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Abstract 

The relevance of the Central - force motion in the macroscopic and microscopic frames warrants a detailed study of the 
theoretical mechanics associated with it. So far, researchers have only considered central - force motion, as motion only in 

the translational and rotational elliptical plane with polar coordinates ),( r . However, the theoretical knowledge advanced 

by these researchers in line with this type of motion is scientifically restricted as several possibilities are equally applicable. 
In order to make the mechanics of a Central - force motion sufficiently meaningful, we have in this work extended the 
theory which has only been that of translational and rotational in the elliptical plane, by including fictitious radii and spin 

oscillations ),,,;21,( rr of the body about the axis of rotation. In this work, we used the methods of Newtonian 

mechanics to establish the new central-force field obeyed by the motion of a body, when the effect of spin oscillation is 
added. The new central-force field comprises of the radial accelerations, translational orbital angular velocity and the 
oscillating spin angular velocities. The energy conveyed in the spin oscillating phase increases as the orbital oscillating 
angles above or below the horizon of the elliptical plane is increased. 
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1.0     Introduction 

The forces of nature are unbalanced and therefore are in a state of non-equilibrium. For instance, the gravitational force is 
not uniform but it varies from one region of space to another. The difference in elliptic motion of the planets around the 
perihelion and aphelion is a consequence of the non-uniform and unbalanced nature of this force. 

A body undergoing a central force motion in an unbounded region of space induces electrostatic potential on the path of 
its motion. This potential creates a dipole moment which tends to oscillate the body up and down about a given equilibrium 
position. Consequent upon this, the body would certainly have a definite memory of the repeated path and directions of 
motion even in the absence of any immediate directional driving force.  The up and down oscillation of a body in a central 
force field, with example the earth could be what is responsible for the several phenomena such as the solitary wave, tidal 
wave and ocean current experience in nature. 

The fundamental forces of nature depend only on the distance from the source. All complex interactions that occur in the 
real world arise from these forces, and while many of them are usually described in a more complex manner, their origin 
can be found in the fundamental forces that depend only on distance. It is the presence of many sources of the distance-
dependent forces that enables the complex world we know to exist [1]. For motion that is confined to a plane defined by 
the action of a central force, the logical choice of a coordinate frame is polar coordinates with the center of the force field 
located at the origin of the coordinate system. 

In some cases, the nature of the force attracting the motion of a body to a central -point, could make the body oscillate up 
and down about its mean equilibrium position. The added effects of the up and down spin oscillations will cause the body 
to have a different generalized coordinates apart from the one of translational and rotational elliptical plane motion. The 
only requirement for the generalized coordinates is that they span the space of the motion and be linearly independent. 

Central - force motion is the motion which takes place under the action of a force that is always directed towards or away 
from a focus [2]. Perhaps, a good example of this type of motion is that of the planets round the sun. Nuclear forces 
binding electrons to an atom undoubtedly have a central character. The relevance of the Central - force motion in the 
macroscopic and microscopic frames warrants a detailed study of the theoretical mechanics associated with it.  

So far, researchers have only considered central - force motion, as motion only in the translational and rotational plane 

with polar coordinates ),( r , for example, see Keplerian orbits [3, 4]. However, the theoretical knowledge advanced by 

these researchers in line with this type of motion is scientifically restricted as several possibilities are equally applicable. 

Some of the conditions satisfied by a body undergoing a Central - force motion is as follows: (i) the motion of the body can 

be translational and rotational in the elliptical plane represented by the polar coordinates ),( r , (ii) the body can be 

rotating and revolving about its own axis in the elliptical plane ),( r , (iii) the body can be translating and rotating in the 

elliptical plane ),( r , at the same time, oscillating up and down about its own axis (iv) the body can be translating and 

rotating in the elliptical plane ),( r , at the same time, oscillating up and down but not below its axis of rotation (v) the 

combination of any of these conditions form another class of a Central - force motion [5].  

In order to make the mechanics of a Central - force motion sufficiently meaningful, we have in this work extended the 

theory which has only been that of translational and rotational in the elliptical plane with polar coordinates ),( r , by 

including vertical spin oscillations.  This circumstance, we shall be contending with a total of 6 - generalized coordinates or 

degrees of freedom; 2 from the translational and rotational motion in the elliptical plane ),( r , 2 from the orbital spin 

oscillations ),(  and 2 from the tangential spin oscillations ),(  . Consequently, these parameters form the basis of 

our classical theory of 6-dimensional motion [6]. 

