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*Abstract In the manuscript [1] we derived the general Doppler effect equations. In order to prove the correctness of

the equations, it remains to define an adequate coordinate system. We have argued that such a coordinate system

cannot be chosen arbitrarily but is determined by the direction between the receiver at the time when the signal is

received and the sender at the time when the signal is emitted. In this manuscript, several experiments have been

proposed to prove the existence of such a coordinate system. In addition, we will determine the velocities at which

the sender and receiver of the signal move and the distance between them.
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1. Introduction

Suppose that at time τ signal has been emitted from sender Z and at time t is received by the observer A, Fig. (1).

The coordinate system of the telescope noted by (T ) at the time t is defined in the following way. The origin is

determined by point A and direction AZ represents its positive z − axis. The positive x and y axes will be chosen so

that (x, y, z) forms a right-handed Cartesian coordinate system. The paper [2] gives a much more detailed description

of the coordinate system (T ). The sender Z and receiver A of the signal move uniformly at velocities u and v,

respectively, regarding to the coordinate system (T ).
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Figure 1: The sender Z and the observer A move uniformly with respect to the coordinate system (T )
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Referring to Fig. (1) we have that

a =
AZ

||AZ||
(1)

a = [ax, ay, az] = [0, 0, 1] (2)

u = [ux, uy, uz] ∧ || u ||< c (3)

v = [vx, vy, vz] ∧ || v ||< c (4)

a · u = ax ∗ ux + ay ∗ uy + az ∗ uz = uz (5)

a · v = ax ∗ vx + ay ∗ vy + az ∗ vz = vz (6)

We already found [1] that:

λ′ ≈ c+ a · u
c+ a · v

∗ λ (7)

Where λ is wavelength of the emitted light, λ′ is the wavelength we observe and c is constant speed of light in vacuum.

It is easy to prove that if instead of the direction AZ, we chose the direction ZA for the positive z− axis, formula (7)

would have the same form.

Suppose the (xyz) coordinate system is rotated around its x axis through an angle Π. The x− axis is unchanged, the

positive y − axis is rotated into y′ − axis and the positive z − axis is rotated into z′ − axis. For example, a vector v

described in coordinate system (T ) as v = [vx, vy, vz] would be written regarding the new coordinate system (x′, y′, z′)

as v = [vx,−vy,−vz].

Now it follows that

v · a = [vx, vy, vz] · [0, 0, 1] = vz ∗ 1 (8)

v · a = [vx,−vy,−vz] · [0, 0,−1] = (−vz) ∗ (−1) = vz ∗ 1 (9)

It is obvious that in the equations (8) and (9) one can substitute the velocity v by the velocity u

Making a certain error we have the following equations:

λ′ =
c+ a · u
c+ a · v

∗ λ (10)

λ′

λ
∗ a · v = −λ

′ − λ
λ
∗ c+ a · u (11)

z =
λ′ − λ
λ

(12)

λ′

λ
∗ a · v = −z ∗ c+ a · u (13)

In Equation (13) velocities u and velocities v are unknown while the vector a and the wavelengths λ and λ′ are

obtained by direct measurement.

2. The stationary coordinate system (K)

The coordinate system (T ) Fig. (1) is temporary because we only need it to perform the necessary measurements in

a short period of time. Therefore, it is necessary to define a fixed coordinate system, denoted by (K). After that,

we will transform the coordinates from the coordinate system (T ) into the coordinate system (K). The way how to
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measure the direction AZ by eliminating the error caused by stellar aberration and how to transform coordinates from

one coordinate system to another is given in [2]. We will first give a description of the coordinate system (K).

