Conversion of tropical secondary forest into agricultural land: consequences for soil health and environmental stability

Authors

  • Julien K. N’Dri UFR des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire.
  • Raymond Y. Koffi UFR des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire.
  • Arnauth M. Guéi UFR Agroforesterie, Université Jean Lorougnon Guédé, BP 150, Daloa, Côte d’Ivoire
  • Eric Y. Kouassi UFR des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire.
  • Allassane P. Sékongo UFR des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire.
  • Kévin K. N’ Guessan UFR des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire.

DOI:

https://doi.org/10.24297/jns.v9i.9557

Keywords:

Soil Quality, Agrosystems, Forests Conversion, Soil Fauna, Soil Chemical Properties

Abstract

The objective of the study was to address the impacts of tropical forest conversion into agricultural land on changes in invertebrates’ communities, as well as soil chemical properties across 2–4 texturally distinct soils in La Mé and Grand Lahou, Côte d’Ivoire. The fieldwork was carried out in the humid period on two study sites: 1– rubber landscape (secondary forest, 7-, 12- and 25-year-old rubber plantations) and 2– oil palm landscape (secondary forest, 13-, 20- and 39-year-old oil palm plantations). Three sampling stands were established on each land-use type and age class, for a total of 24 sampling stands. Over a 40–50 m transect, topsoil (0–10 cm) invertebrates were sampled by using monoliths (50 cm × 50 cm × 10 cm), following the modified ‘Tropical soil biology and fertility’ method. Soils chemical properties were also determined. The results highlighted a decrease in taxonomic richness (–35 % and –42 %), Shannon index (–32 % and –37 %), Margalef index (–34 % and –41 %), soil carbon stock (–41 % and –15 %), nitrogen stock (–38 % and –11 %) and carbon sequestration (–41 % and –15 %), respectively, after the transformation of secondary forests into rubber and oil palm plantations. The clay soils and clay sandy soils favored the development and emergence of the soil invertebrates, and allowed a higher carbon and nitrogen storage, as well as a greater carbon sequestration. Whatever the site, the soil quality was more degraded under the monoculture tree plantations compared to the secondary forests. Our findings suggest leaving residues of the previous crop on the soil surface and the incorporation of woody trees with an understory of smaller trees during the early establishment periods of monoculture tree plantations, which can create a sustainable agroforestry system with improved nutrient recycling and soil fertility.

Downloads

Download data is not yet available.

References

Adiko A.F.D. (2021) Libéralisation et pauvreté : le cas des producteurs d’hévéa en Côte d’Ivoire. https://orbi.uliege.be/handle/2268/259839. Accessed 02 July 2022

Ahui S.D.J-L. (2018) Contribution de la biomasse végétale du palmier à huile (Elaeis guineensis jacq. 1763) à la modification de l’abondance et de la diversité des acariens du sol de la station de La Mé, Côte d’Ivoire. Mémoire de Master, Laboratoire de Biodiversité et Gestion Durable des Ecosystèmes. Université Nangui Abrogoua, Côte d’Ivoire

Ali A.A., Pangle R., Nugroho B., Moyano F.E., Brambach F., Jenkins M.W., Irawan B., Stiegler C., Blei E., Cahyo A.N., Olchev A., Ariani R., June T., Tarigan S., Corre M.D., Veldkamp E. and Knohl A. (2021) Using a Bottom-Up Approach to Scale Leaf Photosynthetic Traits of Oil Palm, Rubber, and Two Coexisting Tropical Woody Species. Forests, 12: 359. https://doi.org/10.3390/f12030359

Allen K., Corre M.D., Tjoa A. and Veldkamp E. (2015) Soil nitrogen cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS ONE. https://doi.org/10.1371/journal.pone.0133325

Anderson J.M. and Ingram J.S.I. (1993) Tropical soil biology and fertility: a handbook of methods, 2nd ed. CABI, Wallingford

Bachelier G. (1978) La faune des sols, son écologie et son action. ORSTOM, Paris, France

Bakayoko A., Martin P., Chatelain C., Traore D. and Gautier L. (2011) Diversity, family dominance, life forms and ecological strategies of forest fragments compared to continuous forest in southwestern Côte d’Ivoire. Candollea, 66: 255–262.

