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Abstract 

The hierarchical trees have been constructed for the AX3 crystal family, significant steps of this construction 

being explained in detail. It has made possible to establish the archetypes of the crystal structures that are high-

symmetry approximations for subfamilies of the crystals under consideration. 
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Introduction  

A crystal structure is considered to be specified if the space group and Wyckoff positions occupied by atoms 

are determined. Hence, the record of the form [G166, (3a+6c)+(3b+6c+18h)] implies that the structure can be 

characterized with the space group 166 (D3d
5 in the Schönflies notation or R-33m in the short International 

notation) whereas the Wyckoff positions 3a and 6c are occupied by atoms of one sort while 3b, 6c, and 18h by 

another sort. 

When a phase transition with decreasing symmetry takes place, the crystal structure changes so that the 

remaining symmetry elements determine both a new space group (usually, a subgroup of the initial one) and a 

set of occupied Wyckoff positions, which initial Wyckoff positions go into. To obtain the low-symmetry 

structures, the procedure proposed by (Megaw, 1973) and (Bärnighausen, 1980) can be used. This procedure 

takes into account not only group-subgroup symmetry relations but also the splitting schemes of the occupied 

Wyckoff positions. The dendroid constructions branching from a high-symmetry structures are known as the 

Bärnighausen trees (Koch, 1984), (Bock and Müller, 2002), (Müller, 2004). 

Depending on the nature of a system, two approaches have proved to be efficient. The first one is to obtain the 

derivative crystal structures by the substitution of atoms in the crystal lattice by atoms of different types (Baur, 

2007). The second one is to study the chains of continuous structure changes in a constant-composition crystal 

(when analyzing the structural changes during phase transformations). The latter approach allows one to predict 

the low symmetry and intermediate structure types which may not have been yet observed. It is also useful 

when analyzing periodic superlattices (Evarestov et al., 1993), (Kitaev et al., 1997). 

The up-to-down-symmetry construction of the Bärnighausen trees, which is their characteristic feature, does 

not allow one to find out a higher symmetry structure for a given crystal structure unless a huge number of 

variants is thoroughly considered. At the same time, such a high-symmetry approximation is helpful in 

simplifying the descriptions of various crystal properties (mechanical, electrical, optical, etc.) when the low-

symmetry addition either slightly changes the material property or does not contribute at all. Noteworthy, just 

the distinction between a high-symmetry description and experimental data indicates the contribution of such 

a low-symmetry addition.  

At the Bilbao University, the method of constructing the reverse "down-to-up-symmetry" trees had been 

developed (Kitaev et al., 2015) and evolved into several on-line tools which are freely available on the Bilbao 

Crystallographic Server (BCS. n.d.), (Aroyo, Kirov, et al., 2006), (Aroyo, Perez-Mato, et al., 2006). 

This method allows one to establish a higher-symmetry structure type (aristotype) for a given lower-symmetry 

structure type (hettotype) and to classify structures by the hierarchical families. Hence, below we call the trees 

constructed in this way "hierarchical trees”. When a few aristotypes are possible and locations of atoms in the 

lattice (i. e. atomic packing) are known from experiments ("structural conditions"), the hierarchical-tree method 

allows one to choose the most probable aristotype structure among several ones. 
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Although the construction of the hierarchical trees somehow resembles that of the Bärnighausen ones, there 

are some nuances. In this paper, using the crystal family of the AX3 compounds as a representative example, 

we dwell upon principal distinctions between construction of the Bärnighausen trees and that of the hierarchical 

ones. To do that, a number of real crystal structures are considered, such as [G140 4a+(4b+8h)], [G204 8c+24g], 

[G167 6b+(18e)], [G59 2a+(2b+4f)], and so on.  

Constructing the hierarchical tree  

Minimal supergroups  

Let us first consider the hierarchical tree with the root crystal structure [G140, 4a+(4b+8h)] as a rather simple case. 

Ir3Si, Pt3Si, (and so on) crystals are among the ones belonging to this hettotype (Springer Materials n.d.), see Fig. 1. 

 

Figure 1. The hierarchical-tree construction for the [G140, 4a+(4b+8h)] structure type 

As for the space group G140, there are three minimal (that is the closest in symmetry) supergroups, namely 

G123, G226, and G140 itself. The procedure of determining the minimal supergroups of the space groups has 

been explained in detail (Koch, 1984), (Igartua et al., 1996) and is realized at the Bilbao Crystallographic Server 

(Ivantchev et al., 2002). The search for possible aristotypes can be performed as a stepwise procedure over a 

chain of minimal supergroups of the root-structure space group (Capillas et al., (2011), (Kitaev et al., (2015). 

