A survey of topics related to Functional Analysis and Applied Sciences






funtinal analysis, applied sciences


This survey is the result of investigations suggested by recent publications on functional analysis and applied sciences. It contains short accounts of the above theories not usually combined in a single document and completes the work of D. Huet 2017. The main topics which are dealt with involve spectrum and pseudospectra of partial differential equations, Steklov eigenproblems, harmonic Bergman spaces, rotation number and homeomorphisms of the circle, spectral flow, homogenization. Applications to different types of natural sciences such as echosystems, biology, elasticity, electromagnetisme, quantum mechanics, are also presented. It aims to be a useful tool for advanced students in mathematics and applied sciences.


Download data is not yet available.


D.R. Adhikari, E. Stachura 2020. General p-curl systems and duality mappings on Sobolev spaces for maxwell equations, Electronic Journal of Differential equations, 116, 1-22. 338

G. Allaire 2002. Shape optimization by the homogenization method. Applied Mathematical Sciences 146, Springerverlag. 333, 334, 335

W. Ao, J. Wei, M. Winter 2020. Stable pikes clusters on a compact two-dimensional Riemannian manifold, Journal of Differential Equations,268, 3665-3704. 324

V. Arnold 1965. Small denominators, 1: Mappings of the circumference onto itself. AMS Translations, 46, 213–288. (Russian original published in 1961). 331

V. Arnold 1983. Geometrical methods in the Theory of Ordinary Differential Equations. Springer-Verlag . 331

J. Arazy and L. Zelenko 2006. Virtual eigenvalues of high order Schrödinger operator, Integral Equations and Operator Theory, 55, 189–231 and 305-345. 345

N. Aronszajn 1950. Theory of reproducing kernels, Transactions of the American Mathematical Society 68, 337–404. 329

G. Auchmuty 2017. The S. V. D. of Poisson Kernel, Journal of Fourier Analysis and Applications, 23, 1517–1536. 326, 327, 328

S. Axler, P. Bourdon, W. Ramey 2001. Harmonic Function Theory, Graduate Texts in Mathematics, Springer, Second Edition. 328

B. Booss-Bavnbek, M. Lesh, J. Phillips 2005. Unbounded Fredholm operators and spectral flow, Canadian Journal of Mathemtics, 57 no.2, 225-250. 352, 353, 354

H. Cartan 1971. Calcul Differentiel, Hermann, Collection Méthodes, Paris, 1967 354

A. Chechkina, C. D’Apice, U. De Maio 2019. Rate of convergence of eigenvalues to singularly perturbed Steklov-type problem of elasticity system, Applicable Analysis, 98 no. 1-2, 32-44. 337, 338

E.A. Coddington and N. Levinson 1955. Theory of differential equations, McAGraw-Hill Book Company, New-York (1955). 329, 330

H. O. Cordes, J. P. Labrousse 1963. The invariance of the index in the metric space of closed operators,Journal of Mathematics and mechanics, 12 No. 5, 693-719. 344

E.B. Davies 1999. Pseudo-spectra, the harmonic oscillator and complexes resonances. Royal Society of London Proceedings :Mathematical, Physical and Engineering Sciences, 455 no. 1982, 585–599. 347

E. B. Davies 2002. Non-self-adjoint differential operators.Bulletin of The London Mathmatical Society,34, 513-532. 349

E.B. Davies 2007. Linear operators and their spectra. Cambridge Studies in Advanced Mathematics ,106. 347

A. Denjoy 1932. Sur les courbes définies par les équations différentielles à la surface du tore, Journal de Mathématiqus pures et Appliquées, 11, série 9, 333-375. 333

J. Dieudonné, 1968. Eléments d’analyse. Tome I: Fondements de l’Anlyse Moderne, Cahiers Scientifiques, Fasc.XXVIII, Gauthiers-Villars, Paris, xxi+390 pages. 344, 354