The number of independent ways in which a mechanical system can move without violating any constraints which may be 
imposed is called the number of degrees of freedom of the system. The number of degrees of freedom is the number of 
quantities which must be specified in order to determine the velocities of all particles in the system for any motion which 
does not violate the constraints [7].  

There is a single source producing the force that depends only on distance in the theory of central-force motion and the 
force law is symmetric [8]. If this is the case, then, there can be no torques present in the system as there would have to 
be a preferred axis about which the torques acts.  

In this work, we are solving the problem of oscillating central force motion in a resistive non-symmetric system. That is, the 
upward displacement is not equal to the downward displacement in the tangential spin oscillating phase. Consequently, 
the radii distances from the central point are not equal. This however, causes torques thereby making the system under 
study non-spherically symmetric. 

This paper is outlined as follows. Section 1, illustrates the basic concept of the work under study.  The mathematical 
theory is presented in section 2. While in section 3, we present the analytical discussion of the results obtained. The 
conclusion of this work is shown in section 4 and this is immediately followed by appendix and list of references. 
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1.1 Research methodology 

The analytical geometry of the work is first figuratively represented. This provides the pictorial understanding of the work 
under investigation and the possibility of specifying the required generalized coordinates. Thereafter, simple rule of 
trigonometry was used to define the vector quantities which we need for the evaluation of the physical quantities. Finally, 
differential techniques in combination with the theory of classical mechanics are utilized in the discussion of the problem of 
6D motion.  

 

2.0 Mathematical Theory 

2.1 Evaluation of the 6-D central - force field  

We have elaborately shown in (A.6) that the position vector r


 of a body whose motion is translational and rotational in the 

elliptic orbit, as well as oscillating about a given equilibrium position in a central-force field is given by the equation 
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(2.4) 
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Equation (2.3) and (2.5) are the new velocity and acceleration equations which govern the motion of a body undergoing a 
central-force motion when the effect of vertical oscillation is added. They are both six-dimensional (6D) in character. But 
while the velocity is only translational with respect to the generalized coordinates, the acceleration also contains an 
oscillating phase. 

In a central force motion, the angular momentum is constant, because the torque exerted by the force is zero. As a 
consequence, the body moves on a plane perpendicular to the angular momentum vector containing the origin, and obeys 
Kepler’s second law. If the angular momentum is zero, the body moves along the line joining it with the origin. 

As a result, let us disengage the acceleration equation in (2.5) with the view that the 5
th

 and the 8
th

 terms contain the 
elements of angular momentum and orbital oscillating phases. Thus 

              ˆtan2ˆ2ˆ2ˆˆ2ˆ 2

111111

2

11

2  rrrrrrrrrrrrra  

        ˆtan2ˆ2ˆ2ˆ 2

222222

2

22
 rrrrrrrr 

                                                                     
(2.6) 

In classical mechanics, a central force is a force whose magnitude only depends on the distance r , of the body from the 
origin and is directed along the line joining them [7]. Thus, from the analytical geometry of the central-force motion shown 
in fig. A. 1, in the appendix, permits us to write in terms of vector algebra that  

amrfrfrrfrrfrrfrrrrfrF   ˆ)(ˆ)(ˆ)(ˆ)(ˆ)()ˆ,ˆ;ˆ,ˆ,ˆ()()( 21221121                   (2.7) 

where F is a vector valued force function, f is a scalar valued force function, r is the position vector, r  is its length, 

and rrr /ˆ  , is the corresponding unit vector. 
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We can simply convert (2.6) to force by multiplying through it by the mass m of the body and equate the resulting 

expression to (2.7). Note that we are utilizing the orbital oscillating phase in (2.6) which is acting in the directions 

of ̂ and̂  in the force calculation. We shall separately utilize the non-oscillating phase which is acting in the directions 

of ̂ and̂  in the calculation of the angular momentum. As a consequence, we obtain the following sets of canonical 

equations of the motion.  
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The sets of equation (2.9) - (2.13) determines the angular momentum which are the constants of the motion in the 

direction of increasing coordinates,  ,, ,  and  .  

