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Abstract: Electromagnetism is based on electric charge and spin. The study here corresponds to understand on spin
effects at a vectorial electrodynamics. Its scenario is a non-linear abelian electromagnetism where the electric charge is
transmitted through a four bosons quadruplet, constituted by the usual photon, massive photon and charged massive
photons. These four bosons intermediate the charge exchange ∆Q = 0,±1.

The spin is introduced at first principles. A spintronics Lagrangian for four vector fields is performed. Considering that
spin is a space-time physical entity derived from Lorentz Group, these vector fields are associated to Lorentz Group,
as Lie algebra valued. Similarly to non-abelian gauge theories where Aµ ≡ Aµata, one introduces the relationship
Aµ ≡ Aµ,κλΣκλ where

(
Σκλ

)
αβ

is the Lorentz Group generator.

Thus, based on three fundamentals which are light invariance, electric charge conservation law and vector fields Lie
algebra valued through Lorentz Group generators, one derives a spin-valued four vectorial electrodynamics. It is
given by the fields quadruplet AµI ≡ {Aµ, Uµ, V ±µ } where Aµ means the usual photon, Uµ a massive photon and V ±µ
massive charged photons. Two novelties appear. The first one is that, new terms are developed into usual four bosons
electromagnetism. They contribute to Lagrangian, equations of motion, Noether theorem. The second one is that the
equations of motion derive a renormalizable spin coupling with the electric and magnetic fields.

There is a spin-1 electrodynamics to be investigated. A neutral electromagnetism is mandatory to be analyzed.
Something beyond dipole, quadrupole and so on. Understand the role of spin in the electrical and magnetic properties
of particles. A spin vectorial expression ~S is obtained. It adds EM interactions not depending on electric charge and
with spin interactions through electric dipole and magnetic moments.

1 Introduction

The electromagnetic novelty is that Maxwell macroscopic equations [1] are extended into a microscopic electromagnetism.
The development of elementary particle physics introduced three new aspects at electromagnetic behavior. They are the
electric charge be ported by particles with different flavors and spins, charge exchange ∆Q = 0,±1 and spin working as
a magnet.

Thus, given these three features, a new Lagrangian beyond Maxwell is constituted. Quantum field theory contains
real processes where particles are created and destroyed. At the electric charge context this means that three types of
electric charge are interwoned. They are 4Q = 0,±1. Consequently, given these set of three charges {+, 0,−}, it is
necessary to develop an electromagnetism based on four intermediate bosons. At previous works we have developed the
so-called Four Bosons Electromagnetism [2]. The next step is to introduce spin at first principles.

There is a microscopic electromagnetism based on charge exchange and spin to be understood. Maxwell’s electromag-
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netism preceded the Quantum Mechanics. The electric charge was studied first than spin. However, today, there are
experimental apparatus to observe on spin effects. At this work we are interested to explain the role of the spin on
electric and magnetic proprieties including when unlinked to the electric charge. Although the spin concept has been
known for more than 90 years, it is a current topic of investigations. Considering that spin is a space-time effect, it
should be studied connected to Lorentz generators. Be defined before the EM fields by associating fields to Lorentz
symmetry.

The spin was first thought of as an intrinsic angular momentum, associated with the rotation of charged particles,
such as the electron. Between 1913 and 1925 the empirical phase of the spin occurred. After the publication of the
two articles by Niels Bohr in July and September 1913 on which he based his atomic model[3], the Atomic Model of
Bohr, there was a great semi-empirical development subsequent to the model. They were trying to reproduce, through
elaborate mathematical expressions the Balmer spectral emission rays. This whole movement is faithfully reproduced
in Sin-Itiro Tomonaga’s book "The Story of Spin"[4], one of the founders of the current formulation of QED together
with Richard Feynman and Julian Schwinger. It is very clear throughout the chapters of Tomonaga’s book that there
was a missing element to the former understanding of the mechanism that governs atomic spectral lines. The desperate
search for mathematical expressions that reproduced the emission series was the realization that there was a concept,
an idea, that was missing.

In 1921, Compton proposes the electron ’spinning’. In the quantized rotation of the electron the possible origin of
the natural unit of magnetism [5]. In 1922, the experience of Stern-Gerlach [6] shows the quantization of the angular
momentum of an atom. And in 1925, the concept of spin is made explicit, first by Kronig (but give up due to Pauli
criticism). However, with Bohr support, Goudsmit and Uhlenbeck in order to explain the Zeeman effect, propose that
besides mass and electric charge, the electron is endowed with another quantum attribute, of spatial nature, without
classical analog: the spin [7]. In 1926, calculations made by Thomas confirmed the Uhlenback and Goudsmith idea of
electron spin with ms = ± 1

2 and magnetic moment 2ms[8]. In 1927, Dennison discovers that proton spin is the same as
electron spin. Definitely physics had to face the spin presence.

Thus, between 1925-28, the spin incorporation into the physical equations appears. With the publication of Heisenberg’s
Matrix Mechanics in July 1925 [9], Heisenberg and Jordan published paper introducing spin at Quantum Mechanics
in 1926 [10]. After, the advent of Schrödinger’s Equation in December 1926, in the famous article "An Ondulatory
Theory of Atoms and Molecules", [11], Pauli, already in May 1927, launches his article where he proposes the so-called
Pauli equation [12]. It couples the spin of the electron to an external magnetic field, through the so-called Pauli term
of non-minimal coupling. Soon after, Pauli unsuccessfully tried to reconcile the electron spin (proposed by Goudsmit
and Uhlenbeck in a non-relativistic form and used by him, Pauli, in Equation of Schrödinger, also non-relativistic)
with Special Relativity. Nevertheless, it was Paul Dirac in 1928, in his two classic articles of January 2 and February
2[13], who was able to show the relativistic origin of the spin, using the so-called spinors of SL (2, C), and writing the
celebrated Dirac’s Equation which is nothing more than the description of the relativistic dynamics of the spin of the
electron.

Thus, in this new physical scenario of spin, the most relevant insight came from Dirac. Without even knowing in
a systematic way the non-unitary representations of the finite dimension of the Lorentz Group, but knowing the
relativistic spinors through the notes of Elie Cartan’s course on spinors. At his famous lectures of 1913 Cartan conceived
the general mathematical theory of a new category of geometric objects of a general space-time, the spinors. These
classes gave rise to the book of 1938 [14]. Dirac introduced the spin of the electron in Special Relativity and retake at
classical limit of his equation, the Pauli Equation of 1927. Dirac was able to show that particles having the charge and
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mass of the electron must have just the intrinsic angular momentum and magnetic moment attributed to them by
Goudsmith and Uhlembeck. In this way, the concept of spin of the electron becomes well understood and, from the
Dirac Equation, the relativistic corrections and the hyperfine structure of the spectral lines of the Hydrogen atom were
understood more systematically.

This is a bit about spin story. It says that although the literature emphasis on the Stern-Gerlach experiment as
responsible for the spin concept, its development was due to atomic physics experiments, Zeeman effect at spectroscopy
[15]. Next, the magnetic momentum became an precious object of phenomenological study. First, relates quantities
as electric charge, mass and spin of a particle through an dimensionless constant called gyromagnetic factor. The
gyromagnetic factor become the key for the introduction of new terms like we will see next. It also reflects on
elementarity. It relates that composite particles have a great gyromagnetic factor in comparation with the elementary
particles. These facts make it a physical entity to be studied.

Classically, a moving particle with mass m, velocity ~v and electric charge e, moving around a close circuit, generates a
magnetic momentum dipole ~µ proportional to the angular momentum ~L. It yields

~µ =
1

2

∫
d3~r ρe (~r × ~v) =

1

2

e

m

∫
d3~r ρm (~r × ~v) (1.1)

which gives,

~µ = g
e

2m
~L (1.2)

where g is introduced as the gyromagnetic factor.

Dirac equation has diverse consequences as antimatter prevision, quantum vacuum, spectral lines. However, at the
scope of this work, we should note that its introduction of electron with spin− 1

2 has violated the classical result at
eq.(1.2) for g = 2. Later on, when quantum field theory was established, a relationship between the gyromagnetic
factor g and the spin s of a charged particle was obtained [16].
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It was given by

g =
1

s
(1.3)

Nevertheless, while eq.(1.3) supports Dirac theory for spin− 1
2 , it contradicts when it is applied for higher spins. At

early 70
′
Weinberg showed through S matrix properties that g ≈ 2 for massive charged particles with arbitrary spins

[17]. Two decades later Ferrara, Porrati, Telegdgi have shown that any elementary (puntiform) charge particle owes at
tree level the gyromagnetic factor g = 2, independently on its spin [18]. Consequently, for spin-1, a massive charge
vectorial boson Wµ, it was necessary to introduce a non-minimal coupling given by

ieFµνW
∗µW ν (1.4)

in order to obtain g = 2.

Another consequence is on the anomalous magnetic moment. In 1947, it was observed anomalies in the factor (g − 2)

for electron by Kusch and Foley [19]. Also the hyperfine structure hydrogen and deuterium fundamental states [20]. In
response Schwinger proposed the 1-loop radioactive correction for the electron magnetic moment [21]. It became the
most precise experimental result in physics. Actually one gets the following precision for the (g − 2) measurements:
10−12 for electron, 10−10 for muon, 10−2 for tau, 10−8 for proton, 10−7 for neutron [22].

The field evolved rapidly and many interesting developments in fundamental physics and materials science have occurred
only in recent years. Derived from spin the ferromagnetism phenomena is totally related to innovation. The success
story of giant magnetoresistance and its broad application to information technology - Albert Fert and Peter Grünberg,
Nobel Prize for Physics in 2007 - certainly contributed to this. But it would be a fallacy to consider possible applications
more important than the fundamental view provided by spintronics research. The spin is a purely quantum-mechanical
entity and its interaction with the charge of electrons or the atomic environment provides a unique opportunity to
understand the quantum nature of matter.

Nowadays, spintronics became an area of condensed matter physics that studies the properties of electron spin, with
the goal of improving the efficiency of electronic devices and enriching them with new functionalities. Such a broad
definition implies that the range of subjects falling within the umbrella of spintronics is inevitably very wide. At one
extreme, researchers explore the control of unique localized spins, performed at unique atomic sites on crystals - such
as nitrogen vacancy centers on diamonds - or semiconductor quantum dots. These are considered spin qubits, ideal for
quantum computing in a solid-state environment. At the other extreme, researchers explore spin transport and spin
dynamics in macroscale systems, coupling spin transport to spin dynamics in many ways.

The objective of this work is to study on spin effects at this Four Bosons Electromagnetism. As we know, a great
achievement was obtained with spin- 1

2 . However, much less is known yet about spintronics-1. The literature does not
report on Stern-Gerlach experiment type for spin-1. Its focus just on bosons intermediation and interaction [23]. Thus,
at section 2, one studies on spin at ab initio, as consequence from Lorentz Group rotations. Spin is a fundamental
physical entity that cannot depend on others. It has to be treated as a space-time intrinsec property. And so, before
other physical entities be defined, we associate to the potential fields the Lorentz Group spin generator. At section
3, field strengths and the corresponding spin-valued Lagrangian pieces are studied. These spin terms influence are
notified at section 4, where equations of motion are studied showing the fields spin interactions. Section 5 studies on
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quadruplet fields dynamics. At section 6, Noether theorem is considered. At conclusion, one understand that instead
of considering as rotation, the spin must be understood as a vector. There is a vector spin ~S determined from the
spin-valued equations.

2 Spintronics - 1

The scope of this work is to introduce spin from relativistic principles. Originally, spin is a quantum number derived
from light invariance. However, Maxwell does not explicit such discourses. It is limited to point out to electric charge
generating EM fields. However, a particle must be determinate by a chart of quantum numbers [24]. That is, spin,
mass, charge, C, P, T, CPT be well defined. Nevertheless the spin is included just empirically by the coupling of the
anomalous magnetic moment with the magnetic field and by the electric dipole moment with the electric field [25].
The non-relativistic Hamiltonian for EM interaction with spin- 1

2 was found out to be

~H = −~µ · ~B − ~d · ~E (2.1)

where quantically the magnetic moment is

~µ = gL
e~
2m

~S (2.2)

Pauli equation found the term ~µ · ~B to measure the interaction of spin with the magnetic field where ~B represents of
the photon EM field and ~S, the spin of matter.

The electric dipole classically is

~d =

∫
d3~rρ(r)~r (2.3)

and quantically as

~d = ζ
e

2me

~S (2.4)

where ζ is an dimensionless constant analogous to gL at magnetic case. However, quantically, these spin terms are not
renormalizable.

The quest is to understand eq.(2.1) from first principles. Introduce on spin meaning more deeply. Although is not so
easy to define what spin is, the phenomenological eqs(2.1-2.4) are pointing out that spin is a vectorial entity, ~S. This is
the clue to look for the spin presence. Although physics considers the spin just as a matter attribute at least we know
that it appears as a vectorial object. An expression to be derived from theoretical models.

Our insight is to understand spin through Lorentz Group [26]. The insight is to couple the field with the generator of
rotations, Aµ,κλΣκλ, in such a way that the interaction with the spin reveals the physicality of the electric dipole and
magnetic mements. Given this background we are going to define the field potential as Aµ;κλ where the first index
represents the space-time symmetry x

′µ = Λµνx
ν and the others are field rotation symmetry A

′

µ =
(
e
i
2ωαβΣαβ

)ν
µ
Aν .