Bazezew M.N., Soromessa T. and Bayable E. (2015) Carbon stock in Adaba-Dodola community forest of Danaba District, West-Arsi zone of Oromia Region, Ethiopia: An implication for climate change mitigation. Journal of Ecology and the Natural Environment, 7(1): 14–22.

Beckendorff A. (2016) Transformation of tropical forests to oil palm plantations in Sumatra, Indonesia–What are the effects on soil microorganisms and microarthropods (Oribatid mite) abundance, diversity and community structure? Bachelor Thesis. Institute of Zoology and Anthropology, Faculty of Biology and Psychology, Georg-August-University of Göttingen, Germany

Bray N., Kniffin J.K., Frey S.D., Fahey T. and Wickings K. (2019) Soil macroinvertebrate presence alters microbial community composition and activity in the rhizosphere. Frontiers in Microbiology, 10. Doi: 10.3389/fmicb.2019.00256.

Brühl C.A. and Eltz T. (2010) Fuelling the biodiversity crisis: species loss of ground-dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo). Biodiversity and Conservation, 19: 519–529. doi:10.1007/s10531-009-9596-4

Chiti T., Grieco E., Perugini L., Rey A. and Valentini R. (2014) Effect of the replacement of tropical forests with tree plantations on soil organic carbon levels in the Jomoro district, Ghana. Plant Soil, 375: 47–59. doi: 10.1007/s11104-013-1928-1

Commodafrica (2018) IRC 2018 : La production de caoutchouc en Côte d'Ivoire triplera d'ici 2023, à 2 Mt. http://www.commodafrica.com/23-10-2018-irc-2018-la-production-de-caoutchouc-en-cote-divoire-triplera-dici-2023-2-mt. Accessed 12 March 2020.

Conti F.D. (2015) Conservation agriculture and soil fauna: only benefits or also potential threats? A review. EC Agriculture, 2.5: 473–482.

Dawoe E.K., Quashie-Sam J.S. and Oppong S.K. (2014) Effect of landuse conversion from forest to cocoa agroforest on soil characteristics and quality of a Ferric Lixisol in lowland humid Ghana. Agroforestry Systems, 88: 87–99. doi:10.1007/s10457-013-9658-1

DeBlécourt M., Brumme R., Xu J., Corre M.D. and Veldkamp E. (2013) Soil carbon stocks decrease following conversion of secondary forests to rubber (Hevea brasiliensis) plantations. PLoS ONE, 8(7). doi: 10.1371/journal.pone.0069357.

Demessie A., Singh B.R. and Lal R. (2013) Soil carbon and nitrogen stocks under chronosequence of farm and traditional agroforestry land uses in Gambo District, Southern Ethiopia. Nutr. Cycl. Agroecosyst., 95: 365–375. doi: 10.1007/s10705-013-9570-0

Despréaux D. and Nicolas D. (2001) Les cultures pérennes sont-elles menacées ? Oléagineux Corps gras Lipides, 8(6): 562–564. https://doi.org/10.1051/ocl.2001.0562

Diabaté S., Koutou A., Wongbé Y., Brou K.G., Gogbé B.F. and Kouadjo C.G. (2014) Étude comparée de la réaction phénolique chez quatre clones de palmiers à huile dans le pathosystème Elaeis guineensis–Fusarium oxysporum f.sp. elaeidis au stade prépépinière. J. Anim. Plant Sci., 21: 3241–3250.

Diabaté S., Kouadio L.D., Brou K.G., Wongbé Y., Konan J.N., Konan K.E. and Abo K. (2015) Étude de l’influence du facteur antécédent cultural palmiers et cocotiers sur l’évolution de la fusariose vasculaire chez six clones de palmiers à huile de Côte d’Ivoire. J. Appl. BioSci., 92: 8570–8577. doi:10.4314/jab.v92i1.1

Drescher J., Rembold K., Allen K., Beckschäfer P., Buchori D., Clough Y., Faust H., Fauzi A.M., Gunawan D., Hertel D., Irawan B., Jaya I.N.S., Klamer B., Kleinn C., Knohl A., Kotowska M.M., Krashevska V., Krishna V., Leuschner C., Lorenz W., Meijide A., Melati D., Nomura M., Pérez-Cruzado C., Qaim M., Siregar I.Z., Steinebach S., Tjoa A., Tscharntke T., Wick B., Wiegand K., Kreft H. and Scheu S. (2016) Ecological and socioeconomic functions across tropical land use systems after rainforest conversion. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 371. http://dx.doi.org/10.1098/rstb.2015.0275