Equation (2.8) is the required 6D central-force field which we have developed in this study. It governs the motion of a body 
undergoing a central-force motion when the effect of spin oscillation is added.  

 

2.2 Evaluation of the Oscillating Energy oscE and the Orbital Spin Oscillating 

Velocities.  

Let us discuss some possibilities associated with the new acceleration equation given by (2.5). The orbital spin oscillating 

acceleration takes place in the directions of increasing ̂ and ̂ . At position D (see fig. A. 1 in the appendix), 

when 0 , then the orbital spin oscillating acceleration acting in the direction of increasing ̂  becomes applicable. It 

describes the motion in the upper orbital oscillating frame, above C. At position B, 0 , then the orbital spin oscillating 

acceleration acting in the direction of increasing ̂  becomes applicable. It describes the motion in the lower orbital 

oscillating frame, below C. As a consequence  
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The simultaneous nature of the two orbital spin oscillating equations for both the upper and the lower frames would enable 
us to use one of them as case study and assume the same result for the other. Hence, equation (2.14) can be compactly 
written as 
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with a similar expression for (2.15) as  
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where 1E and 2E are the constants of the motion associated with the fictitious radii 1r  and 2r , whose values are 

respectively the functions of the orbital oscillating angles   and  .  
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Hence, the oscillating energy posses by the body in terms of   and   in the oscillating phase is given by (2.20). This 

equation determines how energy is conveyed up and down in the oscillating phase.  

It can be interpreted that equation (2.14) is quadratic in  and accordingly, we can write that 
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Following the same algebraic subroutine we obtain a similar expression for   using (2.15) as 
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The discriminate of the equations for  and   are both respectively zero provided 
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Equations (2.24) and (2.25), show that the fictitious radii velocity 
1r and  2r  increases as the orbital oscillating angles   

and   is increased. 

2.3 Evaluation of the Lagrange’s Equations of Motion. 

From equation (2.3) we realize that the kinetic energy T of the body can be written as 
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where kq are the generalized coordinates, kq are the associated velocity counterparts, kqL  / generalized 

velocity, kqL  / generalized momentum. 

The Lagrange’s equations of motion are thus generally given as follows. 
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Following the same algebraic subroutine we obtain the following angular momentum equations associated with the other 
generalized coordinates. Since 
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By replacing equations (2.38) – (2.43) into (2.34), (2.35) and (2.36) respectively and noting that the Lagrange’s equations 
in the case of a conservative field is 
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Multiply through (2.45), (2.46) and (2.47) by r ,
1r and 

2r respectively and integrate, we get 
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So that we obtain separately for (2.48), (2.49) and (2.50) the below consecutive equations  
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Thus equation (2.55) is the equation of the total radial energy rE possess by the body with respect to the three 

independent radii paths.  

2.4 Evaluation of the (6D) Area Velocity for a Central Force Field. 

The total area covered by the body is therefore the sum of the differential area between two radii in the elliptic plane and 
the two triangular areas in the vertical oscillating plane, with r  as the common base of the two triangles. Thus the time 
derivative of the total area covered by the body gives the areal velocity. We should note that the body will transvers twice 
the area of the triangle because of the to and fro oscillating motion in the upper and lower elliptic planes. Hence  
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Since sin/ 1 rr and sin/ 2 rr , see appendix (A.1).We know from the geometry of fig. A. 1, that the fictitious radii 

1r and 
2r are approximately equal to one another and they are both assumed to be slightly greater than the elliptical 

radius r .  However, in a more realistic model the displacement of the body from the mean equilibrium position is the same 

for both the upper and lower regions of the ellipse then   ,   and kkk  12 , and as a result  
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2.5 The Inverse Square Law of Central Force Field.  