A. Doelman 2019. Pattern formation in reaction-diffusion systems- an explicit approach, Peletier Complexity science, World Scientific Publishing Reviews, Hackensack N. J, 129-182. 315, 316, 317

G. Domokos and P. Holmes 2003. On nonlinear boundary-value problems: ghosts, parasites and discretizations.The Royal Society of London. Proceedings. Series A. Mathematical, Physical, and Engineering Sciences, 459 no. 2034,

–1561. 346

W. Feller 1950. An introduction to probability theory and its applications. Vol. I. John Wiley and Sons. 349

M. Fitzpatrick, J. Pejsachowicz, L. Recht 1999. Spectral flow and bifurcation of critical points of strongly-indefinite functionals, Part I. General Theory. Journal of Functional Analysis, 162 , 52-95. 352, 355

M. Fitzpatrick, J. Pejsachowicz, L. Recht 2000. Spectral flow and bifurcation of critical points of strongly-indefinite functionals, Part II. Bifurcation of Periodic Orbits of Hamiltonian Systems. Journal of Differential Equations, 163, 18-40 355

[K. Furutani, N. Otsuki, 1991. Spectral flow and Maslov index arising from Lagrangian intersection. Tokyo Journal of Mathematics, 14, 135-150. 352

F. Gazzola, H-G. Grunau and G. Sweers 2010. Polyharmonic boundary value problems, Springer, Berlin. 324, 325

A. Gierer, H. Meinhardt 1972. A theory of biological pattern formation, Kibernetik, 12, 30-39. 322

I. C. Gohberg, M. G. Krein 1957. Fundamental aspects of defect numbers, root numbers and indexes of linear operators. Uspekhi Matematicheskikh Nauk, 2,3 (19), 60-107. 344

G.H. Hardy and E.M. Wright 1990. An introduction to the theory of numbers, Fifth Edition, Oxford Science Publications. 332

M.R. Herman 1979. Sur la conjugaison différentielle des difféomorphismes du cercle à des rotations. Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques, 49, 5-234. 333

M.R. Herman 1985. Simple proofs of local conjugacy theorems for diffeomorphisms of the circle with almost every rotation number, Boletim da Sociedade Brasileira de Matemática, 16 no.1, 45-83 333

R. Henry, D.Krejcirík 2017. Pseudospectra of the Schrödinger operator with discontinuous complex potential, Journal of Spectral Theory, 7: 659–697. 345, 347

D. Huet 2017. A survey of topics related to partial differential equations, Editions

Universitaires Européennes,

Omniscriptum Marketing DEU GmbH, Saarbrüken. 345

D. Huet 2019, A survey of topics related to functional analysis and operator theory. 2019. hal-01952296v2. 315

D. Huet 2020, A survey of differential operators related to applied sciences. 2020. hal-02940081. 315

T. Kato 1966. Perturbation theory for linear operator, Springer-Verlag New-York Inc. 343, 344

C.A. Klausmeier 1999. Regular and irregular patterns in semi-arid vegetation, Science 284,1826-1828. 319

D. Krejcirík, P. Siegl, M. Tater, J. Viola 2015. Pseudospectra in non-Hermitian quantum mechanics, Journal of Mathematical Physics 56, 103513. 349, 350

W. Kühnel 2015. Differential Geometry. Student Mathematical Library, 77. American Mathematical Society, xii+402 pp. 322

W. de Melo and S. van Strien 2018. One dimensional dynamics, A series of Modern Surveys in Mathematics. Springer-Verlag. 333

P. Monk 2003. Finite element method for Maxwell’s equations, Clarendon Press, Oxford. 339, 340, 341

David S. Morgan, A. Doelman, Tasso J. Kaper 2000. Stationary periodic patterns in the Gray-Scott model,

Methods and Applications of Analysis, 7 no. 1, 105-150. 317, 318, 320

V.V. Nemytskii and V.V. Stepanov 1960. Qualitative theory of differential equations, Princeton Universirty Press, Princeton 1960. 330