And so, one obtains a spin-valued field. Something candidate to rewrite spin interactions through a renormalizable
Lagrangian.

The representation { 1
2 ,

1
2} splits that potential fields carring spin-1 and spin-0. It yields,
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Aµ ≡ Aµ;κ,λ(Σkλ) (2.5)

with

(Σµν)αβ = −i
(
gµαgνβ − gµβgνα

)
(2.6)

obeying the Lie Algebra

[Σµν ,Σρσ ] = gµσΣνρ + gνρΣµσ − gµρΣνρ − gνσΣµρ (2.7)

Thus, similarly to the Yang-Mills Lie algebra valued, Aµ ≡ Aµata, we are going to construct a physics associated to
the spin generator

(
Σµν

)α
β
. It considers that the fundamental information on spin comes out from Lorentz Group.

Although Maxwell contains the spin present through degrees of freedom, it is under the rotation A
′

µ =
(
e
i
2ωαβΣαβ

)ν
µ
Aν

that spin reveals its nature. It introduces the spin through the Lorentz group generators.

The expectation for spintronics-1 is to write the equation of motion in the following form

∂ν

(
F νµ + z[νµ]

)
= (Fαβ + zαβ)

(
Σαβ

)µ
ρ
Aρ (2.8)

where equation above (2.8) will work as the relativistic equation for the spin-1.

The challenge is to find out a Lagrangian providing this type of equation of motion. Although Maxwell might be
derived from a spin-1 particle [27] instead of coming from charges and currents, it does not retreat the term ~µ · ~B. It
does not contain the interaction with EM fields. Eqs.(2.8) performance is the coupling between the spin field and the
electric and magnetic fields of the four bosons as (2.1). Its proposal is to couple spin with the granular and collective
fields strengths tensors, like the terms ~B · ~S, ~E · ~S, ~e× ~S and so on. At this way, from (2.5) as origin one expects to
write first a Lagrangian with explicit terms of spin, and then, obtain the desired equation of motion (2.8). There is a
hidden vector ~S to be found.

3 Spin-Valued Four Bosons Lagrangian

The model Four Bosons EM introduces a quadruplet as intermediating the electric charge exchange. Originally, its
physicality expresses the charge exchange ∆Q = 0,±1 through four potential fields AµI = {Aµ, Uµ, V ±µ } where Aµ means
the usual photon, Uµ massive photon, V ±µ massive charge photons transforming under the abelian U(1)× SO(2)global

symmetry.

The new fact is to associate the spin to these potential fields. Bosonic spin-1 particles were, in general, discovered after
the fermionic spin 1

2 particles, and incorporated as fundamental in characterizing physical interactions. However, EM
is being the theory for electric charge and spin. And so, a spin step forward to the four bosons electromagnetism is
expected. Keeping eq.(2.5) in mind, one gets the gauge transformations
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A′µ;κλ(Σκλ) = Aµ;κλ(Σκλ) + k1∂µα

U ′µ;κλ(Σκλ) = Uµ;κλ(Σκλ) + k2∂µα

V ′+µ;κλ(Σκλ) = eiqαV +
µ;κλ(Σκλ) + k+∂µα

V ′−µ;κλ(Σκλ) = e−iqαV −µ;κλ(Σκλ) + k−∂µα (3.1)

Thus, in order to look for the equation of motion (2.8), we are going to study a spintronic gauge theory based on
eq.(3.1) symmetry. Consider under eq.(2.5) the respective granular and collective fields strengths and mass obtained
previously with the Four Bosons Electromagnetic Model [2]. Develop from the initial Four Fields Lagrangian the
Spin-Valued Four Bosons Lagrangian.

A new Lagrangian able to build the so-called spintronics of spin-1 will be studied. Integrate eqs.(2.5) and (3.1). The
mapping between the former and the new Lagrangian is given as.

Fµν → (Σµν)ρσF
ρσ

z[µν] → (Σµν)ρσz
ρσ

βIS
I
µν → (Σµν)ρσβIS

Iρσ (3.2)

and so on.

We are going to rewrite every Four Bosons EM Lagrangian sector separately. Considering first the kinetic sector, one
originally gets

L = LK + LGF + LI (3.3)

where the kinect term,

LK = LAK + LSK (3.4)

is given by

LAK = a1FµνF
µν + a2UµνU

µν + 2a3V
+
µνV

µν−, (3.5)

LSK = b(11)S
1
µνS

µν1 + b(22)S
2
µνS

µν2

+2b(33)S
+
µνS

µν− + c(11)S
µ1
µ S ν1

ν + c(22)S
µ2
µ S ν2

ν

+2c(12)S
µ1
µ S ν2

ν + 2c(33)S
µ+
µ S ν−ν , (3.6)

with the following definitions for the granular field strength tensors

Fµν ≡ ∂µAν − ∂νAµ, Uµν ≡ ∂µUν − ∂νUµ, V ±µν ≡ ∂µV ±ν − ∂νV ±µ ,

S 1
µν ≡ ∂µAν + ∂νAµ, S 2

µν ≡ ∂µUν + ∂νUµ, S ±µν ≡ ∂µV ±ν + ∂νV
±
µ . (3.7)

For the gauge-fixing term,
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LGF =
1

4
ξ(11)S

µ1
µ S ν1

ν +
1

4
ξ(22)S

µ2
µ S ν2

ν +
1

2
ξ(12)S

µ1
µ S ν2

ν +
1

2
ξ(33)S

µ+
µ S ν−ν . (3.8)

For the mass term,

Lm = −1

2
µ2
UUµU

µ − µ2
V V

+
µ V

µ− (3.9)

Notice that eq. (3.9) does not require the spontaneous symmetry breaking. The mass inclusion is given by the symmetry
of differences. The gauge invariance for the term Lm is obtained as a whole.

For the interaction part, where the collective fields are defined at Appendix A, one gets

LI = L3 + L4 (3.10)

where

L3 = LA3 + LS3 + Lst3 (3.11)

with

LA3 = 4b1Fµν
[12]
z [µν] + 4b2Uµν

[12]
z [µν] + 4b1Fµν

[+−]
z [µν] + 4b2Uµν

[+−]
z [µν] + 4β1Fµν

(+−)
z [µν] +

+4β2Uµν
(+−)
z [µν] + 4b3V

+
µν

[−1]
z [µν] + 4b3V

+
µν

[−2]
z [µν] + 4b3V

−
µν

[+1]
z [µν] + 4b3V

−
µν

[+2]
z [µν],

(3.12)

LS3 = 2β1S
1
µν

(11)
z µν + 4β1S

1
µν

(12)
z µν + 2β1S

1
µν

(22)
z µν + 4β1S

1
µν

+−3
z µν +

+2β2S
2
µν

(11)
z µν + 4β2S

2
µν

(12)
z µν + 2β2S

2
µν

(22)
z µν + 4β2S

2
µν

+−3
z µν +

+4β3S
+
µν

(−1)
z µν + 4β3S

+
µν

(−2)
z µν + 4β3S

−
µν

(+1)
z µν + 4β3S

−
µν

(+2)
z µν +

+2ρ1S
µ1
µ

(11)
z ν
ν + 4ρ1S

µ1
µ

(12)
z ν
ν + 2ρ1S

µ1
µ

(22)
z ν
ν + 4ρ1S

µ1
µ

+−3
z ν
ν +

+2
(
β1 + 4ρ1

)
S µ1
µ

(11)
ω ν
ν + 4

(
β1 + 4ρ1

)
S µ1
µ

(12)
ω ν
ν + 2

(
β1 + 4ρ1

)
S µ1
µ

(22)
ω ν
ν +

+4
(
β1 + 4ρ1

)
S µ1
µ

+−3
ω ν

ν + 2ρ2S
µ2
µ

(11)
z ν
ν + 4ρ2S

µ2
µ

(12)
z ν
ν + 2ρ2S

µ2
µ

(22)
z ν
ν +

+4ρ2S
µ2
µ

+−3
z ν
ν + +2

(
β2 + 4ρ2

)
S µ2
µ

(11)
ω ν
ν + 4

(
β2 + 4ρ2

)
S µ2
µ

(12)
ω ν
ν +

+2
(
β2 + 4ρ2

)
S µ2
µ

(22)
ω ν
ν + 4

(
β2 + 4ρ2

)
S µ2
µ

+−3
ω ν

ν + 4
(
β3 + 4ρ3

)
S µ+
µ

(−1)
ω ν

ν +

+4
(
β3 + 4ρ3

)
S µ+
µ

(−2)
ω ν

ν + +4ρ3S
µ+
µ

(−1)
z ν
ν + 4ρ3S

µ+
µ

(−2)
z ν
ν + 4ρ3S

µ−
µ

(+2)
z ν
ν +

+4
(
β3 + 4ρ3

)
S µ−
µ

(+1)
ω ν

ν + 4
(
β3 + 4ρ3

)
S µ−
µ

(+2)
ω ν

ν + 4ρ3S
µ−
µ

(+1)
z ν
ν

(3.13)
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and

Lst3 = εµνρσ
{

2(α0Aµ + α1Uµ)[i(V +
ν V

−
ρσ − V −ν V +

ρσ)] + (α0Aρσ + α1Uρσ)[i(
[+−]
z µν +

[−+]
z µν)]

+ 4
[12]
z µν (α0Aρσ + α1Uρσ)

}
. (3.14)

For the quadrilinear term

L4 = LA4 + LS4 + Lst4 (3.15)

where

LA4 = 2
[12]
z [µν]

[12]
z [µν] + 2

[12]
z [µν]

[21]
z [µν] + 4

[13+]
z [µν]

[13−]
z [µν] +

+4
[23+]
z [µν]

[23−]
z [µν] + 8

[13+]
z [µν]

[23−]
z [µν] + 8

[12]
z [µν]

[+−]
z [µν] +

−8
(12)
z [µν]

(12)
ω [µν] − 16

(12)
ω [µν]

(12)
ω [µν] + 4

(13+)
z [µν]

(13−)
z [µν] +

+4
(23+)
z [µν]

(23−)
z [µν] + 8

(13+)
z [µν]

(23−)
z [µν] − 16

(+−)
z [µν]

(+−)
ω [µν] +

−32
(+−)
ω [µν]

(+−)
ω [µν] − 4i

(13+)
z [µν]

(24−)
ω [µν] + 4i

(13−)
z [µν]

(24+)
ω [µν] +

−4i
(23+)
z [µν]

(14−)
ω [µν] + 4i

(23−)
z [µν]

(14+)
ω [µν] − 16i

(13+)
ω [µν]

(24−)
ω [µν] +

+16i
(13−)
ω [µν]

(24+)
ω [µν] − 2i

(14+)
z [µν]

(23−)
z [µν] + 2i

(14−)
z [µν]

(23+)
z [µν] +

+16i
(14+)
ω [µν]

(23−)
ω [µν] − 16i

(14−)
ω [µν]

(23+)
ω [µν] + 2i

(13+)
z [µν]

(24−)
z [µν] +

−2i
(13−)
z [µν]

(24+)
z [µν] + 4i

(14+)
z [µν]

(23−)
ω [µν] − 4i

(14−)
z [µν]

(23+)
ω [µν] +

+4i
(24+)
z [µν]

(13−)
ω [µν] − 4i

(24−)
z [µν]

(13+)
ω [µν] , (3.16)
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LS4 = 2
[12]
z (µν)

[12]
z (µν) + 2

[12]
z (µν)

[21]
z (µν) + 4

[13+]
z (µν)

[13−]
z (µν) +

+4
[23+]
z (µν)

[23−]
z (µν) + 8

[13+]
z (µν)

[23−]
z (µν) + 4

[+−]
z (µν)

[+−]
z (µν) +

+
(11)
z (µν)

(11)
z (µν)+

(22)
z (µν)

(22)
z (µν) + 2

(11)
z (µν)

(11)
ω (µν) + 2

(22)
z (µν)

(22)
ω (µν) +

+4
(11)
ω (µν)

(11)
ω (µν) + 4

(22)
ω (µν)

(22)
ω (µν) + 4

(11)
z (µν)

(12)
z (µν) + 4

(12)
z (µν)

(22)
z (µν) +

+8
(12)
z (µν)

(11)
ω (µν) + 8

(12)
z (µν)

(22)
ω (µν) + 16

(11)
ω (µν)

(12)
ω (µν) + 16

(12)
ω (µν)

(22)
ω (µν) +

+2
(11)
z (µν)

(22)
z (µν) + 4

( (11)
z (µν)+

(22)
z (µν)

)+−3
z (µν) + 4

(12)
z (µν)

(12)
z (µν) +

+8
(12)
z (µν)

(12)
ω (µν) + 16

(12)
ω (µν)

(12)
ω (µν) + 4

(13+)
z (µν)

(13−)
z (µν) +

+4
(23+)
z (µν)

(23−)
z (µν) + 8

(13+)
z (µν)

(23−)
z (µν) + 8

(12)
z (µν)

+−3
z (µν) +

+4
+−3
z (µν)

+−4
z (µν) + 4i

(13+)
z (µν)

(24−)
ω (µν) − 4i

(13−)
z (µν)

(24+)
ω (µν) +

+4i
(23+)
z (µν)

(14−)
ω (µν) − 4i

(23−)
z (µν)

(14+)
ω (µν) + 16i

(13+)
ω (µν)