Since the body moves in a central force field, then the potential energy is 
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From (2.24) and (2.25) 
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We observe from(2.38), (2.40) and (2.41) that since the motion is a central motion, the angular momentum is a constant of 
motion, as a result   
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which upon combination we get 
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Similarly from (2.42) and (2.43) it can be shown that 
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Hence upon the substitution of (2.66) – (2.72) into (2.65), we realize after some simplification that  
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Now, substituting  cos1/ r and 
2/3

)2( am   , then the first integral term becomes  
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where a is the semi-major axis of the ellipse  is an arbitrary constant . After a careful evaluation it can be shown by using 

any known integral technique that the first integral 
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with the relation )1(
2

  a and the substitution of (2.75) into the first term of (2.74), while maintaining that the other 

two integrals have trivial solutions, then (2.74) reduces to 





























 tan2)(

tansin

tan2)(

tansin2 21



kkg

a

k
U                                                                                      (2.76) 

 

Thus the potential energy is partly attractive and partly repulsive. Suppose it is only attractive then 









tan2)(

tansin

tan2)(

tansin 21

 




kk
                                                                                                                  (2.77) 
























tan2tansin)(

tan2tansin)(

2

1





k

k
                                                                                                                       (2.78) 

Hence the newly included potential energy constants of the central force motion as a result of the oscillating phases are 
oppositely directed. 

 3.0 Discussion of Results  

It is clear from the force equation given by (2.8), that the force field is quadratic with respect to the variable angular 
displacements. The force field is six-dimensional (6D) in character and it comprises of the translational and oscillating 
phases. The oscillating phase of the force field increases as the orbital spin oscillating angles is increased. Also the 

translational phase decreases as  , and  is increased. The net result of this equation would yield a negative force 

field which is attractive in character. 

 

The upper and lower orbital spin oscillating velocities  and has two possible roots with positive and negative gradients. 

This is shown in (2.22) and (2.23). The positive gradient describes the oscillation in the downward direction CD  , while 

the negative gradient of   determines the oscillation in the upward direction DC  .  
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The interpretation is the reverse in the case of . The positive gradient root of   describes the oscillation in the lower 

upper direction CB  , while the negative gradient root of   determines the oscillation in the lower downward 

direction BC  . The orbital spin oscillating velocities increase as the orbital spin oscillating angles  and is 

increased. Also the values of the orbital spin oscillating angles determine the fictitious radii velocities 
1r and 2r . According 

to equation (2.24) and (2.25),the fictitious radii velocity increases as the orbital oscillating angles are increased. 

Within the valid intervals of  and , the energy conveyed in the spin oscillating phase increases as the orbital oscillating 

angles is increased. This is shown in equation (2.54).The equation shows that the total energy is quadratic with respect to 
the three independent radii paths. From the radial energy equation, the energy possessed by the body is directly 
proportional to the square of the translational elliptic radii velocities and the potential force field is negative. The negative 
characteristic of the angular momenta and the potential force field in the radial energy equation, further affirms that the 
motion of the body is attractively translational and oscillatory, and it is always directed towards a central point.  

It is obvious from equation (2.63) that the areal velocity is partly constant and partly varies with the vertical oscillating 
phases. Consequently, the initial value of the areal velocity of a body undergoing a central force motion is increased due 
to the inclusion of the vertical spin oscillating phases.  

According to equation (2.76) the resulting potential energy of the body is attractive in the elliptic plane and repulsive in the 
vertical oscillating phase of the motion. This is a consequence of the fact that the influence of the gravitational force is 
tangential to the direction of the central force motion.  

4.0 Conclusion 

In order to make the theory of Central - force motion adequately meaningful, we have in this study extended the theory 

which has only been that of translational and rotational in the elliptical plane with coordinates ),( r , by including fictitious 

radii and spin oscillations ),,,;21,( rr about the axis of rotation. The energy conveyed in the spin oscillating phase 

increases as the orbital oscillating angles above or below the horizon of the elliptical plane is increased. In the absence of 

the spin oscillating parameters, that is, in the region of the interface C , we recover the usual equations of a central-force 

motion in terms of the total energy, areal velocity and the potential energy, whose motion is only that of translational in the 
elliptical plane. The energy conveyed in the orbital spin oscillating phase of the motion increases as the orbital spin 
oscillating angles is increased.    

Appendix 

Let us consider the rotational motion of a body of mass m  about a fixed origin say, O , in an elliptical polar coordinate 

system. Suppose the same body is also oscillating up and down about its equilibrium position as it translates rotationally 
round the fixed origin. The body thus possesses translational and rotational elliptical motion with polar coordinates 

),( r and tangential spin oscillating motion described by the vertical displacement CBCDC  and 

repeatedly in the y -direction. The geometry of the analytical requirements is shown in fig. A.1.  