The splitting of the Wyckoff positions 

Probably, the most principal nuance while building the hierarchical trees is as follows. When a transition from 

a group to subgroup (designated as "group⇘subgroup" later in the text) is considered, the new Wyckoff 

positions, which the initial Wyckoff positions go into, can always be pointed out. The correspondence between 

the positions can be always found out. On the contrary, for the group-to-supergroup transition (designated as 

"group⇗supergroup" later in the text), it is frequently impossible to indicate the new Wyckoff positions, that 

implies the absence of a higher-symmetry aristotype (supergroup) structure for the given hettotype structure. 

This restriction can be illustrated by contradistinction of two examples presented in Fig. 1, namely G123⇗G221 

(see Table 1) and G123⇗G139 (see Table 2). 

For the [G123, 1a+(1c+2e)] structure, the increasing-symmetry transition G123⇗G221 is possible: 

Table 1. Correspondence between the Wyckoff positions (space groups G221 and G123) 

Supergroup G221 1a 1b 3c 3d 6e 6f 

Group G123 1a 1d 1c+2e 1b+2f 2g+4l 2h+4o 

One can see that, when the symmetry decreases (G221⇘G123), atoms occupying the Wyckoff position 3c of the 

aristotype structure selected as an example (first line in the Table 1) take in not one but two Wyckoff positions, 

namely 1c and 2e in the hettotype structure so that "Wyckoff position splitting" occurs. Vice versa, when the 
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symmetry increases (G123⇗G221), atoms of one sort which occupied different Wyckoff positions 1c and 2e (last 

line in the Table 1) take the unified 3c position in the aristotype structure. In other words, the movement upward 

the hierarchical tree to a higher symmetry structure is possible.  

On the contrary, for the same [G123, 1a+(1c+2e)] structure, the increasing-symmetry transition G123⇗G139 is 

impossible: 

Table 2. Correspondence between the Wyckoff positions (space groups G139 and G123) 

Supergroup G139 2a 2b 4c 4d 4e 

Group G123 1a+1d 1b+1c 2f+2e 4i 2g+2h 

One can see that, when the symmetry decreases (G139⇘G123), atoms occupying the Wyckoff position 2a of the 

aristotype structure selected as an example (first line in the Table 2) take in not one but two Wyckoff positions, 

namely 1a and 1d in the hettotype structure. However, in the case of the considered [G123, 1a+(1c+2e)] 

structure, the 1a Wyckoff position is fulfilled while 1d one is not. It implies that, when the symmetry conversely 

increased (G123⇗G139), atoms of the 1a position (G123) would occupy merely half of the 2a position (G139) 

locations, and the crystal would not form. In other words, for the given hettotype structure [G123, 1a+(1c+2e)], 

one can not indicate an aristotype structure with the space group G139 and fully occupied Wyckoff positions.  

The crossed arrows in Fig. 1 (and in the subsequent figures as well) just indicate that these transitions are just 

impossible. This discourse is naturally valid for the other three structures with the space group G123 presented 

in Fig. 1.  

Analogously, it is impossible to point out the Wyckoff positions for transitions G140⇗G140 and G123⇗G123. 

Although the symmetries of group and supergroup coincide in these cases, it is not determinative. Even if the 

symmetries of group and supergroup are the same, sometimes, the "group⇗supergroup" transition is still 

possible. For example, the below discussed structure [G59, 2a+(2b+4f)] is the aristotype one for the structure 

[G59, (2a+4e)+(2b+4e+4f+8g)] (one of crystal phases of the NbPd3 compound). At the same time, there is no 

aristotype structure with the same space group G59 for the structure [G59, 2a+(2b+4f)] itself (on the next 

"hettotype-aristotype" step).  

Physically identical and non-characteristic structures 

Another nuance of the hierarchical-tree construction is related to the situation when two or more 

mathematically different descriptions of a given crystal structure (i.e. in those descriptions, space groups and/or 

Wyckoff positions are different) nevertheless specify the same atomic coordinates in the real space. When it 

happens with atoms of each sort, the corresponding crystal structures (two or more) are physically identical. 

For example, the Wyckoff-position set 1a+(1c+2e) presented in Fig. 1 (G123) is physically equivalent to the sets 

1c+(1a+2e), 1b+(1d+2f), and 1d+(1b+2f). Below, we give only one of the physically equivalent sets. Since the 

choice of one of such equivalent sets is arbitrary, we will use alphabetically first set unless another description 

was established historically. 

Structures may be physically identical not only in the case of the same space group. It is also possible that all 

atoms of a crystal still occupy the same positions in the real space when the formal symmetry increases/decreases. 

As an example, two structures [G221, 1a] and [G207, 1a] imply the same spatial distribution of atoms, although 

mirror plane being formally absent in the latter case. The structure with a lower symmetry (here, [G207, 1a]) is 

considered as non-characteristic. It is obvious that, in a real crystal, the group⇗supergroup transition suggests in 

fact straightforward transition to the corresponding characteristic highest-symmetry structure. In other words, the 

real phase transitions take place between characteristic structures.  

