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Abstract 

Interactions between genes, such as regulations are best represented by gene regulatory networks (GRN). These 

are often constructed based on gene expression data. Few methods for the construction of GRN exist for RNA 

sequencing count data. One of the most used methods for microarray data is based on graphical Gaussian 

networks. Considering that count data have different distributions, the negative binomial distribution is much 

more likely for RNA-sequencing data. For this distribution, no model-based method for the construction of GRN 

has been proposed until now. Here, we present a graphical, model-based method for the construction of GRN 

assuming a negative binomial distribution of the RNA sequencing count data. The R code is available under 

request. We used the method proposed both on simulated RNA sequencing count data and on real data. The 

graph is showen, and its descriptive measurements were assessed. Some interesting biological conclusions were 

found. We confirm that using negative binomial distribution for fitting the model is suitable because RNA 

sequencing data presents overdispersion.  

Keywords: Gene Regulatory Network, RNA-Seq, Graphical Model, Negative Binomial Distribution, 

Overdispersion, Networks. 

Introduction  

Gene regulatory networks are very informative in order to understand the underlying mechanisms of biological 

functions at the molecular level. Their reconstruction is based on several assumptions about the data (often 

gene expression data) and the model describing relationships between genes. When the statistical distribution 

of the variables, from which the gene expression samples for each gene are obtained, is known, graphical models 

allow establishing relationships between them [1–4]. Graphical models have been traditionally used for the 

construction of GRN. Networks constructed using a Graphical Gaussian Model (GGM) are probabilistic graphical 

models that describe the conditional relationship between genes under the assumption that the gene expression 

data comes from a multivariate normal distribution. There are directed and undirected GGM. The undirected 

GGMs, are represented by a non-directed graphG = (V; U), where the nodes v1; … ; vp represent the ensemble 

of variables (in gene networks, they are the expression profiles of a gene across all samples) and U is the 

ensemble of vertices. When a random vector 𝑿  has a distribution NP(μ, Σ), the graph 𝐺  represents a model 

where  K = Σ-1 is a semidefinite positive matrix with kil = 0 when no edge between the nodes 𝑖  and 𝑙  exists. 

This kind of graph is called a dependence graph because when 𝑖 and 𝑙 are adjacent, then  i ⫫ l|U-{i, l}. These 

graphs comply the global Markov property [5]. This models have been widely used for the construction of GRN 

on continuous microarray data as reviewed by Liu [6].  

Very few methods have been proposed for discrete RNA-sequencing count data. Jia et al. (2017) [7] proposed a 

methodology for RNA sequencing data after a transformation that conducts to a continuous distribution. The 

transformation is based on models of random effects and after transformation, a GGM can be applied to these 

data. For RNA sequencing count data without transformation, Allen and Liu (2013), have proposed a method 

assuming a Poisson distribution of the RNA sequencing counts.  Their proposal is based on the local Markov 

property in which each variable has a Poisson distribution conditional to all others. For the construction of the 

network, they propose an algorithm, which selects a node (a gene) and starts searching for relationships with all 

other gens via penalized regressions.  Gene neighbors, for which the coefficients of the penalized regression are 
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not significative, no edge is established [1]. Nevertheless, this model is not completely adapted for RNA-

sequencing data, because overdispersion is an important issue, when Poisson distribution is assumed [8]. 

Karbalayghareh and Hu (2015) [9] proposed a method for RNA-sequencing time series data based on a log-

linear model for the temporal evolution of the gene expressions and modeled the gene expression levels by a 

negative binomial distribution. Their method also controls the network sparseness. Thorne (2018) [10], 

developed a model-based method, assuming negative binomial distribution and uses sparse regression with a 

horseshoe prior to learn a dynamic Bayesian network of interactions between genes. This method was also 

developed for time series data. 