(24−)
ω (µν) +

−16i
(13−)
ω (µν)

(24+)
ω (µν) + 2i

(14+)
z (µν)

(23−)
z (µν) − 2i

(14−)
z (µν)

(23+)
z (µν) +

−16i
(14+)
ω (µν)

(23−)
ω (µν) + 16i

(14−)
ω (µν)

(23+)
ω (µν) − 2i

(13+)
z (µν)

(24−)
z (µν) +

+2i
(13−)
z (µν)

(24+)
z (µν) − 4i

(14+)
z (µν)

(23−)
ω (µν) + 4i

(14−)
z (µν)

(23+)
ω (µν) +

−4i
(24+)
z (µν)

(13−)
ω (µν) + 4i

(24−)
z (µν)

(13+)
ω (µν) +

−4
[13+]
z µ

µ

[13−]
z ν

ν − 4
[23+]
z µ

µ

[23−]
z ν

ν − 4
[+−]
z µ
µ

[+−]
z ν
ν +−4

[13+]
z µ

µ

[23−]
z ν

ν +

+4
[13−]
z µ

µ

[23+]
z ν

ν + 4i
[13−]
z µ

µ

[24+]
z ν

ν − 4i
[13+]
z µ

µ

[24−]
z ν

ν + 4
(11)
z µ
µ

(22)
ω ν
ν +

+8
(11)
ω µ
µ

(22)
ω ν
ν + 4

(13+)
z µ

µ

(13−)
z ν

ν + 4
(23+)
z µ

µ

(23−)
z ν

ν +

+16
(13+)
z µ

µ

(13−)
ω ν

ν + 16
(23+)
z µ

µ

(23−)
ω ν

ν + 32
(13+)
ω µ

µ

(13−)
ω ν

ν +

+32
(23+)
ω µ

µ

(23−)
ω ν

ν + 4
(13+)
z µ

µ

(23−)
z ν

ν − 4
(13−)
z µ

µ

(23+)
z ν

ν +

+16
(13+)
z µ

µ

(13−)
ω ν

ν − 16
(13−)
z µ

µ

(13+)
ω ν

ν + 32
(13+)
ω µ

µ

(23−)
ω ν

ν +

−32
(13−)
ω µ

µ

(23+)
ω ν

ν − 4
(+−)
z µ

µ

(+−)
z ν

ν + 8
+−3
z µ
µ

+−4
ω ν

ν + 16
+−3
ω µ

µ

+−4
ω ν

ν +

+8

{
(11)
z µ
µ +

(22)
z µ
µ + 2

(11)
ω µ
µ + 2

(22)
ω µ
µ + 2

(12)
z µ
µ + 4

(12)
ω µ
µ

}
+−3
ω ν

ν

(3.17)

Lst4 = εµνρσ
{

4
[12]
z µν

[12]
z ρσ +4

[12]
z µν (

[+−]
z ρσ +

[−+]
z ρσ) + (

[+−]
z µν +

[−+]
z µν)(

[+−]
z ρσ +

[−+]
z ρσ)

}
.

(3.18)

where the collective fields zµν are defined at Appendix A.

Thus, the objective of this work is to construct a spin physics associated to the spin generator (Σµν)
α
β . This means to

rewrite the Lagrangian at eq.(3.3) as
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Lspin = Lspin
K + Lspin

GF + Lspin
I (3.19)

From eqs.(2.5-2.6), we get the following relationships

(
Σµν

)ρ
σ

(
Σκλ

)σ
ρ
FµνFκλ = 4FµνF

µν

(Σµκ)
ρ
σ

(
Σνλ

)σ
ρ
FµνFκλ = 2FµνF

µν

(3.20)

So we can write,

FµνF
µν =

1

8

(
Σµν

)ρ
σ

(
Σκλ

)σ
ρ
FµνFκλ +

1

4

(
Σµκ

)ρ
σ

(
Σνλ

)σ
ρ
FµνFκλ (3.21)

The new Lspin A
K becomes,

LspinA
K =

1

8

(
Σµν

)ρ
σ

(
Σκλ

)σ
ρ
a1FµνFκλ +

1

4

(
Σµκ

)ρ
σ

(
Σνλ

)σ
ρ
a1FµνFκλ +

+
1

8

(
Σµν

)ρ
σ

(
Σκλ

)σ
ρ
a2UµνUκλ +

1

4

(
Σµκ

)ρ
σ

(
Σνλ

)σ
ρ
a2UµνUκλ +

+
1

4

(
Σµν

)ρ
σ

(
Σκλ

)σ
ρ
a3V

+
µνV

−
κλ +

1

2

(
Σµκ

)ρ
σ

(
Σνλ

)σ
ρ
a3V

+
µνV

−
κλ

(3.22)

Applying eq.(2.6), we get

LspinA
K = a1FµνF

µν + a2UµνU
µν + 2a3V

+
µνV

−µν

(3.23)

Comparing this sector LspinA
K with the term LAK from the original four bosons Lagrangian

LspinA
K = LAK + ∆spin,A

K (3.24)

where ∆spin,A
K = 0 means that there is no spin contribution being introduced in the anti-symmetric kinetic granular

sector.

For the symmetric kinetic sector, we can couple the Lorentz generator term with the granular terms. It gives,

(Σµν)
ρ
σ

(
Σκλ

)σ
ρ
SµνSκλ = 0

(Σµκ)
ρ
σ

(
Σνλ

)σ
ρ
SµνSκλ = −2SµνS

µν + 2sSµµS
ν
ν

(Σµν)
ρ
σ (Σµν)

σ
ρ S

α
αS

β
β = −24SµµS

ν
ν

(3.25)
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So we can obtain a new Lagrangian LspinS
K

LspinS
K = −1

2
(Σµκ)

ρ
σ

(
Σνλ

)σ
ρ
b(11)S

1
µνS

1
κλ −

1

2
(Σµκ)

ρ
σ

(
Σνλ

)σ
ρ
b(22)S

2
µνS

2
κλ +

−1

4
(Σµκ)

ρ
σ

(
Σνλ

)σ
ρ
b(33)S

+
µνS

−
κλ −

1

24
(Σκλ)

ρ
σ

(
Σκλ

)σ
ρ
c(11)S

α1
α S β1

β +

− 1

24
(Σκλ)

ρ
σ

(
Σκλ

)σ
ρ
c(22)S

α2
α S β2

β −
1

12

(
Σκλ

)ρ
σ

(
Σκλ

)σ
ρ
c(12)S

α1
α S β2

β +

− 1

12
(Σκλ)

ρ
σ

(
Σκλ

)σ
ρ
c(33)S

α+
α S β−β (3.26)

Using the relations in the previous section, we have

LspinS
K = b(11)S

1
µνS

1µν + b(22)S
2
µνS

2µν + b(33)S
+
µνS

−µν +

+
(
c(11) − b(11)

)
S1α
α S1 β

β + c(12)S
1α
α S2 β

β +

+
(
c(22) − b(22)

)
S2α
α S2 β

β +
(
c(33) − b(33)

)
S1α
α S1 β

β (3.27)

which yields,

LspinS
K = LSK + ∆spin,S

K

∆spin,S
K = −b(11)S

1α
α S1 β

β − b(22)S
2α
α S2 β

β − b(33)S
+α
α S− ββ (3.28)

Eq. (3.28) shows that there is a spin-valued contribution at longitudinal sector.

For the gauge fixing term,

Lspin
GF = − 1

96
(Σκλ)

ρ
σ

(
Σκλ

)σ
ρ
ξ(11)S

1α
α S1 β

β −
1

96
(Σκλ)

ρ
σ

(
Σκλ

)σ
ρ
ξ(22)S

2α
α S2 β

β +

− 1

48
(Σκλ)

ρ
σ

(
Σκλ

)σ
ρ
ξ(12)S

1α
α S2 β

β −
1

48
(Σκλ)

ρ
σ

(
Σκλ

)σ
ρ
ξ(33)S

+α
α S− ββ , (3.29)

So, simplifying the above expression, one gets

Lspin
GF =

1

4
ξ(11)S

1α
α S1 β

β +
1

4
ξ(22)S

2α
α S2 β

β +
1

2
ξ(12)S

2α
α S2 β

β +
1

2
ξ(33)S

+α
α S− ββ . (3.30)

and,

Lspin
GF = LGF + ∆spin

GF

∆spin
GF = 0 (3.31)

For the mass term, we can use the following expressions
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(Σµν)
ρ
σ (Σµν)

σ
ρ UαU

α = −24UµU
µ(

Σαβ
)ρ
σ

(
Σβκ

)σ
ρ
UαUκ = −6UµU

µ

(3.32)

to write

UµU
µ = − 1

48
(Σµν)

ρ
σ

(
Σµν

)σ
ρ
UαU

α − 1

12

(
Σαβ

)ρ
σ

(
Σ κ
β

)σ
ρ
UαUκ (3.33)

Then, we can write

Lspin
M =

1

48

(
Σκλ

)ρ
σ

(
Σκλ

)σ
ρ
µ2
UUαU

α +
1

12

(
Σαλ

)ρ
σ

(
Σβλ

)σ
ρ
µ2
UUαUβ +

+
1

24

(
Σκλ

)ρ
σ

(
Σκλ

)σ
ρ
µ2
±V

+
α V

−α +
1

6

(
Σαλ

)ρ
σ

(
Σβλ

)σ
ρ
µ2
±V

+
α V

−
β (3.34)

105



Journal of Advances in Physics Vol 19 (2021) ISSN: 2347-3487 https://rajpub.com/index.php/jap

Using the expressions derived in the previous section, one gets

Lm = −1

2
µ2
UUσU

σ − µ2
±V

+
α V

−
β (3.35)

Then,

Lspin
m = Lm + ∆spin

m

∆spin
m = 0 (3.36)

Next step is to study the spin influence on interaction sector, at eq.(3.10). Initially, consider the trilinear antisymmetric
term

LspinA
3 =

(
1

4
(Σµν)

ρ
σ

(
Σκλ

)σ
ρ

+
1

2
(Σµκ)

ρ
σ

(
Σνλ

)σ
ρ

)(
4b1Fµν

[12]
z [κλ] + 4b2Uµν

[12]
z [κλ] +

+4b1Fµν
[+−]
z [κλ] + 4b2Uµν

[+−]
z [κλ] + 4β1Fµν

(+−)
z [κλ] + 4β2Uµν

(+−)
z [κλ] +

+4b3V
+
µν

[−1]
z [κλ] + 4b3V

+
µν

[−2]
z [κλ] + 4b3V

−
µν

[+1]
z [κλ] + 4b3V

−
µν

[+2]
z [κλ]

)
(3.37)

Making the same simplifications using the results of the previous sections, we have

LspinA
3 = 4b1Fµν

[12]
z [µν] + 4b2Uµν

[12]
z [µν] + 4b1Fµν

[+−]
z [µν] + 4b2Uµν

[+−]
z [µν] +

+4β1Fµν
(+−)
z [µν] + 4β2Uµν

(+−)
z [µν] + 4b3V

+
µν

[−1]
z [µν] + 4b3V

+
µν

[−2]
z [µν] +

+4b3V
−
µν

[+1]
z [µν] + 4b3V

−
µν

[+2]
z [µν]

(3.38)

We can write

LspinA
3 = LAS3 + ∆spin,A

3

∆spin,A
3 = 0 (3.39)

The spintronics for the triliniear symmetric eq.(3.13) is
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LspinS
3 =

(
− 1

2
(Σµκ)

ρ
σ

(
Σνλ

)σ
ρ

)(
2β1S

1
µν

(11)
z κλ + 4β1S

1
µν

(12)
z κλ + 2β1S

1
µν

(22)
z κλ + 4β1S

1
µν

+−3
z κλ +

+2β2S
2
µν

(11)
z κλ + 4β2S

2
µν

(12)
z κλ + 2β2S

2
µν

(22)
z κλ + 4β2S

2
µν

+−3
z κλ +

+4β3S
+
µν

(−1)
z κλ + 4β3S

+
µν

(−2)
z κλ + 4β3S

−
µν

(+1)
z κλ + 4β3S

−
µν

(+2)
z κλ

)
+

+
(
− 1

24
(Σκλ)

ρ
σ

(
Σκλ

)σ
ρ

)(
2ρ1S

µ1
µ

(11)
z ν
ν + 4ρ1S

µ1
µ

(12)
z ν
ν + 2ρ1S

µ1
µ

(22)
z ν
ν + 4ρ1S

µ1
µ

+−3
z ν
ν +

+2ρ2S
µ2
µ

(11)
z ν
ν + 4ρ2S

µ2
µ

(12)
z ν
ν + 2ρ2S

µ2
µ

(22)
z ν
ν + 4ρ2S

µ2
µ

+−3
z ν
ν +

+4ρ3S
µ+
µ

(−1)
z ν
ν + 4ρ3S

µ+
µ

(−2)
z ν
ν + 4ρ3S

µ−
µ

(+1)
z ν
ν + 4ρ3S

µ−
µ

(+2)
z ν
ν +

+2
(
β1 + 4ρ1

)
S µ1
µ

(11)
ω ν
ν + 4

(
β1 + 4ρ1

)
S µ1
µ

(12)
ω ν
ν +

+2
(
β1 + 4ρ1

)
S µ1
µ

(22)
ω ν
ν + 4

(
β1 + 4ρ1

)
S µ1
µ

+−3
ω ν

ν +

+2
(
β2 + 4ρ2

)
S µ2
µ

(11)
ω ν
ν + 4

(
β2 + 4ρ2

)
S µ2
µ

(12)
ω ν
ν +

+2
(
β2 + 4ρ2

)
S µ2
µ

(22)
ω ν
ν + 4

(
β2 + 4ρ2

)
S µ2
µ

+−3
ω ν

ν +

+4
(
β3 + 4ρ3

)
S µ+
µ

(−1)
ω ν

ν + 4
(
β3 + 4ρ3

)
S µ+
µ

(−2)
ω ν

ν +

+4
(
β3 + 4ρ3

)
S µ−
µ

(+1)
ω ν

ν + 4
(
β3 + 4ρ3

)
S µ−
µ

(+2)
ω ν

ν

)
(3.40)
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which can be written as