In the above considered case illustrated by Fig. 1, the structure [G226, 8a+(24c)] describes the spatial distribution 

of atoms (their coordinates in a crystal) just as the characteristic structure [G221, 1a+(3c)] does. That is to say, 

although mathematically different, the two descriptions are physically identical, what is indicated with the double 

line in Fig. 1 and subsequent figures. By the bye, this means that the transition from the root structure [G140, 

4a+(4b+8h)] occurs not to the [G226, 8a+(24c)] structure but directly to [G221, 1a+(3c)].  
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Archetype structures 

In the course of stepwise movement upward the hierarchical tree, there always appears a structure without higher-

symmetry aristotype. We call such structures archetype structures (Kitaev et al., 2015)). For the structures shown in 

Fig. 1, there is the only archetype structure (superior aristotype one), namely [G221, 1a+(3c)]. This is just the desired 

highest-symmetry approximation of the root structure [G140, 4a+(4b+8h)]. Summing up, disregarding impossible 

transitions and possible but physically identical structures, we obtain the following diagram, see Fig. 2. 

 

Figure 2. The concluding hierarchical tree for the [G140, 4a+(4b+8h)] structure type 

The aristotype structure [G123, 1a+(1c+2e)] may either be intermediate one in the phase transition from the 

root structure to the archetype one or not be since there is a direct-path transition G140⇗G221. It depends on 

the "structural conditions" mentioned above and is lying outside the scope of this paper. Experimentally, not 

only crystals with both the root structure and archetype one have been observed (5 and more than 200, 

correspondingly) but also 14 crystals with such an "intermediate" structure are known. 

As a similar example, we can discuss the hierarchical tree with the root structure [G204, 8c+(24g)] characteristic 

for 13 AX3 crystals such as CoAs3, NiP3, and so on. The group G204 has minimal supergroups G200 and G229, 

aristotype structures being [G200, 1b+(3c)] and [G229, 8c+(24h)], correspondingly, see left part of Fig. 3.  

 

Figure. 3. The hierarchical tree for the root [G204, 8c+(24g)] structure type, construction and result 

At the next step of stepwise movement upward the hierarchical tree, it appears to be that the G229 group has 

a sole supergroup, namely G221 whereas the G200 one has four supergroups: G202, G204, G223, and the very 

same G221, although the correspondence between the Wyckoff positions can be established only in the latter 

case (the other three arrows are crossed in the figure).  

Furthermore, the aristotype structure [G200, 1b+(3c)] is non-characteristic since it sets the same spatial 

distribution of atoms (their coordinates in a crystal) as the [G221, 1a+(3d)] archetype structure. In other words, 

the phase transition from the root [G204, 8c+(24g)] structure occurs not to [G200, 1b+(3c)] one but directly 

(without intermediate phases) to the archetype structure [G221, 1a+(3d)]. Noteworthy, the experiments have 

detected only the root and archetype structure, which is marked with the thick frames in right part of Fig. 3. 

 

 



Journal of Advances in Physics Vol 19 (2021) ISSN: 2347-3487                         https://rajpub.com/index.php/jap 

27 

The hierarchical trees with multiple archetypes 

The next root structure is a representative although laborious example, [G167, 6b+(18e)]. 12 crystals with such 

a structure are known, VF3, ScF3, and so on. There are eight minimal supergroups of the group G167, although 

only three of them meet the Wyckoff-position-compatibility condition, the corresponding structures are [G223, 

2a+(6c)], [G226, 8b+(24c)], and [G166, 3a+(9d)]. The first of the three structures is archetype one, the second 

one is non-characteristic and its characteristic structure, namely the [G221, 1a+(3d)] one is also archetype 

structure for the third of the three intermediate structures. Graphically, it is illustrated with Fig. 4. 

 

Figure. 4. The hierarchical tree for the root [G167, 6b+(18e)] structure type, construction and result 

The existence of the second archetype structure implies that there are two high-symmetry approximations of 

the initial crystal structure. Notably, experiments have detected about 70 crystals with the archetype [G223, 

2a+(6с)] structure while only four with the [G221, 1a+(3d)]) one. Certainly, "structural conditions" play very 

important role here. For a crystal with the hettotype structure [G167, 6b+(18e)], the tools of Bilbao 

Crystallographic Server (BCS. n.d.) are able to exclude those aristotype structures which request enormous 

change in the parameters of the lattice or Wyckoff Positions in the course of the phase transition, that is to say, 

the correct high-symmetry approximation can be chosen of the two in accordance with the lattice parameters 

(if known).  