The graphical models based on generalized linear models (GM-GLM) appear when node conditional 

distributions of the exponential family are considered [11]. Let X = (X1, … , Xp), be a random vector where each 

𝑋𝑖 takes values from an ensemble 𝑋  and 𝐺 = (𝑈; 𝑉) be a non-directed graph on 𝑝 nodes. The graphical model 

is a set of distributions that satisfy the independence Markov assumptions of the graph. Based on the 

Hammersley-Clifford theorem, it can be assumed that the node-conditional distributions make part of the 

exponential family. Let us assume that the distribution of Xs  given all the other nodes 𝑋𝑉−𝑠 is given by the 

exponential family but the canonical parameter of the exponential family is a linear combination of order 𝑘 of 

the univariate functions. This allows defining the joint distribution as shown in [11]. Therefore, a regression can 

be applied to adjust a model explaining the RNA measurements for each gene (its gene expression profile), 

based on all other genes of the data set. 

As this procedure is computationally very costly, a strategy to avoid considering all remaining genes is to use a 

regularized regression. Regularization methods try to find the most parsimonious model selecting only some of 

the predictor variables (in this case: potential neighbors of each gene) [12–14].  Some of the most known 

regularization methods are Ridge, LASSO (Least Absolute Shrinkage and Selection Operator) or Elastic Net 

[12,14,15]. 

Here, we propose to apply a regularized regression for each gene, considering all possible neighbors, assuming 

that the gene expression count data are independent between samples and follow a negative binomial 

distribution. 

Materials and Methods 

2.1 Assumptions for Negative Binomial model 

A random vector X = (X1, … , Xp) exists and is associated to a graph 𝐺 = (𝑉; 𝑈). Each 𝑋𝑖 corresponds to a genetic 

profile 𝑒𝑖 . Independence is assumed between columns. Assuming that the gene/node conditional distribution is 

negative binomial and therefore belongs to the exponential family. These distributions can be combined to 

obtain a negative binomial random Markov field: 

𝑃(𝑿;𝚯) = exp {∑𝜃𝑖𝑋𝑖 +
Γ(𝜙 + 𝑥𝑖)

Γ(𝑥𝑖 + 1)Γ(𝜙)
+ ∑ 𝜃𝑖𝑗𝑋𝑖𝑋𝑗

(𝑖,𝑗)∈𝑈

− 𝐴(𝚯)

𝑖∈𝑉

} 

With A(Θ) = ϕ log(1- exp(θ)), but by construction 𝜃 < 0. This means that only inverse relationships between 

nodes can be found. The solution we propose follows the one proposed by Allen y Liu (2013) [1] and consists in 

proposing a local graphic binomial model, as the properties of a local Markovian field are maintained, but no 

joint distribution can be specified. The local Markov property, that defines the independence between two 

variables conditioned to its neighborhood is still valid. The conditionally independent relationships allow 

estimating the complex dependency structures [1].  
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2.2 Quality assessment of the model 

The quality of the model is assessed using a pseudo regression coefficient as follows [16]: 

𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅2 = 1 −
𝐷(𝑥𝑖𝑘 , �̂�𝑖𝑘)

𝐷(𝑥𝑖𝑘 , �̂�𝑖𝑘
(0)
)
 

where 𝐷(𝑥𝑖𝑘 , �̂�𝑖𝑘) is the deviance of the adjusted model and  D(xik, μ̂ik
(0)) is the deviance of the saturated model.  

Departure from the assumed distribution was also tested using confidence bands obtained via simulations [17] 

and visualization of them on an envelope plot. These bands can give information about big distances from the 

expected normality line. Moreover, this plot can show if influential points or heteroscedastic variance exists [18]. 

2.3 GRN construction 

Based on the above exposed theoretical assumptions, the construction of the GRN based on the expression 

profiles obtained from an RNA sequencing count data set is as follows: 

1. For each gene, a negative binomial general linear model 𝑋𝑖𝑘|𝑋𝑉−𝑖~𝑁𝐵(𝜇𝑖𝑘, 𝜃) is adjusted using a 

penalized regression. Here, we used the Elastic Net penalization method. The adjustment is evaluated using 

pseudo R2  regression coefficient and the plots of residuals vs. adjusted values. 