Edwards F.A., Edwards D.P., Larsen T.H., Hsu W.W., Benedick S., Chung A., Khen C.V., Wilcove D.S. and Hamer K.C. (2014) Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot? Animal Conservation, 17: 163–173. doi:10.1111/acv.12074

Ettian M.K., Soulemane O. and Tahou T.M. (2009) Influence du régime alimentaire sur l’intervalle de parturition des aulacodes en captivité dans la région de Grand-Lahou (Côte d’Ivoire, Afrique de l’Ouest). J. Anim. Plant Sci., 4: 311–319

Fages C. (2019) Chronique des matières premières : La Côte d'ivoire veut tripler sa production d'huile de palme sans déforester. http://www.rfi.fr/fr/emission/20190301-cote-ivoire-veut-tripler-production-huile-palme-deforester, Accessed 12 March 2020

FIRCA (2012) Fonds Interprofessionnel pour la Recherche et le Conseil Agricoles. Guide C.H.T.2 du 01 mars 2012, 56p.

Foster W.A., Snaddon J.L., Turner E.C., Fayle T.M., Cockerill T.D., Ellwood M.D.F., Broad G.R., Chung A.Y.C., Eggleton P., Khen C.V. and Yusah K.M. (2011) Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366: 3277–3291. doi:10.1098/rstb.2011.0041

Frouz J. (2018) Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma. http://dx.doi.org/10.1016/j.geoderma.2017.08.039.

Guillaume T., Damris M. and Kuzyakov Y. (2015) Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ13C. Glob. Change Biol., 21: 3548–3560.

Hemati Z., Selvalakshmi S., Xia S. and Yang X. (2020) Identification of indicators: monitoring the impacts of rubber plantations on soil quality in Xishuangbanna, Southwest China. Ecol. Indic., https://doi.org/10.1016/j.ecolind.2020.106491

Jacquemard J.C. (2011) Le palmier à huile. Éditions Quæ, Versailles Cedex, France, 240 p.

Kerfahi D., Tripathi B.M., Lee J., Edwards D.P. and Adams J.M. (2014) The Impact of selective logging and forest clearance for oil palm on fungal communities in Borneo. PLoS One, 9. doi: 10.1371/journal.pone.0111525

Koffi R.Y. (2020) Changement des communautés d’Oribates et des paramètres physico-chimiques du sol des agrosystèmes dérivés des sols forestiers : cas des plantations de palmier à huile (Elaeis guineensis Jacq.) et d’hévéa (Hevea brasiliensis Muell.) dans le sud de la Côte d’Ivoire. Mémoire de Master. Laboratoire d’Ecologie et de Développement Durable, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire.

Konan K.E., Koné B., Adon N.B., Diabaté S., Koutou A. and Ballo K. (2006) Bien cultiver le palmier à huile en Côte d’Ivoire. Fiche palmier No. 1, Centre National de Recherche Agronomique, Côte d’Ivoire.

Kongsager R., Napier J. and Mertz O. (2013) The carbon sequestration potential of tree crop plantations. Mitig Adapt Strateg Glob Change, 18: 1197–1213

Luke S.H., Fayle T.M., Eggleton P., Turner E.C. and Davies R.G. (2014) Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodiversity and Conservation, 23: 2817–2832. doi:10.1007/s10531-014-0750-2

Luskin M.S. and Potts M.D. (2011) Microclimate and habitat heterogeneity through the oil palm life cycle. Basic Appl. Ecol., 12: 540–551. doi: 10.1016/j.baae.2011.06.004

Manhan P.L. (2015) Impact de l’hévéaculture sur le stock de carbone dans la biomasse végétale dans le Sud-Ouest de la Côte d’Ivoire (Région de Grand Lahou). Mémoire de Master, Laboratoire de Biodiversité et Gestion Durable des Ecosystèmes. Université Nangui Abrogoua, Côte d’Ivoire

Meijaard E., Garcia-Ulloa J., Sheil D., Carlson K.M., Wich S.A., Juffe-Bignoli D. and Brooks T.M. (2018) Palmiers à huile et biodiversité. Analyse de la situation par le groupe de travail de l’UICN sur les palmiers à huile, Gland, Suisse, 128p.