LspinS
3 = 2β1S

1
µν

(11)
z µν − 2β1S

µ 1
µ

(11)
z ν

ν + 4β1S
1
µν

(12)
z µν − 4β1S

µ 1
µ

(12)
z ν

ν +

+2β1S
1
µν

(22)
z µν − 2β1S

µ 1
µ

(22)
z ν

ν + 4β1S
1
µν

+−3
z µν − 4β1S

µ 1
µ

+−3
z ν

ν +

+2β2S
2
µν

(11)
z µν − 2β2S

µ 2
µ

(11)
z ν

ν + 4β2S
2
µν

(12)
z µν − 4β2S

µ 2
µ

(12)
z ν

ν +

+2β2S
2
µν

(22)
z µν − 2β2S

µ 2
µ

(22)
z ν

ν + 4β2S
2
µν

+−3
z µν − 4β2S

µ 2
µ

+−3
z ν

ν +

+4β3S
+
µν

(−1)
z µν + 4β3S

+
µν

(−2)
z µν + 4β3S

−
µν

(+1)
z µν + 4β3S

−
µν

(+2)
z µν +

−4β3S
µ+
µ

(−1)
z ν

ν − 4β3S
µ+
µ

(−2)
z ν

ν − 4β3S
µ−
µ

(+1)
z ν

ν − 4β3S
µ−
µ

(+2)
z ν

ν +

+2ρ1S
µ1
µ

(11)
z ν
ν + 4ρ1S

µ1
µ

(12)
z ν
ν + 2ρ1S

µ1
µ

(22)
z ν
ν + 4ρ1S

µ1
µ

+−3
z ν
ν +

+2ρ2S
µ2
µ

(11)
z ν
ν + 4ρ2S

µ2
µ

(12)
z ν
ν + 2ρ2S

µ2
µ

(22)
z ν
ν + 4ρ2S

µ2
µ

+−3
z ν
ν +

+4ρ3S
µ+
µ

(−1)
z ν
ν + 4ρ3S

µ+
µ

(−2)
z ν
ν + 4ρ3S

µ−
µ

(+1)
z ν
ν + 4ρ3S

µ−
µ

(+2)
z ν
ν +

+2
(
β1 + 4ρ1

)
S µ1
µ

(11)
ω ν
ν + 4

(
β1 + 4ρ1

)
S µ1
µ

(12)
ω ν
ν +

+2
(
β1 + 4ρ1

)
S µ1
µ

(22)
ω ν
ν + 4

(
β1 + 4ρ1

)
S µ1
µ

+−3
ω ν

ν +

+2
(
β2 + 4ρ2

)
S µ2
µ

(11)
ω ν
ν + 4

(
β2 + 4ρ2

)
S µ2
µ

(12)
ω ν
ν +

+2
(
β2 + 4ρ2

)
S µ2
µ

(22)
ω ν
ν + 4

(
β2 + 4ρ2

)
S µ2
µ

+−3
ω ν

ν +

+4
(
β3 + 4ρ3

)
S µ+
µ

(−1)
ω ν

ν + 4
(
β3 + 4ρ3

)
S µ+
µ

(−2)
ω ν

ν +

+4
(
β3 + 4ρ3

)
S µ−
µ

(+1)
ω ν

ν + 4
(
β3 + 4ρ3

)
S µ−
µ

(+2)
ω ν

ν (3.41)

It yields,

LspinS
3 = LS s3 + ∆spin,S

3

(3.42)

where

∆spin,S
3 = −2β1S

1µ
µ

(11)
z
ν

ν − 4β1S
1µ
µ

(12)
z
ν

ν − 2β1S
1µ
µ

(22)
z
ν

ν − 4β1S
1µ
µ

+−3
z

ν

ν +

−2β2S
2µ
µ

(11)
z ν

ν − 4β2S
2µ
µ

(12)
z ν

ν − 2β2S
2µ
µ

(22)
z ν

ν − 4β2S
2µ
µ

+−3
z ν

ν +

−4β3S
+µ
µ

(−1)
z ν

ν − 4β3S
+µ
µ

(−2)
z ν

ν − 4β3S
−µ
µ

(+1)
z ν

ν − 4β3S
−µ
µ

(+2)
z ν

ν (3.43)

Notice that eq. (3.42) shows the presence of spin-valued contributions.
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Simplifying, we have

LspinS
3 = 2β1S

1
µν

(11)
z µν + 4β1S

1
µν

(12)
z µν + 2β1S

1
µν

(22)
z µν + 4β1S

1
µν

+−3
z µν +

+2β2S
2
µν

(11)
z µν + 4β2S

2
µν

(12)
z µν + 2β2S

2
µν

(22)
z µν + 4β2S

2
µν

+−3
z µν +

+4β3S
+
µν

(−1)
z µν + 4β3S

+
µν

(−2)
z µν + 4β3S

−
µν

(+1)
z µν + 4β3S

−
µν

(+2)
z µν +

+2
(
ρ1 − β1

)
S µ1
µ

(11)
z ν
ν + 4

(
ρ1 − β1

)
S µ1
µ

(12)
z ν
ν +

+2
(
ρ1 − β1

)
S µ1
µ

(22)
z ν
ν + 4

(
ρ1 − β1

)
S µ1
µ

+−3
z ν
ν +

+2
(
ρ2 − β2

)
S µ2
µ

(11)
z ν
ν + 4

(
ρ2 − β2

)
S µ2
µ

(12)
z ν
ν +

+2
(
ρ2 − β2

)
S µ2
µ

(22)
z ν
ν + 4

(
ρ2 − β2

)
S µ2
µ

+−3
z ν
ν +

+4
(
ρ3 − β3

)
S µ+
µ

(−1)
z ν
ν + 4

(
ρ3 − β3

)
S µ+
µ

(−2)
z ν
ν +

+4
(
ρ3 − β3

)
S µ−
µ

(+1)
z ν
ν + 4

(
ρ3 − β3

)
S µ−
µ

(+2)
z ν
ν +

+2
(
β1 + 4ρ1

)
S µ1
µ

(11)
ω ν
ν + 4

(
β1 + 4ρ1

)
S µ1
µ

(12)
ω ν
ν +

+2
(
β1 + 4ρ1

)
S µ1
µ

(22)
ω ν
ν + 4

(
β1 + 4ρ1

)
S µ1
µ

+−3
ω ν

ν +

+2
(
β2 + 4ρ2

)
S µ2
µ

(11)
ω ν
ν + 4

(
β2 + 4ρ2

)
S µ2
µ

(12)
ω ν
ν +

+2
(
β2 + 4ρ2

)
S µ2
µ

(22)
ω ν
ν + 4

(
β2 + 4ρ2

)
S µ2
µ

+−3
ω ν

ν +

+4
(
β3 + 4ρ3

)
S µ+
µ

(−1)
ω ν

ν + 4
(
β3 + 4ρ3

)
S µ+
µ

(−2)
ω ν

ν +

+4
(
β3 + 4ρ3

)
S µ−
µ

(+1)
ω ν

ν + 4
(
β3 + 4ρ3

)
S µ−
µ

(+2)
ω ν

ν (3.44)

Considering the Lspin st
3 tri-valued semi-topological term, one gets

Lspin st
3 =

(
− 1

24
(Σµν)

ρ
σ (Σµν)

σ
ρ

)
εµνρσ

{
2i

[1+]
z µν V

−
ρσ − 2i

[1−]
z µν V

+
ρσ +

+2i
[2+]
z µν V

−
ρσ − 2i

[2−]
z µν V

+
ρσ + (α0Fρσ + α1Uρσ)[i(

[+−]
z µν +

[−+]
z µν)] + 4

[12]
z µν (α0Fρσ + α1Uρσ)

}
.

(3.45)

where we have

[1±]
z µν= α0

(
AµV

±
ν −AνV ±µ

)
[2±]
z µν= α1

(
UµV

±
ν − UνV ±µ

)
(3.46)

It yields,
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Lspin st
3 = Lst

3 + ∆spin,st
3

∆spin,st
3 = 0

(3.47)

A further development is on the quadrilinear terms at eq. (3.15). Starting with LspinA
4 : quadrilinear antisymmetric

term, one gets

LspinA
4 =

(
1

4
(Σµν)

ρ
σ

(
Σκλ

)σ
ρ

+
1

2
(Σµκ)

ρ
σ

(
Σνλ

)σ
ρ

)
LA4 (3.48)

where the term LA4 is defined at eq.(3.16). Simplifying, we have

LspinA
4 = LA4 + ∆spin,A

4

∆spin,A
4 = 0 (3.49)
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For the symmetric tensor, eq. (3.17) gives LspinS
4 ,

LspinS
4 =

1

2
(Σµκ)

ρ
σ

(
Σνλ

)σ
ρ

(
2

[12]
z (µν)

[12]
z (κλ) + 2

[12]
z (µν)

[21]
z (κλ) + 4

[13+]
z (µν)

[13−]
z (κλ) +

+4
[23+]
z (µν)

[23−]
z (κλ) + 8

[13+]
z (µν)

[23−]
z (κλ) + 4

[+−]
z (µν)

[+−]
z (κλ)+

(11)
z (µν)

(11)
z (κλ) +

+
(22)
z (µν)

(22)
z (κλ) + 2

(11)
z (µν)

(22)
z (κλ) + 4

(12)
z (µν)

(12)
z (κλ) + 2

(11)
z (µν)

(12)
z (κλ) +

+4
(22)
z (µν)

(12)
z (κλ) + 4

( (11)
z (µν)+

(22)
z (µν)

)+−3
z (κλ) + 4

(11)
ω (µν)

(11)
ω (κλ) +

+4
(22)
ω (µν)

(22)
ω (κλ) + 16

(11)
ω (µν)

(12)
ω (κλ) + 16

(22)
ω (µν)

(12)
ω (κλ) + 16

(12)
ω (µν)

(12)
ω (κλ) +

+2
(11)
z (µν)

(11)
ω (κλ) + 2

(22)
z (µν)

(22)
ω (κλ) + 8

(12)
z (µν)

(11)
ω (κλ) + 8

(12)
z (µν)

(22)
ω (κλ) +

+8
(12)
z (µν)

(12)
ω (κλ) + 4

(13+)
z (µν)

(13−)
z (κλ) + 4

(23+)
z (µν)

(23−)
z (κλ) + 8

(13+)
z (µν)

(23−)
z (κλ) +

+4i
(13+)
z (µν)

(24−)
ω (κλ) − 4i

(13−)
z (µν)

(24+)
ω (κλ) + 4i

(23+)
z (µν)

(14−)
ω (κλ) − 4i

(23−)
z (µν)

(14+)
ω (κλ) +

+16i
(13+)
ω (µν)

(24−)
ω (κλ) − 16i

(13−)
ω (µν)

(24+)
ω (κλ) + 2i

(14+)
z (µν)

(23−)
z (κλ) − 2i

(14−)
z (µν)

(23+)
z (κλ) +

−16i
(14+)
ω (µν)

(23−)
ω (κλ) + 16i

(14−)
ω (µν)

(23+)
ω (κλ) − 2i

(13+)
z (µν)

(24−)
z (κλ) + 2i

(13−)
z (µν)

(24+)
z (κλ) +

−4i
(14+)
z (µν)

(23−)
ω (κλ) + 4i

(14−)
z (µν)

(23+)
ω (κλ) − 4i

(24+)
z (µν)

(13−)
ω (κλ) + 4i

(24−)
z (µν)

(13+)
ω (κλ) +

+8
(12)
z (µν)

+−3
z (κλ) + 4

+−3
z (µν)

+−4
z (κλ)

)
+

(
− 1

24
(Σκλ)