2. Coefficients of genes that are non-zero after regularized regression are retained to establish relationship 

between genes. The sign indicates the direction of the relationship.  

3. These coefficients are retained in a gene-by-gene coefficient matrix, which is not symmetric due to the 

fact that relationships to all genes are adjusted given all remaining genes. The rules for the construction of the 

coefficient matrix we propose are as follows:  

a. If the coefficient between 𝐺𝑒𝑛𝑒𝑖  ~ 𝐺𝑒𝑛𝑒𝑗 is above or below 0 and the coefficient 

between 𝐺𝑒𝑛𝑒𝑗  ~ 𝐺𝑒𝑛𝑒𝑖 is 0, this indicates no regulatory relationship between genes and the 

corresponding fields in the coefficient matrix will be 0. 

b. When the coefficients 𝐺𝑒𝑛𝑒𝑖  ~ 𝐺𝑒𝑛𝑒𝑗 and 𝐺𝑒𝑛𝑒𝑗  ~ 𝐺𝑒𝑛𝑒𝑖 have the same sign in positions 

(𝑖, 𝑗) and (𝑗, 𝑖) he sum of both will appear in the coefficient matrix in these two fields. 

c. When the coefficients 𝐺𝑒𝑛𝑒𝑖  ~ 𝐺𝑒𝑛𝑒𝑗 and 𝐺𝑒𝑛𝑒𝑗  ~ 𝐺𝑒𝑛𝑒𝑖 have different signs in positions 

(𝑖, 𝑗) and (𝑗, 𝑖) the sum of both will appear in the coefficient matrix in these two fields. 

4. Once the coefficient gene by gene matrix is established, the adjacency matrix describing the graph is 

constructed using the following adjacency function: 

𝑨(𝛽𝑖𝑗) =

{
 
 

 
 𝑎𝑖𝑗 = 1,   𝑖𝑓 𝛽𝑖𝑗 > 0

𝑎𝑗𝑖 = 0,   𝑖𝑓 𝛽𝑗𝑖 > 0

𝑎𝑖𝑗 = 0,   𝑖𝑓 𝛽𝑗𝑖 < 0

𝑎𝑗𝑖 = 1,   𝑖𝑓 𝛽𝑖𝑗 < 0

 

The regularization models are implemented in the R package mpath [19] and all other functions were coded in 

R (see supplementary data).  
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2.4 Simulated data 

The simulated RNAseq count data was generated using the function makeExampleCountDataSet from the 

DeSeq package [8] of Bioconductor [20] for 100 genes and 30 samples (15 for a control condition and 15 for a 

treatment condition). 30% of these genes have a differential expression between conditions. Mean expression 

values where obtained from an exponential distribution with parameter 1/250.  

2.5 Real data 

The real data used to illustrate the methodology is freely available at the Gene Expression Omnibus of the NCBI 

data bank under the accession number GSE72548. RNA was obtained from Arabidopsis thaliana wild-type roots 

and mutant roots non-infected and infected with Heterodera schachtii nematodes [21]. This dataset consists of 

24 samples. We constructed a GRN for 100 genes selected for their highest mean expression values (Shanks et 

al 2016) [21] and identified the 10 most connected genes (hubs). 

Results and Discussion 

The pseudo R2 was calculated for all models (all genes) in order to assess adjustment quality. The mean of the 

pseudo R2 for the models on simulated data sets ranged from 0.5715 to 0.9998; a very low proportion of low-

quality models was observed. A similar behavior was observed for the real data set: pseudo R2 ranged from 

0.9791 to 1. The mean of residuals was also close to zero in all simulations and only a very few genes showed 

high residuals (Figure 1), which confirms the findings based on pseudo R2.  Similar results were obtained for real 

data (Figure 2). A summary of the simulated network’s characteristics can be found in supplementary Table 1. 

