: 740–750.

Sulistyorini E., Widyastuti R. and Santoso S. (2018) Diversity of Oribatids (Acari) at differentland use types in Mentebah, Kapuas Hulu, West Kalimantan. J. Degrade. Min. Land Manage., 5: 1355–1361.

Swarnalatha B (2010) Effects of monoculture tree plantations and agricultural land-uses on the spatio-temporal variations of beneficial soil and litter arthropod diversity on the coromandel coast at Puducherry (India). Thesis Dissertation. Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, India

Tondoh J.E., Kouamé F.N., Guéi A.M., Sey B., Koné A.W. and Gnessougou N. (2015) Ecological changes induced by full-sun cocoa farming in Côte d’Ivoire. Glob. Ecol. Conserv., 3: 575–595

Tongkaemkaew U., Sukkul J., Sumkhan N., Panklang P., Brauman A. and Ismail R. (2018) Litterfall, litter decomposition, soil macrofauna, and nutrient content in rubber monoculture and rubber based agroforestry plantations. Forest and Society, 2(2): 138–149

Traoré K. and Péné C.B. (2016) Étude phytoécologique des adventices dans les agroécosystèmes élaeicoles de la Mé et de Dabou, en basse Côte d’Ivoire. J. Appl. BioSci., 104: 10005–10018. doi:10.4314/jab.v104i1.13

Vrignon-Brenas S., Gay F., Ricard S., Snoeck D., Perron T., Mareschal L., Laclau J-P., Gohet E. and Malagoli P. (2019) Nutrient management of immature rubber plantations. A review. Agronomy for Sustainable Development. https://doi.org/10.1007/s13593-019-0554-6

Walkley A. and Black I.A. (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci., 37: 29–38. doi:10.1097/00010694-193401000-00003

Walter D. E., Latonas S. and Byers K. (2013) Almanac of Alberta Oribatida. Part 1. Ver. 2. 3 The Royal Aberta Museum, Edmonton, AB.

http:// www.royalabertamuseum.ca/natura/insects/reasearch/reasearch.htm.

Waneukem V. and Ganry F. (1992) Relations entre les formes d’azote organique du sol et l’azote absorbé par la plante dans un sol ferrallitique du Sénégal. Cahiers de l’ORSTOM, série Pédologie, 27: 97–107.

Wardle D.A. (1995) Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. Adv. Ecol. Res., 26: 105–185

Yeboua K. and Ballo K. (2000) Caractéristiques chimiques du sol sous palmeraie. John Libbey Eurotext, 9: 73–76.

Yéo J.G., N’Dri J.K., Edoukou E.F. and Ahui J-L.D.S. (2020) Changes in surface soil properties and macroinvertebrate communities with the conversion of secondary forests to oil palm (Elaeis guineensis) plantations. Crop and Pasture Science, 71: 837–849

Yoro G. and Godo G. (1990) Les méthodes de mesure de la densité apparente. Analyse de la dispersion des résultats dans un horizon donné. Cahiers de l’ORSTOM, série Pédologie, 25(4): 423–429.

Downloads

Published

2022-11-24

How to Cite

Kouadio Julien, J., KOFFI, R. Y. R., MANOU, S. C. K. ., DIARRA, B. M. ., TOSSA, P. N. E. ., & ADY, R. J. K. . (2022). Induced response of soil properties and Oribatid mites (Acari, Cryptostigmata) community structure after the conversion of tropical secondary forests into oil palm and rubber plantations. JOURNAL OF ADVANCES IN AGRICULTURE, 13, 26–49. https://doi.org/10.24297/jaa.v13i.9315

Issue

Section

Articles