ρ
σ

(
Σκλ

)σ
ρ

)(
− 4

[13+]
z µ

µ

[13−]
z ν

ν − 4
[23+]
z µ

µ

[23−]
z ν

ν − 4
[+−]
z µ
µ

[+−]
z ν
ν +

−4
[13+]
z µ

µ

[23−]
z ν

ν + 4
[13−]
z µ

µ

[23+]
z ν

ν + 4i
[13−]
z µ

µ

[24+]
z ν

ν − 4i
[13+]
z µ

µ

[24−]
z ν

ν +

+4
(13+)
z µ

µ

(13−)
z ν

ν + 4
(23+)
z µ

µ

(23−)
z ν

ν + 4
(13+)
z µ

µ

(23−)
z ν

ν − 4
(13−)
z µ

µ

(23+)
z ν

ν +

+8
(11)
ω µ
µ

(22)
ω ν
ν + 32

(13+)
ω µ

µ

(13−)
ω ν

ν + 32
(23+)
ω µ

µ

(23−)
ω ν

ν + 32
(13+)
ω µ

µ

(23−)
ω ν

ν − 32
(13−)
ω µ

µ

(23+)
ω ν

ν +

+4
(11)
z µ
µ

(22)
ω ν
ν + 16

(13+)
z µ

µ

(13−)
ω ν

ν + 16
(23+)
z µ

µ

(23−)
ω ν

ν + 16
(13+)
z µ

µ

(13−)
ω ν

ν − 16
(13−)
z µ

µ

(13+)
ω ν

ν +

+8

{
(11)
z µ
µ +

(22)
z µ
µ + 2

(11)
ω µ
µ + 2

(22)
ω µ
µ + 2

(12)
z µ
µ + 4

(12)
ω µ
µ

}
+−3
ω ν

ν +

−4
(+−)
z µ

µ

(+−)
z ν

ν + 8
+−3
z µ
µ

+−4
ω ν

ν + 16
+−3
ω µ

µ

+−4
ω ν

ν

)
(3.50)
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Using the relations in the previous section, we have

LspinS
4 = LS4 + ∆spin,S

4

(3.51)

where

∆spin,S
4 = −2

[12]
z µµ

[12]
z ν
ν − 2

[12]
z µµ

[21]
z ν
ν − 4

[13+]
z µ

µ

[13−]
z ν

ν +

−4
[23+]
z µ

µ

[23−]
z ν

ν − 8
[13+]
z µ

µ

[23−]
z ν

ν − 4
[+−]
z µ
µ

[+−]
z ν

ν

−
(11)
z µ
µ

(11)
z ν

ν−
(22)
z µ
µ

(22)
z ν

ν − 2
(11)
z µ
µ

(22)
z ν

ν − 4
(12)
z µ
µ

(12)
z ν

ν +

−2
(11)
z µ
µ

(12)
z ν

ν − 4
(22)
z µ
µ

(12)
z ν

ν − 4
( (11)
z µ
µ+

(22)
z µ
µ

)+−3
z ν

ν − 4
(11)
ω µ
µ

(11)
ω ν

ν +

−4
(22)
ω µ
µ

(22)
ω ν

ν − 16
(11)
ω µ
µ

(12)
ω ν

ν − 16
(12)
ω µ
µ

(12)
ω ν

ν − 16
(22)
ω µ
µ

(12)
ω ν

ν +

−2
(11)
z µ
µ

(11)
ω ν

ν − 4
(22)
z µ
µ

(22)
ω ν

ν − 8
(12)
z µ
µ

(11)
ω ν

ν − 8
(12)
z µ
µ

(22)
ω ν

ν − 8
(12)
z µ
µ

(12)
ω ν

ν +

−4
(13+)
z µ

µ

(13−)
z ν

ν − 4
(23+)
z µ

µ

(23−)
z ν

ν − 8
(13+)
z µ

µ

(23−)
z ν

ν

−4i
(13+)
z µ

µ

(24−)
ω ν

ν + 4i
(13−)
z µ

µ

(24+)
ω ν

ν − 4i
(23+)
z µ

µ

(14−)
ω ν

ν + 4i
(23−)
z µ

µ

(14+)
ω ν

ν +

−16i
(13+)
ω µ

µ

(24−)
ω ν

ν + 16i
(13−)
ω µ

µ

(24+)
ω ν

ν − 4i
(14+)
z µ

µ

(23−)
z ν

ν + 4i
(14−)
z µ

µ

(23+)
z ν

ν +

+16i
(14+)
ω µ

µ

(23−)
ω ν

ν − 16i
(14−)
ω µ

µ

(23+)
ω ν

ν + 2i
(13+)
z µ

µ

(24−)
z ν

ν − 2i
(13−)
z µ

µ

(24+)
z ν

ν +

+4i
(14+)
z µ

µ

(23−)
ω ν

ν − 4i
(14−)
z µ

µ

(23+)
ω ν

ν + 4i
(24+)
z µ

µ

(13−)
ω ν

ν − 4i
(24−)
z µ

µ

(13+)
ω ν

ν +

−8
(12)
z µ
µ

+−3
z ν

ν − 4
+−3
z µ
µ

+−4
z ν

ν (3.52)

Eq. (3.52) is showing on eq.(2.5) contribution.

Finally, for Lspin st
4 , one gets

Lst4 =

(
− 1

24
(Σµν)

ρ
σ (Σµν)

σ
ρ

)
εµνρσ

{
4

[12]
z µν

[12]
z ρσ +

+4
[12]
z µν

(
[+−]
z ρσ +

[−+]
z ρσ

)
+

(
[+−]
z µν +

[−+]
z µν

)(
[+−]
z ρσ +

[−+]
z ρσ

)}
.

(3.53)

Using the eq.(3.18) in the previous section, we have

Lspin st
4 = Lst

4 + ∆spin st
4

(3.54)
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and

∆spin st
4 = 0

(3.55)

Summarizing, by considering fields Lorentz algebra value eq.(2.5), one gets a Spin-Valued Four Bosons Lagrangian
given by

Lspin = LFour EM +4Lalgebra valued (3.56)

where

4Lsalgebra valued = 4spin,S
3 +4spin,S

4 (3.57)

showing that only trilinear and quadrilinear symmetric terms receive spin contributions, as eqs.(3.43) and eq.(3.53) are
showing.

4 Equations of Motion

Eq.(3.56) provides a spin-valued antireductionist nonlinear abelian Lagrangian. Its hyperbolic system of equations of
motion contain spin dependence, propagates granular and collective fields, massive terms and with nonlinear sources.
The I-equation of motion to each field Aµ I has the following general expression:

∂ν

(
F νµI + z

[νµ]
I

)
+ ∂µ

(
S αα I + z αα I

)
+Mµ

I + lµI + cµI = jµI (4.1)

Both spin dynamics are splitted by multiplying eq.(4.1) by the longitudinal and transversal operators. For this, we

must take the operators ATµI = θµνA
ν
I and ALµI = ωµνA

ν
I where θµν = ηµν −

∂µ∂ν
�

and ωµν =
∂µ∂ν
�

.

For spin-1 dynamics:

∂ν

(
F νµI + z

[νµ]
I

)
+Mµ

T I + lµT I + cµT I = jµT I

(4.2)

For spin-0 dynamics:
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∂µ
(
S αα I + z αα I

)
+Mµ

L I + lµL I + cµL I = jµL I

(4.3)

where jµT I ≡ Θµ
ν j
ν e jµL I ≡ ωµν jν and so forth.

Considering that covariance is preserved the separation of spin-1 and spin-0 sectors is valid. Eqs.(4.2-3) can be
considered as physical laws due to the fact that symmetry is mainteined. Thus, the physical continuity equation for
spin-1 is

∂.

(
m2Xµ

T + lµT + cµT − j
µ
T

)
= 0 (4.4)

and the spin-0 wave equation is

�
(
S αα + z αα

)
= ∂.

(
m2Xµ

L + lµL + cµT − j
µ
L

)
(4.5)

We should study now such coupled fields equations in terms of the fields quadruplet. Explicit their ingredients.

5 Fields dynamics

After the generic study on the spin-valued systemic relativistic equations driving the model, we have to make explicit
these equations of motion for each field in the quadruplet. For field Aµ (photon), one gets

Aµ-spin-1:

∂ν

(
F νµA + z

[νµ]
A

)
+ lµAT + cµAT = jµAT

(5.1)

Aµ-spin-0:

∂µ
(
S ααA + z ααA

)
+ lµAL + cµAL = jµAL

(5.2)

where the antisymmetric sector is given by:

F νµA = ā1F
νµ (A-antisymmetric granular), (5.3)

z
[νµ]
A = ā2

(
[12]
z [νµ]+

[+−]
z [νµ]

)
+ ā3

(+−)
z [νµ] (A-antisymmetric collective) (5.4)
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and the longitudinal term is

S ααA =
(
ā4S

α1
α + ā5S

α2
α

)
(A-symmetric granular) (5.5)

z ααA = ā6

(
(11)
z α
α+

(22)
z α
α + 2

(12)
z α
α + 2

(+−3)
z α

α

)
+

+ā7

(
(11)
ω α
α+

(22)
ω α
α + 2

(12)
ω α
α + 2

+−3
ω α

α

)
(A-symmetric collective) (5.6)

The so-called London term is represented by lµA.

lµA = (Σµ
α)βν

{(
fA2

(11)
z (αβ) + fA3

(12)
z (αβ) + fA2

(22)
z (αβ) + fA4

(11)
ω (αβ) + fA5

(12)
ω (αβ) +

+gαβ
(
fA4

(22)
ω ρ
ρ

))
Aν

}
− (Σµ

ν)αβ

{
fU3

[12]
z [βα] + fU4

(12)
ω [βα]

}
Uν +

+(Σµ
α)βν

{
fU6

(11)
z (βα) + fU7

(12)
z (βα) + fU8

(22)
z (βα) + fU9

(11)
ω (βα) + fU4

(12)
ω (βα) + fU10

(22)
ω (βα)

}
Uν

(5.7)

The conglomerate term cµA is

cµA = (Σµ
α)βν

{
fA3

+−3
z (βα) + gβα

(
fA4

+−3
ω ρ

ρ

)}
Aν + fU3 (Σµ

ν)αβ
[+−]
z [βα]Uν +

+(Σµ
α)βν

{
fU7

+−3
z (βα) + gβα

(
fU13

+−3
ω ρ

ρ

)}
Uν +

+(Σµ
ν)αβ

(
f+

2

[13−]
z [αβ] + f+

3

[23−]
z [βα] + f+

8

(23−)
z [βα] + f+

6

[24−]
z [βα] + f+

7

(13−)
z [αβ] +

+f+
11

(23−)
ω [βα] + f+

12

(24−)
ω [βα]

)
V +ν +

+(Σµ
α)βν

{
f+

5

[23−]
z (βα) + f+

9

(23−)
z (βα) + f+

10

(24−)
z (βα) + f+

6

[24−]
z (βα) + f+

7

(13−)
z (αβ) +

+f+
11

(23−)
ω (βα) + f+

12

(24−)
ω (βα) +

+gβα
(
f+

14

[13−]
z ρ

ρ + f+
14

[23−]
z ρ

ρ + f+
7

(13−)
z ρ

ρ + f+
7

(23−)
z ρ

ρ + f+
15

(13−)
ω ρ

ρ + f+
15

(23−)
ω ρ

ρ

)}
V +ν +

+(Σµ
ν)αβ

(
f+ ∗

2

[13+]
z [αβ] + f+ ∗

3

[23+]
z [βα] + +f+ ∗

8

(23+)
z [βα] + f+ ∗

6

[24+]
z [βα] +

+f+ ∗
7

(13+)
z [αβ] + f+ ∗

11

(23+)
ω [βα] + f+ ∗

12

(24+)
ω [βα]

)
V −ν

+(Σµ
α)βν

{
f+ ∗

5

[23+]
z (βα) + f+ ∗

6

[24+]
z (βα) + f+ ∗

7

(13+)
z (αβ) +

+f+ ∗
9

(23+)
z (βα) + f+ ∗

10

(24+)
z (βα) + f+ ∗

11

(23+)
ω (βα) + f+ ∗

12

(24+)
ω (βα) +

+gβα
(
f+ ∗

14

[13+]
z ρ

ρ + f+ ∗
14

[23+]
z ρ

ρ + f+ ∗
7

(13+)
z ρ

ρ + f+ ∗
7

(23+)
z ρ

ρ + f+ ∗
15

(13+)
ω ρ

ρ + f+ ∗
15

(23+)
ω ρ

ρ

)}
V −ν

(5.8)

The non-linear current is
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jµA = (Σµ
α)βν

{
fA1 S

βα2 + gβα
(
fA6 S

ρ1
ρ + fA7 S

ρ2
ρ

)}
Aν +

+(Σµ
ν)αβ

(
fU1 F

βα + fU2 U
βα
)
Uν +

+(Σµ
α)βν

{
fU5 S

βα2 + gβα
(
fU11S

ρ1
ρ

)}
Uν +

+(Σµ
ν)αβ

(
f+

1 V
βα−

)
V +ν + (Σµ

α)βν
(
f+

4 S
βα− + gνµ

(
f+

13S
ρ−
ρ

))
V +
ν +

+(Σµ
ν)αβ

(
f+∗

1 V βα+
)
V −ν + (Σµ

α)βν
(
f+∗

4 Sβα+ + gβα
(
f+∗

13 S
ρ+
ρ

))
V −ν +

(5.9)

where the parameters ā1, ...f
+ ∗
15 are defined in Appendix A.

The continuity equation is

�
(
S ααA + z ααA

)
= ∂.

(
jA + lA + cA

)
(5.10)

The corresponding expressions of the electromagnetic waves are:

Aµ-spin-1:

�
(
FAνµ + zA[νµ]

)
= ∂µd

A
ν − ∂νdAµ + ∂αfAαµν

where

dAµ = lATµ + cAµ + jATµ e fAαµν = ā2

(
f [12]
αµν + f [+−]

αµν

)
+ ā3f

(+−)
αµν (5.11)

Aµ-spin-0:

�
(
S ααA + z ααA

)
= ∂.