Moulin N., Jolivet S., Mériguet B. and Zagatti P. (2007) Méthodologie de suivis scientifiques des espèces patrimoniales (faune) sur le territoire du Parc naturel régional du Vexin français – Entomofaune. OPIE - PNR Vexin français, 66p.

Mumme S., Jochum M., Brose U., Haneda N.F. and Barnes A.D. (2015) Functional diversity and stability of litter-invertebrate communities following land-use change in Sumatra, Indonesia. Biological Conservation, 191: 750–758. doi:10.1016/j.biocon.2015.08.033

N’Dri J.K. and N’Guessan K.K. (2018) Modification of topsoil physico-chemical characteristics and macroinvertebrates structure consecutive to the conversion of secondary forests into rubber plantations in Grand-Lahou, Côte d’Ivoire. Journal of Advances in Agriculture, 8(1): 1235–1255

Ndiaye O. and Fainke S. (2020) Carte d’identité: In Société Africaine de Plantations d’Hévéas / West Africa Rating Agency, 12p.

Nguyen T.T., Do T.T., Harper R., Pham T.T., Linh T.V.K., Le T.S., Thanh L.B. and Giap N.X. (2020) Soil health impacts of rubber farming: the implication of conversion of degraded natural forests into monoculture plantations. Agriculture. doi:10.3390/agriculture10080357

Obouayeba S., Gnagne Y.M., Wahounou P.J., Boko C., Sylla S., Kéli Z.J. and Déa G.B. (2006) Bien cultiver l’hévéa en Côte d’Ivoire. Fiche technique de l’hévéa n°1. Centre National de Recherche Agronomique, Abidjan, Côte d’Ivoire

Oke O.C., Alohan F.I., Uzibor M.O. and Chokor J.U. (2008) Land snail diversity and species richness in an oil palm agroforest in Egbeta, Edo State, Nigeria. Bioscience Research Communications, 20: 249–256.

Omondi C., Ogolla F.O. and Odhiambo C. (2020) Determination of effect of land use on distribution and abundance of ground dwelling macro-invertebrates in Kirimiri forest in Embu County, Kenya. International Journal of Advanced Research and Publications, 4: 31–37.

Ouédraogo K. (2004) Soil quality improvement for crop in semi-arid West Africa. Thesis dissertation. University and Research Centre. Wageningen, The Netherland. 193p.

Palmafrique (2017) Le palmier à huile dans l’économie Ivoirienne. Accessed 29 December 2017. http://www.palmafrique.com/lhuile-de-palme-dans-leconomie-ivoirienne/

Péné C.B. and Assa D.A. (2003) Variations interannuelles de la pluviométrie et de l’alimentation hydrique de la canne à sucre en Côte-d’Ivoire. Sécheresse, 14: 43–52.

Perraud A. (1971) Les sols. In: Avenard J.M., Eldln M., Girard G., Sircoulon J., Touchebeuf P., Guillaumet J.L., Adjanohoun E. and Perraud A. (eds) Le milieu naturel de la Côte d’Ivoire, vol 50. Office de la Recherche Scientifique et Technique Outre-Mer, Paris, pp 265–391

Perron T., Deleporte P., Mareschal L., Laclau J-P., Deffontaines L., Masson A., Cauchy T. and Gay F. (2021) Dynamics of biomass and nutrient accumulation in rubber (Hevea brasiliensis) plantations established on two soil types: Implications for nutrient management over the immature phase. Industrial Crops & Products, 159. https://doi.org/10.1016/j.indcrop.2020.113084

Pransiska Y., Triadiati T., Tjitrosoedirjo S., Hertel D. and Kotowska M.M. (2016) Forest conversion impacts on the fine and coarse root system, and soil organic matter in tropical lowlands of Sumatera (Indonesia). Forest Ecology and Management, 379: 288–298. http://dx.doi.org/10.1016/j.foreco.2016.07.038

Ruiz N. (2012) Indice Biologique de la Qualité des Sols (IBQS) Bio-indicateur de la qualité des sols basés sur l’étude des peuplements de macroinvertébrés. Institut de Recherche pour le Développement (IRD), 3p.