The reader should take note that the oscillation of the body is not out of the elliptical orbit of rotation. Rather the 

displacement D and B  above and below C  is very small. The oscillation is still within the limits of the axis of rotation C . 

We have only decided to stretch D and B  above and below C considerably enough in order to reveal the geometrical 

concept required for the analytical calculation.  

There are six possible degrees of freedom or generalized coordinates exhibited by the motion body under this 

circumstance: (i) translational and rotational in the elliptical plane ),( r ,(ii) the plane of upward oscillations ),(  and 

(iii) the plane of downward oscillations ),(  . 

We shall compute separately the tangential spin oscillating motions in both oscillating frames and eventually combine the 
result with the orbital elliptical plane motion. In this study, we assume that the angular displacements in the tangential spin 
oscillating frames are not equal and so the system under study is not radially symmetric. Consequently, there is the 
existence of torque due to the non uniformity of the radii distances. 

Accordingly, we can now develop relationships between the various areas indicated on fig. A. 1, with the goal to find the 
formula for the area swept out by the elliptical plane polar motion, and the result obtained from this is then added to the 

tangential oscillating triangle sections COD ˆ and BOC ˆ respectively. 

From the figure, P and Q are very small upward and downward displacements from the equilibrium axis of rotation C , 

that is, regions in the upper and lower triangular swept segments of the upper and lower elliptical plane. Our first task 

would be to connect all these oscillating spin angular degrees of freedom into an expression in terms of P and Q .  
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For clarity of purpose, let us define the various symbols which we shall encounter in our calculations : (i) the elliptical 

radius  r  (ii) the fictitious radii 
1r and  2r (iii) the plane of upward oscillations ),(  , that is subtended from the upper 

elliptical plane (iv) the plane of downward oscillations ),(  , that is subtended from the bottom or the lower part of the 

elliptical plane (v) the elliptical orbital angle   (vi) the  upper tangential oscillating spin angle   (vii) the  lower tangential 

oscillating spin angle   (viii) the upper and lower orbital spin oscillating angles   and   

 

Fig. A.1. Represents the elliptical and oscillating motion of a body in a central-force field. The body is oscillating up and 

down about the axis of rotation C . Where COD ˆ (frame I) and  BOC ˆ (frame II) are the respective upper and lower 

projections onto the plane of the ellipse, the lines DC  ( P ) and CB  (Q ) are very small displacements from the axis C , 

we have only stretched them to make the geometry of the figure clear enough for observation and calculation. 

In frame I: we obtain from COD ˆ  

sin1rr     ;    tansintan 1rrP                                                                                                             (A.1) 

In frame II: we obtain from BOC ˆ  

sin2rr      ;      tansintan 2rrQ                                                                                                           (A.2) 

The position vector r


of the body in the translating and rotating elliptical plane polar orbit is given by 

irixr cos


                                                                                                                                                           
(A.3) 

While in combination with the spin oscillating frames (acting in the y -direction), we get 

  jQPjixjyixr


   ;   
  jrjrirr  tansintansincos 21


                                    

(A.4) 
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1

1
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


 j

r

r
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2


                                                         (A.5) 

),(ˆ),(ˆ)(ˆ 2211  rrrrrrr 


                                                                                                                          
(A.6) 
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r
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 sin
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


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ˆ
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







                                                                                                        (A.7) 





 j
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

 




                                                                                  

(A.8) 



                                                           

33 | P a g e                                                           M a r c h  2 0 ,  2 0 1 4  





 j

r



 21 secsin
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

 ˆtan2secsintan2
ˆ

2 

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(A.9) 
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


 j

r



 tancos
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2̂tansin

ˆ
rj 



 




                                                                          

(A.10) 





 j

r



 22 secsin

ˆ
ˆ      ;        




ˆtan2secsintan2

ˆ 2 


 j                                                  (A.11) 

Note that we did not use the same expression for the elliptical radius r in frames I and II, even if it is common to both 
frames. This is because we want the fictitious radii to feature simultaneously in the general equation for the position vector 
of the rotating and oscillating body. Besides, it may also be possible that both radii are unequal. 
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