(
jA − lA − cA

)
(5.12)

The next field corresponding to charge exchange is a massive photon. It yields,

Uµ-spin-1:

∂ν

(
F νµU + z

[νµ]
U

)
+Mµ

U T + cµU T + lµU T = jµU T (5.13)
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Uµ-spin-0:

∂µ
(
S ααU + z ααU

)
+Mµ

U L + cµU L + lµU L = jµU L (5.14)

Sector T:

F νµU = b̄1U
νµ(U-antisymmetric granular), (5.15)

z
[νµ]
U = b̄2

(
[12]
z [νµ]+

[+−]
z [νµ]

)
+ b̄3

(+−)
z [νµ] (U-antisymmetric collective) (5.16)

Sector L:

SνµU = b̄4S
α1
α + b̄5S

α2
α (U-symmetric granular) (5.17)

z ααU = b̄6

(
(11)
z α
α+

(22)
z α
α + 2

(12)
z α
α + 2

(+−3)
z α

α

)
+

+b̄7

(
(11)
ω α
α+

(22)
ω α
α + 2

(12)
ω α
α + 2

+−3
ω α

α

)
(U-symmetric colletive) (5.18)

Sector Mass:

Mµ
U = m2

UU
µ (5.19)

Sector-London:

lµU = (Σµ
ν)αβ

(
gA3

[12]
z [βα] + gA4

(12)
ω [βα]

)
Aν +

+(Σµ
α)βν

{
gA6

(11)
z (βα) + gA7

(12)
z (βα) + gA8

(22)
z (βα) + gA9

(11)
ω (βα) + gA4

(12)
ω (βα) + gA10

(22)
ω (βα)

}
Aν +

+(Σµ
α)βν

{
gU2

(11)
z (βα) + 2gU2

(12)
z (βα) + gU2

(22)
z (βα) + gU3

(12)
ω (βα) + 2gU3

(22)
ω (βα) + gβα

(
gU3

11
ω ρρ

)}
Uν

(5.20)

Sector-conglomerate:

cµU = (Σµ
ν)αβ

(
gA3

[+−]
z [βα]

)
Aν + (Σµ

α)βν
{
gA7

+−3
z (βα) + gβα

(
gA4

(+−3)
ω ρ

ρ

)}
Aν +

+(Σµ
α)βν

{
2gU2

+−3
z (νµ) + 2gU3

+−3
ω ρ

ρ

}
Uν +

+(Σµ
ν)αβ

(
g+

2

[13−]
z [αβ] + g+

3

[14−]
z [βα] + g+

4

[23−]
z [αβ] + g+

8

(23−)
z [αβ] + g+

9

(13−)
ω [βα]

)
V +ν +

+(Σµ
α)βν

(
g+

2

[13−]
z (αβ) + g+

3

[14−]
z (βα) + g+

4

[23−]
z (αβ) + g+

6

(13−)
z (βα) + g+

7

(14−)
z (βα) + g+

8

(23−)
z (αβ) +

+g+
9

(13−)
ω (βα) + g+

10

(14−)
ω (βα) + gβα

(
− g+

4

[13−]
z ρ

ρ − g+
4

[23−]
z ρ

ρ + g+
8

(13−)
z ρ

ρ + g+
8

(23−)
z ρ

ρ +

+g+
8

(13−)
ω ρ

ρ + g+
13

(23−)
ω ρ

ρ

))
V +ν +

+(Σµ
ν)αβ

(
g+∗

2

[13+]
z [αβ] + g+∗

3

[14+]
z [βα] + g+∗

4

[23+]
z [αβ] + g+∗

8

(23+)
z [αβ] + g+∗

9

(13+)
ω [βα]

)
V −ν +

+(Σµ
α)βν

(
g+∗

2

[13+]
z (αβ) + g+∗

3

[14+]
z (βα) + g+∗

4

[23+]
z (αβ) + g+∗

6

(13+)
z (βα) + g+∗

7

(14+)
z (βα) +

+g+∗
8

(23+)
z (αβ) + g+∗

9

(13+)
ω (βα) + g+∗

10

(14+)
ω (βα) + gβα

(
− g+∗

4

[13+]
z ρ

ρ − g+∗
4

[23+]
z ρ

ρ +

+g+∗
8

(13+)
z ρ

ρ + g+∗
8

(23+)
z ρ

ρ + g+∗
8

(13+)
ω ρ

ρ + g+∗
13

(23+)
ω ρ

ρ

))
V −ν (5.21)
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Sector current:

jµU = (Σµ
ν)αβ

(
gA1 F

βα + gA2 U
βα
)
Aν + (Σµ

α)βν
(
gA5 S

βα1 + gβα
(
gA11S

ρ1
ρ + gA12S

ρ2
ρ

))
Aν +

+(Σµ
α)βν

(
gU1 S

βα1 + gβα
(
gU4 S

ρ1
ρ + gU5 S

ρ2
ρ

))
Uν +

+(Σµ
ν)αβ

(
g+

1 V
βα−

)
V +ν + (Σµ

α)βν
(
g+

5 S
βα− + gβα

(
g+

11S
α−
α

))
V ν− +

+(Σµ
ν)αβ

(
g+ ∗

1 V βα+
)
V −ν + (Σµ

α)βν
(
g+ ∗

5 Sβα+ + gβα
(
g+ ∗

11 S
α+
α

))
V +ν (5.22)

The corresponding equation of continuity is

�
(
S ααU + z ααU

)
= ∂.

(
jU + lU + cU +MU

)
(5.23)

where the parameters b̄1, ... are defined in Appendix B.

The corresponding electromagnetic waves expressions are

Uµ-spin-1:

�
(
FUνµ + zU[νµ]

)
= ∂µd

U
ν − ∂νdUµ + ∂µM

U
ν − ∂νMU

µ + ∂αfUαµν (5.24)

where

dUµ = lU Tµ + cUµ + jU Tµ e fUαµν = b̄2

(
f [12]
αµν + f [+−]

αµν

)
+ b̄3f

(+−)
αµν (5.25)

Uµ-spin-0:

�
(
S ααU + z ααU

)
= ∂.

(
jU − lU − cU

)
(5.26)

Another two fields responsible to the microscopic electromagnetism are the charged fields. For the charged field V +
µ

(Massive Photon with positive charge), one gets

V +
µ -spin-1:

∂ν

(
F νµ+ + z

[νµ]
+

)
+Mµ

+T + lµ+T + cµ+T = jµV + T (5.27)

V +
µ -spin-0:

∂µ
(
S αα+ + z αα+

)
+Mµ

+L + lµ+L + cµ+L = jµV + L (5.28)
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Sector T:

F νµ+ = c̄1V
νµ− (V +-antisymmetric granular) (5.29)

z
[νµ]
+ = c̄2

(
[−1]
z [νµ]+

[−2]
z [νµ]

)
(V +-antisymmetric collective) (5.30)

Sector-L:

S αα+ = c̄3S
α−
α , (V +-symmetric granular) (5.31)

z αα+ = c̄4

(
(−1)
z α
α+

(−2)
z α
α

)
+ c̄5

(
(−1)
ω α

α+
(−2)
ω α

α

)
(V +-symmetric collective) (5.32)

Sector Mass:

Mµ
+ = µ2

V V
µ− (5.33)

Sector-London:

lµ+ = (Σµ
α)βνg

αβ
(
h−11

( (11)
z ρ
ρ+

(22)
z ρ
ρ + 2

(11)
ω ρ
ρ + 2

(22)
ω ρ
ρ

))
V −ν (5.34)

Sector-conglomerate:

cµ+ = (Σµ
ν)αβ

(
hA2

[13−]
z [βα] + hA3

[23−]
z [βα] + hA4

(23−)
z [βα] + hA5

[24−]
z [βα] +

+hA9
(24−)
z [αβ] + hA10

(23−)
ω [αβ] + hA11

(24−)
ω [αβ]

)
Aν +

+(Σµ
ν)αβ

(
hA2

[13−]
z (βα) + hA7

[23−]
z (βα) + hA8

(13−)
z (βα) + h∗A4

(23−)
z (βα) +

+hA9
(24−)
z (αβ) + hA10

(23−)
ω (αβ) + hA11

(24−)
ω (αβ) +

+gβα
(
− hA2

[13−]
z ρ

ρ − hA2
[23−]
z ρ

ρ + hA8
(23−)
z ρ

ρ + hA13

(13−)
ω ρ

ρ + hA13

(23−)
ω ρ

ρ

))
Aν +

+(Σµ
ν)αβ

(
hU2

[13−]
z [αβ] + hU3

[14−]
z [αβ] + hU4

[23−]
z [βα] + hU6

(13−)
z [αβ] + hU7

(14−)
z [αβ] +

+hU8
(23−)
z [αβ] + hU9

(13−)
ω [αβ] + hU10

(14−)
ω [αβ]

)
Uν

+ +(Σµ
α)βν

(
hU2

[13−]
z (αβ) + hU3

[14−]
z (αβ) + hU4

[23−]
z (αβ) + hU6

(13−)
z (αβ) + hU7

(14−)
z (αβ) +

+hU8
(23−)
z (αβ) + hU9

(13−)
ω (αβ) + hU10

(14−)
ω (αβ) + gαβ

(
hU12

[13−]
z ρ

ρ − hU4
[23−]
z ρ

ρ +

+hU8
(13−)
z ρ

ρ + hU8
(23−)
z ρ

ρ + hU12

(13−)
ω ρ

ρ + hU12

(23−)
ω ρ

ρ

))
Uν +

+(Σµ
ν)αβ

(
h−3

[12]
z [βα]

)
V − ν +

+(Σµ
α)βν

(
h−6

(11)
z (βα) + h−6

(22)
z (βα) + h−7

(12)
z (βα) + 2h−6

+−4
z (βα) + h−7

[+−]
z (βα) +

+h−8
(+−)
ω (βα) + gβα

(
2

(12)
z ρ
ρ + 4

(12)
ω ρ
ρ + h−12

[+−]
z ρ
ρ + h−13

(+−)
z ρ

ρ + h−14

+−4
ω ρ

ρ

))
V −ν

(5.35)

119



Journal of Advances in Physics Vol 19 (2021) ISSN: 2347-3487 https://rajpub.com/index.php/jap

Sector current:

jµV + = (Σµ
ν)αβ

(
hA1 V

βα−
)
Aν + (Σµ

α)βν
(
hA6 S

βα− + gβα
(
hA12S

ρ−
ρ

))
+

+(Σµ
ν)αβ

(
hU1 V

βα−
)
Uν + (Σµ

α)βν
(
hU5 S

βα− + gβα
(
hU11S

ρ−
ρ

))
+

+(Σµ
ν)αβ

(
h−1 F

βα + h−2 U
βα
)
V ν− +

+(Σµ
α)βν

(
h−4 S

βα 1 + h−5 S
βα 2 + gβα

(
h−9 S

ρ1
ρ + h−10S

ρ2
ρ

))
V βα− +

(5.36)

The corresponding continuity equation is

�
(
S αα+ + z αα+

)
= ∂.

(
j+ + l+ + c+ +M+

)
(5.37)

where the parameters c̄1, ... are defined in Appendix A.

The corresponding electromagnetic waves expressions are:

V +
µ -spin-1:

�
(
F+
νµ + z+

[νµ]

)
= ∂µd

+
ν − ∂νd+

µ + ∂µM
+
ν − ∂νM+

µ + ∂αf+
αµν

where

d+
µ = l+T

µ + c+µ + jTµV + e f+
αµν = c̄2

(
f [−1]
αµν + f [−2]

αµν

)
(5.38)

V +
µ -spin-0:

�
(
S αα+ + z αα+

)
= ∂.