Sabrina D.T., Hana M.M., Nor Azwady A.A. and Mahmud T.M.M. (2009) Earthworm populations and cast properties in the soils of oil palm plantations. The Malaysian Journal of Soil Science, 13: 29–42.

Séka F.A. (2016) Facteurs déterminants l’abondance et la diversité des communautés d’acariens dans les plantations villageoises d’hévéa, Hevea brasiliensis Muell. (Euphorbiaceae) d’âges variés à Grand Lahou (Sud de la Côte d’Ivoire). Mémoire de Master, Laboratoire de Biodiversité et Gestion Durable des Ecosystèmes. Université Nangui Abrogoua, Côte d’Ivoire

Singh A.K., Liu W., Zakari S., Wu J., Yang B., Jiang X.J., Zhu X., Zou X., Zhang W., Chen C., Singh R. and Nath A.J. (2021) A global review of rubber plantations: impacts on ecosystem functions, mitigations, future directions, and policies for sustainable cultivation. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2021.148948

Sulistyorini E., Widyastuti R. and Santoso S. (2018) Diversity of Oribatids (Acari) at different land use types in Mentebah, Kapuas Hulu, West Kalimantan. J. Degrade. Min. Land Manage., 5: 1355–1361.

Swarnalatha B. (2010) Effects of monoculture tree plantations and agricultural land-uses on the spatio-temporal variations of beneficial soil and litter arthropod diversity on the coromandel coast at Puducherry (India). Thesis Dissertation. Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, India

Tondoh J.E., Kouamé F.N., Guéi A.M., Sey B., Koné A.W. and Gnessougou N. (2015) Ecological changes induced by full-sun cocoa farming in Côte d’Ivoire. Glob. Ecol. Conserv., 3: 575–595

Tondoh J.E., Dimobe K., Guéi A.M., Adahe L., Baidai Y., N’Dri J.K. and Forkuor G. (2019) Soil health changes over a 25-year chronosequence from forest to plantations in rubber tree (Hevea brasiliensis) landscapes in southern Côte d’Ivoire: do earthworms play a role? Frontiers in Environmental Science, 7: 73. doi: 10.3389/fenvs.2019.00073

Traoré K. and Péné C.B. (2016) Étude phytoécologique des adventices dans les agroécosystèmes élaeicoles de la Mé et de Dabou, en basse Côte d’Ivoire. J. Appl. BioSci., 104: 10005–10018. doi:10.4314/jab.v104i1.13

Vrignon-Brenas S., Gay F., Ricard S., Snoeck D., Perron T., Mareschal L., Laclau J-P., Gohet E. and Malagoli P. (2019) Nutrient management of immature rubber plantations. A review. Agronomy for Sustainable Development. https://doi.org/10.1007/s13593-019-0554-6

Yang X. and Chen J. (2009) Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biology and Biochemistry 41, 910–918. doi:10.1016/j.soilbio.2008.12.028

Yeboua K. and Ballo K. (2000) Caractéristiques chimiques du sol sous palmeraie. John Libbey Eurotext, 9: 73–76.

Yéo J.G. (2018) Etude de la variabilité des macroinvertébrés du sol des paysages de palmier à huile (Elaeis guineensis Jacq. 1763) suivant un gradient d’âge dans la station de La Mé, Côte d’Ivoire. Mémoire de Master, Laboratoire de Biodiversité et Gestion Durable des Ecosystèmes. Université Nangui Abrogoua, Côte d’Ivoire

Yéo J.G., N’Dri J.K., Edoukou E.F. and Ahui J-L.D.S. (2020) Changes in surface soil properties and macroinvertebrate communities with the conversion of secondary forests to oil palm (Elaeis guineensis) plantations. Crop and Pasture Science, 71: 837–849

Downloads

Published

2023-12-30

How to Cite

N’Dri, J. K. ., Koffi, R. Y. ., Guéi, A. M. ., Kouassi, E. Y. ., Sékongo, A. P. ., & Guessan, K. K. N. (2023). Conversion of tropical secondary forest into agricultural land: consequences for soil health and environmental stability. JOURNAL OF ADVANCES IN NATURAL SCIENCES, 9, 1–16. https://doi.org/10.24297/jns.v9i.9557

Issue

Section

Articles