O.A. Oleinik, A.S. Shamaev, G.A. Yosifian 1992. Mathematical problems in elasticity and homogenization, Studies in Mathematics and its Applications, North-Holland. 334, 335, 336, 337

H. Poincaré 1881-1886. Mémoire sur les courbes définies par une équation différentielle, Journal de Mathématiques Pures et Appliquées, 1881 7 375-422, 1882 8 251-286, 1885 1 167-244, 1886 2 151-217. 333

L. Prigozhin 1996. On the Bean critical state model in superconductivity. European Journal of applied athematics, 7, 237-247. 341

L. Prigozhin 1996. The Bean model in superconductivity: variational formulation and numerical solution, Journal of Computational Physics, 129, 190-200. 341, 342

S.C. Reddy, L. N. Trefethen 1994. Pseudospectra of the Convection-Diffusion Operator, SIAM Journal on Applied Mathematics, 54 no 6 ,1634-1649. 350, 351, 352

M. Reed and B. Simon 1972. Methods of modern mathematical physics, volume 1: Functional analysis, Academic Press, New-York. 328

M. Schechter 1981. Operator Method in Quantum mechanics. Elsevier, North-Holland. 348, 349

L. Schwartz,1970. Analyse, Topologie Générale et Analyse Fonctionnelle, Hermann, Collection Enseignement des Sciences No. 11, Paris, 433 pp. 343

P. Sieglej D. Krvcirík 2012. On the metric operator for the imaginary cubic operator, Physical Review D, 86, 121702(R). 350

SMF 2018. La Gazette des mathématiciens Avril 2018: Jean-Christophe Yoccoz, Numero special, Societé Mathématique de France. 331

E.C. Titchmarsh 1988. The Theory of Functions, second edition, Oxford University Press. 345

. T.L. Trefethen 1997. Pseudospectra of linear operators. Siam Review, 39 no. 3, 383-406. 351

T.L. Trefethen and M. Embree 2005. Spectra and Pseudospectra, Princeton University Press, Princeton, NJ. 343, 344, 345, 346

W. Tse, J.C. Wei, M. Winter 2010. The Gierer-Meinhardt system on a compact two-dimensional Riemannian manifold: Interaction of gaussian curvature and Green’s function, Journal of Mathématiqus pures et appliquées, 94, 366-397. 322, 323

A.M. Turing 1990. The chemical basis of morphogenesis, Bulletin of Mathematical Biology, 52 no.1-2, 153-197. 315

S. van der Stelt, A. Doelman, G.M. Hek, J.D.M. Rademacher 2013. Rise and fall of periodic paterns for a generalized Klausmeier-Gray-Scott model, Journal of Nonlinear Sciences, 23 no.1, 39-95. 312, 319, 320, 321, 322

C. E. Waine 2008. An introduction to KAM theory. Preprint. 331

N. Waterstraat 2018. Spectral flow and bifurcation for a class of strongly indefinite elliptic systems. Proceedings of the Royal Society of Edinburgh, 148A, 1097-1113. 355, 356

L. Wen 2016. Differentiable Dynamical Systems. An introduction to structural stability and hyperbolicity, Graduate Studies in Mathematics, 173, American Mathematical Society, Providence, Rhode Island. 330

J-C. Yoccoz 2002. Analytic linearization of circle diffeomorphism. Dynamical systems and small divisors, Springer: 125-173. 331, 333

H. M. Yin, B. Q. Li, J. Zou 2002. A degenerate evolution system modeling Bean’s critical-state type-II superconductors, Discrete and continuous dynamical systems, 8 no.3, 781-794. 338, 342




How to Cite

Huet, D. . (2021). A survey of topics related to Functional Analysis and Applied Sciences. JOURNAL OF ADVANCES IN MATHEMATICS, 20, 371–418. https://doi.org/10.24297/jam.v20i.9066