(
j+ − l+ − c+

)
(5.39)

For negative charge field, V −µ (Negative Massive Photon), one gets

V −µ -spin-1:

∂ν

(
F νµ− + z

[νµ]
−

)
+Mµ

−T + cµ−T + lµ−T = jµV − T (5.40)

V −µ -spin-0:

∂µ
(
S αα− + z αα−

)
+Mµ

−L + cµ−L + lµ−L = jµV − L (5.41)
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Sector T:

F νµ− = c̄1V
νµ+, (V −-antisymmetric granular) (5.42)

z
[νµ]
− = c̄2

(
[+1]
z [νµ]+

[+2]
z [νµ]

)
(V −-antisymmetric collective) (5.43)

Sector L:

S αα− = c̄3S
α+
α , (V −-symmetric granular) (5.44)

z αα− = c̄4

(
(+1)
z α
α+

(+2)
z α
α

)
+ c̄5

(
(+1)
ω α

α+
(+2)
ω α

α

)
(V −-symmetric collective) (5.45)

Sector Mass:

Mµ
− = µ2

V V
µ− (5.46)

Sector-London:

lµ− = (Σµ
α)βνg

αβ
(
h−∗11

( (11)
z ρ
ρ+

(22)
z ρ
ρ + 2

(11)
ω ρ
ρ + 2

(22)
ω ρ
ρ

))
V +ν (5.47)

Sector-conglomerate:

cµ− = (Σµ
ν)αβ

(
hA∗2

[13+]
z [βα] + hA∗3

[23+]
z [βα] + hA∗4

(23+)
z [βα] + hA∗5

[24+]
z [βα] +

+hA∗9

(24+)
z [αβ] + hA∗10

(23+)
ω [αβ] + hA∗11

(24+)
ω [αβ]

)
Aν +

+(Σµ
ν)αβ

(
hA∗2

[13+]
z (βα) + hA∗7

[23+]
z (βα) + hA∗8

(13+)
z (βα) + hA4

(23+)
z (βα) +

+hA∗9

(24+)
z (αβ) + hA∗10

(23+)
ω (αβ) + hA∗11

(24+)
ω (αβ) +

+gβα
(
− hA∗2

[13+]
z ρ

ρ − hA∗2

[23+]
z ρ

ρ + hA∗8

(23+)
z ρ

ρ + hA∗13

(13+)
ω ρ

ρ + hA∗13

(23+)
ω ρ

ρ

))
Aν +

+(Σµ
ν)αβ

(
hU∗2

[13+]
z [αβ] + hU∗3

[14+]
z [αβ] + hU∗4

[23+]
z [βα] + hU∗6

(13+)
z [αβ] + hU∗7

(14+)
z [αβ] +

+hU∗8

(23+)
z [αβ] + hU∗9

(13+)
ω [αβ] + hU∗10

(14+)
ω [αβ]

)
Uν

+ +(Σµ
α)βν

(
hU∗2

[13+]
z (αβ) + hU∗3

[14+]
z (αβ) + hU∗4

[23+]
z (αβ) + hU∗6

(13+)
z (αβ) + hU∗7

(14+)
z (αβ) +

+hU∗8

(23+)
z (αβ) + hU∗9

(13+)
ω (αβ) + hU∗10

(14+)
ω (αβ) + gαβ

(
hU∗12

[13+]
z ρ

ρ − hU∗4

[23+]
z ρ

ρ +

+hU∗8

(13+)
z ρ

ρ + hU∗8

(23+)
z ρ

ρ + hU∗12

(13+)
ω ρ

ρ + hU∗12

(23+)
ω ρ

ρ

))
Uν +

+(Σµ
ν)αβ

(
h−∗3

[12]
z [βα]

)
V + ν +

+(Σµ
α)βν

(
h−∗6

(11)
z (βα) + h−∗6

(22)
z (βα) + h−∗7

(12)
z (βα) + 2h−∗6

+−4
z (βα) + h−∗7

[+−]
z (βα) +

+h−∗8

(+−)
ω (βα) + gβα

(
2

(12)
z ρ
ρ + 4

(12)
ω ρ
ρ + h−∗12

[+−]
z ρ
ρ + h−∗13

(+−)
z ρ

ρ + h−∗14

+−4
ω ρ

ρ

))
V +ν

(5.48)
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Sector current:

jµV − = (Σµ
ν)αβ

(
hA∗1 V βα+

)
Aν + (Σµ

α)βν
(
hA∗6 Sβα+ + gβα

(
hA∗12 S

ρ−
ρ

))
+

+(Σµ
ν)αβ

(
hU∗1 V βα+

)
Uν + (Σµ

α)βν
(
hU∗5 Sβα+ + gβα

(
hU∗11 S

ρ+
ρ

))
+

+(Σµ
ν)αβ

(
h−∗1 F βα + h−∗2 Uβα

)
V ν+ +

+(Σµ
α)βν

(
h−∗4 Sβα 1 + h−∗5 Sβα 2 + gβα

(
h−∗9 S ρ1ρ + h−∗10 S

ρ2
ρ

))
V βα− +

(5.49)

The corresponding continuity equation is

�
(
S αα− + z αα−

)
= ∂.

(
j− + l− +M− + c−

)
(5.50)

The corresponding electromagnetic expressions are :

V −µ -spin-1:

�
(
F−νµ + z−[νµ]

)
= ∂µd

−
ν − ∂νd−µ + ∂µM

−
ν − ∂νM−µ + ∂αf−αµν

where

d−µ = l−Tµ + c−µ + jTµV − e f−αµν = c̄∗2

(
f [+1]
αµν + f [+2]

αµν

)
(5.51)

V −µ -spin-0:

�
(
S αα− + z αα−

)
= ∂.

(
j− − l− − c−

)
(5.52)

6 Noether’s Theorem

The model proposes the symmetry U(1)× SO(2)global invariance under a common gauge parameter. It contains the
global gauge invariance of first and second species. It yields the following three Noether identities [28]

∂µJ
µ
N = 0 (electric charge conservation), (6.1)

∂µK
µν + JνN = 0 (symmetry equation), (6.2)

Kµν∂µ∂να = 0 (symmetry constraint). (6.3)

The first one means the total electric charge conservation is a consequence from the first specie gauge invariance. Any
Lagrangian which respects electric charge conservation will automatically be invariant be invariant under the first kind
transformation. Thus considering that the photon and massive photon carry no charge, they will be invariant under
the transformations Aµ → Aµ and Uµ → Uµ, while the charged photons will transform as V ±µ → e±iqα V ±µ . It gives,
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JµN ≡ iq
(
V +
ν

∂L

∂(∂µV
+
ν )
− V −ν

∂L

∂(∂µV
−
ν )

)
(6.4)

JµN ≡ iq
(
V +
ν

{
c1V

νµ− + c3S
νµ− + c2

(
[−1]
z [νµ]+

[−2]
z [νµ]

)
+ c4

(
(−1)
z (νµ)+

(−2)
z (νµ)

)
+

+gνµ

(
c5S

α1
α + c6S

α2
α + c7S

α−
α + c8

(
(−1)
z α
α+

(−2)
z α
α

)
+ c9

(
(−1)
ω α

α+
(−2)
ω α

α

))
− µ2

+V
µ−
}

+

−V −ν

{
d1V

νµ+ + d3S
νµ+ + d2

(
[+1]
z [νµ]+

[+2]
z [νµ]

)
+ d4

(
(+1)
z (νµ)+

(+2)
z (νµ)

)
+

+gνµ

(
d5S

α1
α + d6S

α2
α + d7S

α+
α + d8

(
(+1)
z α
α+

(+2)
z α
α

)
+ d9

(
(+1)
ω α

α+
(+2)
ω α

α

))
+ µ2

+V
µ+

}
(6.5)

7 Conclusion

Electromagnetism is the theory of electric charge and spin. Nevertheless spin is not a well understood physical attribute.
Its heuristic presence is given by the Pauli term ~µ · ~B where ~µ = e~~S

2m . Consequently, physics has to investigate on ~S

origin. Although classic and quantum mechanics provide own arguments it is necessary to be considered under field
theory. Given a field relate its spin physics. Explicit the ~S vector at equations of motion.

The field theory performance is to systematize the quantum numbers inserted in a field. Mass is obtained as the pole
of a two point Green’s function, charges from conservation laws, discrete symmetries directly from fields properties.
However the field-spin physics is not clear. Although the Lorentz group associate quantum numbers to spins the
equations of motion do not show their presence. Maxwell and QED propagates spin-1 but does not show its interactions.

Thus, despite all heuristic and technological developments, spin is still a not well understood physical entity. The
difficulty is that QED does not contain a term FµνA

ν as a source. Consequently, it is unable to provide a term like
~µA · ~B from an initial Lagrangian. Something is missing on Maxwell electromagnetism. It provides the photon degrees
of freedom but does not explicit on its spin contents. Eq.(2.1) is introduced by hand.

The argument here is that spin is an intrinsic entity compatible with relativity and group theory. Based on that, one
should derive spin as a vector with angular momentum properties. Experimentally, we know whether a particle has
spin ~S it will interact with magnetic field as ~B · ~S. Theoretically, the challenge is to find out a Lagrangian able to
derive ~µ · ~B from equations of motion.

Our effort here is to introduce spin at ab initio. Be created before other physical entities as fields strenghts. For this,
one introduces Lorentz Group Lie Algebra valued fields. At this way one associates fields and group theory through
eq.(2.5). And so, eq.(3.1) becames a new origin to express an electromagnetism with electric charge and spin together.

Spintronics has been quite developed for spin- 1
2 . The novelty is that the vector bosons quadruplet opens a new working

hypothesis for vector spintronics. Proposes an electromagnetism based on vectors bosons spin currents. Understand
that physics laws are challenged regarding on the understanding of spin currents [29].
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Eq. (2.5) understands that the spin physical picture should be originated from fields associated to Lorentz group.
Taking this definition to the nonlinear Four Bosons Electromagnetism, it yields the eq.(3.56) spin-valued Lagrangian.
Then, in order to identify the spin interaction we are going to reduce the Lagrangian comprehension. Rewriting eq.(3.7)
in spin terms, one gets the minimal coupling between fields as

Lspin ≈ gIJFαβAµI
(
Σαβ

)
µν
AνJ (7.1)

where eq.(7.1) introduces a constant gIJ which is not necessary the electric charge, Fαβ means the EM field, the spin
density AµI

(
Σαβ

)
µν
AνJ , and ΣαβµνA

ν
I the spin valued field.

Thus in order to identify the spin interaction we are going to focus the generic eq.(4.1) into

∂νF
νµ
I = gFαβ

(
Σαβ

)ν
µ
AµI + other terms (7.2)

Eq.(7.2) shows the spin matrix acting on the field AµI . It introduces the coupling between an external photonic EM
field Fαβ with the spin of a generic field AµI as

(
Σαβ

)ν
µ
AµI . Expanding

Fαβ
(
Σαβ

)µ
ν
AνI = F0i

(
Σ0i
)µ
ν
Aν + Fij

(
Σij
)µ
ν
AνI (7.3)

and considering no presence of electric field, it gives

Fαβ
(
Σαβ

)µ
ν
AνI = − (εijkBk)

(
Σij
)µ
ν
AνI (7.4)

Defining as the spin vector field

Sk ≡ εijkΣjk (7.5)

eq.(7.5) rewrites the equation of motion as

gFαβ
(
Σαβ

)µ
ν
AνI = −g (BkSk)

µ
ν A

ν
I = −g

(
~B · ~S

)µ
ν
AνI (7.6)

Thus the quadri-magnetic moment of a given field AµI is expressed as

~µµI = ~SµνA
ν
I (7.7)

A covariant magnetic moment is obtained. Eq.(7.7) determines the spin as a vector entity as expected from the Pauli
relationship ~µ · ~B. It provides two extensions. It contains an index µ which is related to the space-time equations of
motion. It couples with scalar and vector fields.
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It yields,

~µµI = ~Sµ0A
0
I + ~Sµi A

i
I (7.8)

Notice that the spin introduces the meaning of potential fields as considered by the Ahranov-Bohm effect [30].Including
the electric field at eq.(7.2) one gets the Ahanov-Casher term ~µ× ~E. Another interpretation for eq.(7.6) is to consider
the magnetic moment as a tensor Fαβ

(
Σαβ

)
µν
AνI = ~B · ~µµν .

For the vector field case, one gets for eq.(7.7)

~µiz,s=1 = g
e~

2mc
~S (7.9)

where (Si)jk = −iεijk are the matrix elements corresponding to SU(2) adjoint representations (s = 1, 2s+ 1 = 3). It
gives,

S1 =


0 0 0

0 0 −i
0 −i 0

 , S2 =


0 0 i

0 0 0

i 0 0

 , S3 =


0 −i 0

i 0 0

0 0 0

 (7.10)

As a conclusion, we notice that three aspects are derived by taking fields Lorentz valued as ab initio. Eq.(2.5) prescribes
the spin as a physical entity preceding the EM fields, eq.(7.5) discovers the spin vectorial nature and the Pauli term is
rewritten by eq.(7.6). This conciseness introduces Lagrangian (3.56) as candidate for describing spintronics-1 [31].

Appendix A. Collective Fields

Alongside the usual granular fields, new collective fields appear, defined by:

zµν = γIJG
I
µG

J
ν

= γ11G
1
µG

1
ν + γ12G

1
µG

2
ν + γ13G

1
µG

3
ν + γ14G

1
µG

4
ν +

+γ21G
2
µG

1
ν + γ22G

2
µG

2
ν + γ23G

2
µG

3
ν + γ24G

2
µG

4
ν +

+γ31G
3
µG

1
ν + γ32G

3
µG

2
ν + γ33G

3
µG

3
ν + γ34G

3
µG

4
ν +

+γ41G
4
µG

1
ν + γ42G

4
µG

2
ν + γ43G

4
µG

3
ν + γ44G

4
µG

4
ν (A.1)

The collective antisymmetric fields are

z[µν] =


0 z[1,2] z[1,+] z[1,−]

−z[1,2] 0 z[2,+] z[2,−]

−z[+,1] −z[+,2] 0 z[+,−]

−z[−,1] −z[−,2] −z[−,+] 0

 (A.2)
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there are also 10 symmetric collective fields,

z(µν) =


z(1,1) z(1,2) z(1,+) z(1,−)

z(1,2) z(2,2) z(2,+) z(2,−)

z(1,+) z(2,+) z(+,+) z(+,−)

z(1,−) z(2,−) z(+,−) z(−,−)

 (A.3)

Considering the fields set {Aµ, Uµ, V ±µ } one gets the following group of collective fields,