The obtained networks are very consistence having similar number of nodes and average degree, which 

indicates that the model is robust. 

 

Figure 1: Boxplots of residuals for each fitted model in simulated data. 
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Figure 2: Boxplots of residuals for each fitted model in real data. 

In order to confirm if an overdispersion exists and that the right model to adjust is NB and not Poisson (in which 

case they should not exceed a value of one), the scale parameter for each model was calculated, these scaling 

parameters that ranged from 2.8 to 56790.8 for simulated data and from 368.2 to 31229539 for the real data 

set, confirming that a NB is more suitable due to overdispersion. Moreover, envelope plots show that departure 

from the assumed distribution is very low (Supplementary figures 1 for simulated data and 2 for real data). 

The resulting networks showed few highly connected genes as expected for a real biological network. For the 

10 simulated datasets between 69 and 88 genes were connected to other genes and the mean degree of genes 

ranged from 6.41 to 13.19. For more details on these networks see supplementary table 1. 

On the real data set between 1 and 46 genes were connected to other genes; the mean indegree of genes 

ranged from 0 to 26 and the mean outdegree of genes ranged from 0 to 23. Also, in this network, some highly 

connected genes, or hubs were present (See table 1). These hubs have an important biological meaning. They 

are related to biotic stress (AT4G33720, AT3G01420, AT4G21960), signaling (AT4G33720, AT2G05440, 

AT2G05510, AT3G09260, AT3G01420, AT4G21960, AT2G43150) and metal binding (AT4G30190, AT3G01420, 

AT4G21960, AT1G20620). The first two biological functions were identified through detection of differentially 

expressed genes in this data set when originally analyzed [21]. They are related to the different behavior of 

mutants in response to the presence of nematodes. This indicates that the negative binomial model-based gene 

regulatory network reconstruction using RNA sequencing count data is adequate.  

Table 1: Hubs genes in the experiment and some descriptive measurements of the network. 

Gene names Edge Count Indegree Outdegree 

AT3G09260 46 26 20 

AT4G21960 42 23 19 
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AT2G05440 41 21 20 

AT1G20620 35 12 23 

AT2G05510 32 19 13 

AT4G33720 31 16 15 

AT2G43150 29 16 13 

AT4G30190 29 16 13 

AT2G21660 29 21 8 

AT3G01420 28 16 12 

Discussion 

The here proposed method using on a model-based gene regulatory network reconstruction for RNA 

sequencing count data is a novel approach that is adapted for the most likely negative binomial (NB) distribution 

of counts and expands therefore methods based on other distributions like the Poisson distribution [1]. As was 

already pointed out earlier [7] and we could confirm based on real and simulated data, dispersion of RNAseq 

count data is higher than could be expected for Poisson distribution. Therefore, it is correct to assume the 

negative binomial distribution and apply methods developed for it as the one we propose here. 

Other methods have been proposed for RNAseq time course data, assuming NB distribution [8,9], but are 

restricted to this type of data, which is very rare. Most experiments are replicates of two conditions being 

compared because they were designed originally to detect differentially expressed genes. The flexibility or our 

approach allows obtaining GRN for most of the available RNAseq count data.  

The results indicate that adjustment to the model is good and therefore describes correctly regulatory 

relationships between genes. Moreover, the network obtained on real data confirms that hubs among most 

related genes reflect the central role of those genes in the phenotype analyzed in the A. thaliana dataset. 

Conclusions 

We showed that using negative binomial distribution for fitting the model is suitable because RNA sequencing 

data present overdispersion. The network obtained on real data confirms that hubs among most related genes 

reflect the central role of those genes in the experiment. 

Data Availability (excluding Review articles) 

The real datasets are publicly available and accession numbers have been indicated. The code for the simulated 

data is also available. 
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