A similar subfamily of the AX3 crystals has the root structure [G148, 6c+(18f)], about 40 crystals being known 

including FeCl3, BiJ3, TiCl3, etc.. In this case, there are a lot of non-characteristic structures, e.g. [G200, 1a+(3c)], 

[G202, 8c+(24e)], [G225, 8c+(24e)], [G226, 8a+(24c)]. That is why we do not draw the complete diagram, joining 

those structures under the aegis of their characteristic structure [G221, 1a+(3c)]. Discarding some structures, 

which transitions are impossible in, and disregarding possible but physically identical structures, we obtain the 

following diagram in Fig. 5. Here are three archetype structures, although only just the [G221, 1a+(3c)] one 

having been experimentally observed.  

 

Figure 5. The hierarchical tree for the root [G148, 6c+(18f)] structure type 
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The "dead-end" structures 

There appears a rather usual situation when side branches of the hierarchical tree, which formally include 

archetype structures, do not bear fruits. Here it is apparent that the lower is the symmetry of the root hettotype 

structure, the higher is the number of aristotype and dead-end structures.  

As an example, we can consider the root structure [G59, 2a+(2b+4f)] of the orthorhombic Ag3Sb, Au3Hf, Au3In, 

Au3Zr, Cu3Ge, Cu3Sb, Cu3Sn, Cu3Ti, MoNi3, NbNi3, NbPt3, Ni3Sb, Ni3Ta, Pt3Ta. This structure is physically identical 

to the structures [G59, 2a+(2b+4e)], [G59, 2b+(2a+4f)], and [G59, 2b+(2a+4e)]. However, only the 

alphabetically-second variant [G59, 2a+(2b+4f)] can be found in the literature, what is the result of the adopted 

choice of the X and Y axes of real crystals. 

There are seven minimal supergroups of the group G59, namely G51, G59 itself, G63, G65, G71, G129, and G137, 

although only two of them, G65 and G71, meet the Wyckoff-position-compatibility condition. For these two 

supergroups, there are huge amount of variants of atomic distributions over the Wyckoff positions, namely 32 

in the case of the G65 group (they can be combined in four physically non-equivalent sets) and 72 in the case 

of the G71 group (two different sets). At the next steps, the number of supergroups drastically increases, 

although the majority of the "group⇗supergroup" transitions appear to be incompatible with the Wyckoff-

position-compatibility condition. Finally, The hierarchical tree for the root [G59, 2a+(2b+4f)] structure type looks 

as is shown in Fig. 6.  

 

Figure. 6. The hierarchical tree for the root [G59, 2a+(2b+4f)] structure type 

It is worth to note that real crystals have been found only for the structures marked with bold frames in this 

figure, namely 14 above mentioned orthorhombic crystals, 16 tetragonal crystals with the structure [G139, 

2a+(2b+4d)], and about 40 cubic crystals with the structure [G225, 2a+(2b+4с)]. The discussion of this 

phenomenon lies outside the scope of this paper. 

The situation is even more complicated when the atoms in a crystal occupy the general (lowest-symmetry) 

Wyckoff positions only. For instance, 27 crystals have the Ni3P structure [G82, 8g+(8g+8g+8g)]. Here, the 

hierarchical-trees method is applicable merely formally and extremely laborious. For example, there is the 

necessity to consider about fifty only allowed and only non-equivalent structures and only at first step (seven 

of 8 supergroups should be considered), and the number of steps is four. The number of chains e.g. G82 - G - 

G - G - G221 is equal to 73, and there are 1400 variants of transformations with index 48 only. It is obvious that 

unambiguous determination of the archetype of a real crystal is questionable. 

The last AX3 crystal subfamily which we discuss here includes 30 compounds such as Be3Nb, BaPb3, and so on, 

the root structure [G166, (3a+6c)+(3b+6c+18h)]. Although there are only two achetypes for this hettotype 

structure, they have similarly unusual form, namely [G225, (4a+8c)+(4b+8c+24e)] and [G225, (4a+8c)+(4b+32f)] 

with a lot of Wyckoff positions occupied. No crystal of such a kind (not speaking of exact coincidence) is known. 

Taking into account that, historically, there were a lot of examples when actually simple crystals had been 

described as complex multipositional structures but after elaboration the number of occupied Wyckoff 
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positions was drastically reduced, one can not but take into account the possibility of inaccuracy of the structure 

determination. 

Conclusion 

We have analyzed crystals of the AX3 family and determined high-symmetry approximations for its subfamilies. 

Despite large number of the AX3 crystals (about five hundred), the number of the cubic high-symmetry types 

(archetypes) appears to be restricted to four only, namely [G225, 4a+(4b+8c)], [G223, 2a+(6c)], [G221, 1a+(3d)], 

and [G221, 1a+(3c)]. The discussed structure types are grouped in fig. 7, the number of crystals of each type 

being also indicated below Wyckoff positions. 

 

Figure 7.  The retrieved high-symmetry structure types of the AX3 family 
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