(11)
z µν ≡ γ(11)A

µAν ,
(22)
z µν ≡ γ(22)U

µUν ,
(12)
z µν ≡ γ(12)A

µUν ,

(21)
z µν ≡ γ(21)U

µAν
(11)
z µ
µ = γ(11)AµA

µ,
(22)
z µ
µ = γ(22)UµU

µ,

(12)
z µ
µ = γ(12)AµU

µ,
[12]
z µν ≡ γ[12]A

µUν ,
[21]
z µν ≡ γ[21]U

µAν ,

(13+)
z µν ≡ γ(13)A

µV ν+,
(13−)
z µν ≡ {

(13+)
z µν}∗ = γ(13)A

µV ν−,

(14+)
z µν ≡ γ(14)A

µV ν+,
(14−)
z µν ≡ {

(14+)
z µν}∗ = γ(14)A

µV ν−,

[13+]
z µν ≡ γ[13]A

µV ν+,
[13−]
z µν ≡ {

[13+]
z µν}∗ = γ[13]A

µV ν−,

[14+]
z µν ≡ γ[14]A

µV ν+,
[14−]
z µν ≡ {

[14+]
z µν}∗ = γ[14]A

µV ν−,

(23+)
z µν ≡ γ(23)U

µV ν+,
(23−)
z µν ≡ {

(23+)
z µν}∗ = γ(23)U

µV ν−,

(24+)
z µν ≡ γ(24)U

µV ν+,
(24−)
z µν ≡ {

(24+)
z µν}∗ = γ(24)U

µV ν−,

[23+]
z µν ≡ γ[23]U

µV ν+,
[23−]
z µν ≡ {

[23+]
z µν}∗ = γ[23]U

µV ν−,

[24+]
z µν ≡ γ[24]U

µV ν+,
[24−]
z µν ≡ {

[24+]
z µν}∗ = γ[24]U

µV ν−,

+−3
z µν ≡ γ(33)V

µ+V ν−,
−+3
z µν ≡ {+−3

z µν}∗ = γ(33)V
µ−V ν+,

+−4
z µν ≡ γ(44)V

µ+V ν−,
−+4
z µν ≡ {+−4

z µν}∗ = γ(44)V
µ−V ν+,

(+−)
z µν ≡ −iγ(34)V

µ+V ν−,
(−+)
z µν ≡ {

(+−)
z µν}∗ = iγ(34)V

µ−V ν+,

[+−]
z µν ≡ −iγ[34]V

µ+V ν−,
[−+]
z µν ≡ {

[+−]
z µν}∗ = iγ[34]V

µ−V ν+,

(+1)
z µν ≡

(
γ(13) + iγ(14)

)
AµV ν+,

(−1)
z µν ≡ {

(+1)
z µν}∗,

(+2)
z µν ≡

(
γ(23) + iγ(24)

)
UµV ν+,

(−2)
z µν ≡ {

(+2)
z µν}∗,

[+1]
z µν ≡

(
γ[13] + iγ[14]

)
AµV ν+,

[−1]
z µν ≡ {

[+1]
z µν}∗,

[+2]
z µν ≡

(
γ[23] + iγ[24]

)
UµV ν+,

[−2]
z µν ≡ {

[+2]
z µν}∗. (A.4)

Similarly, one adds the ω collective fields associated to τij

(11)
ω α

α ≡ τ(11)A
αAα,

(22)
ω α

α ≡ τ(22)U
αUα,

(12)
ω α

α ≡ τ(12)A
αUα,

+−3
ω α

α ≡ τ(33)V
α+Vα−,

(+1)
ω α

α ≡
(
τ(13) + iτ(14)

)
AαV +

α , (A.5)
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Rewriting z[µν] and z(µν), one gets

z[µν] = γ[12] (AµUν −AνUµ) +
1√
2

(
γ[13] + iγ[14]

) (
AµV

+
ν −AνV +

µ

)
+

+
1√
2

(
γ[13] − iγ[14]

) (
AµV

−
ν −AνV −µ

)
+

1√
2

(
γ[23] + iγ[24]

) (
UµV

+
ν − UνV +

µ

)
+

+
1√
2

(
γ[23] + iγ[24]

) (
UµV

−
ν − UνV −µ

)
− γ[34]

(
V +
µ V

−
ν − V −µ V +

ν

)
(A.6)

or

z[µν] = 2
[12]
z [µν] +

√
2

[+1]
z [µν] +

√
2

[−1]
z [µν] + 2

[+2]
z [µν] +

√
2

[−2]
z [µν]+

[+−]
z [µν]

(A.7)

And,

z(µν) = γ11AµAν + γ22UµUν +
1

2
(γ33 − γ44)

(
V +
µ V

−
ν + V −µ V

+
ν

)
+

+
1

2
(γ33 + γ44)

(
V +
µ V

−
ν + V −µ V

+
ν

)
+ γ(12) (AµUν + UµAν) +

+
1√
2

(
γ(13) + iγ(14)

) (
AµV

+
ν +AνV

+
µ

)
+

1√
2

(
γ(13) − iγ(14)

) (
AµV

−
ν +AνV

−
µ

)
+

+
1√
2

(
γ(23) + iγ(24)

) (
UµV

+
ν + UνV

+
µ

)
+

1√
2

(
γ(23) − iγ(24)

) (
UµV

−
ν + UνV

−
µ

)
+

+iγ(34)

(
V +
µ V

−
ν + V −µ V

+
ν

)
(A.8)

Appendix B. Equations of motion free coefficients

The equations of motion develop the following parameters written in terms of the original free Lagrangian coefficients,
eq(2.2):

B.1. Field Aµ

B.1.1. Left Side

ā1 = 4
(
a1 + b(11)

)
, ā2 = 8b1, ā3 = 8β1,

ā4 = 4
(
b(11) + c(11)

)
+ ξ(11)

ā5 = 4c(12) + ξ(22)

ā6 = 2
(

2ρ1 − β1

)
, ā7 = 4

(
β1 + 4ρ1

)
(B.1)
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B.1.2. Field Aµ Right Side : Field Aµ

fA1 = 4γ(11)β2 − 4β1γ(12) fA2 = 4γ(11) fA3 = 2fA3 ,

fA4 = 8(γ(11) + 2τ(11)), fA5 = 2f4,

fA6 = 2γ(11)(2ρ1 − β1) + 8τ(11)(β1 + 4ρ1),

fA7 = 4γ(11)ρ2 − 2β1γ(12) + 8τ(11)(β2 + 4ρ2)

(B.2)

B.1.3. Field Aµ Right Side : Field Uµ

fU1 = −4γ[12]b1, fU2 = −4γ[12]b1, fU3 = −8γ[12],

fU4 = 16(γ(12) + 2τ(12)), fU5 = −4γ(12)β2 − 4β1γ(22),

fU6 = 4(γ(12) + 2τ(12)), fU7 = 8γ(12), fU8 = 4γ(12),

fU9 = 16τ(12), fU10 = 8(γ(12) + 2τ(12)),

fU11 = 4γ(12)ρ1 − 2β1γ(12) + 8τ(12)(β1 + 4ρ1),

fU12 = 4γ(12)ρ2 − 2β1γ(22) + 8τ(12)(β2 + 4ρ2)

fU13 = 4(γ(12) + 2τ(12)) (B.3)

B.1.4. Field Aµ Right Side : Fields V +
µ and V −µ

f+
1 = −8b3

(
γ[13] + iγ[14]

)
, f+

2 = −4γ[13], f+
3 = −8γ[13] − 2i4γ[14]

f+
4 = 8β3(γ(13) + iγ(14)), f+

5 = −(f+
3 )∗, f+

6 = 2iγ[13]

f+
7 = 4γ[13], f+

8 = −8γ(13) + 2i
(
γ(14) + 2τ(14)

)
, f+

9 = −(f+
8 )∗

f+
10 = 2i

(
γ(13) + 2τ(13)

)
, f+

11 = 4i
(
γ(14) + 4τ(14)

)
, f+

12 = 4i
(
γ(13) + 4τ(13)

)
,

f+
13 = 8ρ3(γ(13) + Iγ(14)) + 8(β3 + 4ρ3)(τ(13) + iτ(14))− 2β1γ(33)

f+
14 = −f+

2 , f+
15 = 16(γ(13) + 2τ(13))

(B.4)
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B.2. Field Uµ

B.2.1. Left Side

b̄1 = 4
(
a2 + b(22)

)
, b̄2 = 8b2, b̄3 = 8β2,

b̄4 = 4c(12) + ξ(12)

b̄5 = 4
(
b(22) + c(22)

)
+ ξ(22)

b̄6 = 2
(

2ρ2 − β2

)
, b̄7 = 4

(
β2 + 4ρ2

)
(B.5)

B.2.2. Field Uµ Right Side : Field Aµ

gA1 = 4γ[12]b1, gA2 = 4γ[12]b2, gA3 = 8γ[12], gA4 = 16
(
γ(12) + τ(12)

)
gA5 = 4

(
β1γ(12) − β2γ(11)

)
, gA6 = 4γ(12), gA7 = 8γ(12) gA8 = 4

(
γ(12) + 2τ(12)

)
,

gA9 = 8
(
γ(12) + 2τ(12)

)
, gA10 = 16τ(12), gA11 = 4

(
ρ1γ(12) + 2τ(12)(β1 + 4ρ1)

)
− 2β2γ(11)

gA12 = 4
(
ρ2γ(12) + 2τ(12)(β2 + 4ρ2)

)
− 2β2γ(12)

B.2.3. Field Uµ Right Side : Field Uµ

gU1 = 4
(
γ(22)β1 − γ(12)β2

)
, gU2 = 4γ(22), gU3 = 8

(
γ(22) + 2τ(22)

)
gU4 = 4

(
γ(22)ρ1 + 2τ(22)(β1 + 4ρ1)

)
− 2β2γ(12)

gU5 = 4
(
γ(22)ρ1 + 2τ(22)(β2 + 4ρ2)

)
− 2β2γ(22)

(B.6)

B.2.4. Field Uµ Right Side : Fields V +
µ and V −µ

g+
1 = −8b3

(
γ[23] + iγ[24]

)
, g+

2 = 2iγ[24], g+
3 = 2iγ[23]

g+
4 = 4γ[23], g+

5 = 8β3(γ(23) + iγ(24))− 4β2γ(33), g+
6 = 2i

(
γ(24) + 2τ(24)

)
g+

7 = −2i
(
γ(23) − 2τ(23)

)
, g+

8 = 4γ(23)

g+
9 = −4i

(
γ(24) + 2τ(24)

)
, g+

10 = 4i
(
γ(23) + 4τ(23)

)
g+

11 = 8ρ3

(
γ(23) + iγ(24)

)
+ 8(β3 + 4ρ3)

(
τ(23) + iτ(24)

)
− 2β2γ(33)

g+
12 = 16

(
γ(23) + 2τ(23)

)
(B.7)
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B.3. Field V +
µ

B.3.1. Left Side

c̄1 = 4
(
a3 + b(33)

)
, c̄2 = 8b3, c̄3 = 4

(
b(33) + c(33)

)
+

1

2
ξ(33)

c̄4 = 4
(
2ρ3 − β3

)
, c̄5 = 8

(
β3 + 4ρ3

)
(B.8)

B.3.2. Field V +
µ Right Side : Field Aµ

hA1 = 4b3
(
γ[13] + iγ[14]

)
, hA2 = 4γ[13], hA3 = 8γ[13] + 2iγ[14],

hA4 = 8γ(13) − 2i(γ(14) − 2τ(14)), hA5 = 2iγ[13]

hA6 = 8β3iγ(14), hA7 = 8γ[13] − 2iγ[14]

hA8 = 4γ(13), hA9 = 2i(γ(13) − 2τ(13))

hA10 = −4i(γ(14) + 2τ(14)), hA11 = 4i
(
γ(13) + 4τ(13)

)
hA12 = 4

(
ρ3(γ(13) + iγ(14)) + (β3 + 4ρ3)

(
τ(13) + iτ(14)

))
− 2β3(γ(13) − iγ(14))

hA13 = 16(γ(13) + 2τ(13)) (B.9)

B.3.3. Field V +
µ Right Side : Field Uµ

hU1 = 4b3
(
γ[13] + iγ[14]

)
, hU2 = 2iγ[24], hU3 = −2iγ[23], hU4 = 4γ[23]

hU5 = 8β3iγ(24), hU6 = 2i
(
γ(24) − 2τ(24)

)
, hU7 = 2i(γ(23) + 2τ(23)),

hU8 = 4γ(23), hU9 = −4i
(
γ(24) + 4τ(24)

)
, hU10 = 4i(γ(23) + 4τ(23))

hU11 = 4

(
ρ3(γ(13) + iγ(14)) + (β3 + 4ρ3)(τ(13) + iτ(14))

)
− 2β3(γ(23) − iγ(24))

hU12 = 16
(
γ(23) + 2τ(23)

)
(B.10)
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B.3.4. Field V +
µ Right Side : Field V −µ

h−1 = −4i
(
b1γ[34] + β1γ(34)

)
, h−2 = −4i

(
b2γ[34] + β2γ(34)

)
h−3 = 8iγ[34], h−4 = 4γ(33)β1 − 4β3(γ(13) − iγ(14)),

h−5 = 4γ(33)β2 − 4β3(γ(23) − iγ(24))

h−6 = 4γ(33), h−7 = −8iγ[34], h−8 = 32i(γ[34] + 2τ(34)),

h−9 = 8γ(33)ρ1 + 4(β1 + 4ρ1)τ(33) − 2β3(γ(13) − iγ(14)),

h−10 = 8γ(33)ρ1 + 4(β2 + 4ρ2)τ(33) − 2β3(γ(23) − iγ(24))

h−11 = 8τ(33), h−12 = 8iγ[34], h−13 = 8iγ(34),

h−14 = 16
(
γ(33) + 2τ(33)

)
,

(B.11)
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