(K)

O

S

A

(H) Z

y

x

z

zh

yh

xh

v

u

wa(t)

Figure 2: The ecliptic coordinate system (H) and the stationary coordinate system (K)

Let (H) denote the eliptic coordinate system. The origin S is at barycenter of the solar system, the plane of reference

is the ecliptic plane and coordinate axes are determined in accordance with the (ICRS) standard Fig. (2). The ICRS

coordinates are approximately the same as equatorial coordinates, therefore it is necessary to make transformation

from the equatorial into ecliptic coordinates. The sender and receiver of the signal are denoted by Z and A respectively.

The sender Z and receiver A move uniformly at velocities u and v+wa(t) respectively, with respect to the coordinate

system (T ), where v denotes the velocity at which the solar system moves relative to the (T ). The velocity wa(t)

consists of two velocities. The first component is the velocity at which the Earth moves relative to the barycenter S at

the time t and second one is the velocity at which observer moves relative to Earth-centered inertial (ECI) coordinate

system (its origin is at the center of mass of Earth and coordinate axes are fixed with respect to the stars).

The coordinate axes x,y and z of the coordinate system (K) are defined in the same way as the coordinate axes xh,yh

and zh of the coordinate system (H) respectively. We assume that the coordinate system (K) is fixed (stationary)

regarding the coordinate system (T ). The origin O of the (K) is not uniquely determined.

Therefore the coordinate system (K) is defined so that the solar system and the sender Z move uniformly at velocities

v and u respectively, regarding the (K). In order to determine the origin O of the (K) it is necessary to determine

the velocity v and define some initial time.

3. Determining the absolute velocity v

Suppose that from a point denoted by A′ we observe some arbitrarily chosen star Z , whose position is marked by Z ′

Fig. (3). The unit vector determined by the direction A′Z ′ regarding the coordinate system (H) is denoted by a′, and

the wavelength of the signal sent by Z ′ and measured at point A′ is denoted by λ′a. The velocity at which the receiver

of the signal moves with respect to the barycenter S′ is denoted by w′a. Suppose we performed the same measurement

six months after that. The unit vector denoted by a′′ is determined by the direction A′′Z ′′ regarding the coordinate

system (H) , the wavelength of the signal sent by Z ′′ and measured at point A′′ is denoted by λ′′a and the velocity at

which the receiver of the signal moves with respect to the barycenter S′′ is denoted by w′′a.
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Figure 3: The solar system moves uniformly with velocity v regarding the stationary coordinate system (K)

Employing (13) and (12) one finds that:

λ′a
λa
∗ a′ · (v + w′a) = −z′a ∗ c+ a′ · u (14)

λ′′a
λa
∗ a′′ · (v + w′′a) = −z′′a ∗ c+ a′′ · u (15)

λ′a
λa
∗ a′ · v = −

(
λ′a
λa
∗ a′ ·w′a + z′a ∗ c

)
+ a′ · u (16)

λ′′a
λa
∗ a′′ · v = −

(
λ′′a
λa
∗ a′′ ·w′′a + z′′a ∗ c

)
+ a′′ · u (17)

λ′′a ∗ a′′ − λ′a ∗ a′

λa
· v = −

(
λ′′a ∗ a′′ ·w′′a − λ′a ∗ a′ ·w′a + (λ′′a − λ′a)c

λa

)
+ (a′′ − a′) · u (18)

In general, we have that:

|| (a′′ − a′) · u ||≤|| a′′ − a′ || ∗ || u ||<|| a′′ − a′ || c (19)

The star Z should be chosen so that it lies as close as possible to the eliptic plane , and that || (a′′ − a′ ||→ 0.

The following inequality must hold:∣∣∣∣∣λ′′a ∗ a′′ ·w′′a − λ′a ∗ a′ ·w′a + (λ′′a − λ′a)c

λa

∣∣∣∣∣ >>|| a′′ − a′ || c (20)

One can make the following substitutions:

k′a =
λ′a
λa

(21)

k′′a =
λ′′a
λa

(22)

By making a certain error, Equation (18) can be written as follows:

(k′′a ∗ a′′ − k′a ∗ a′) · v = −k′′a ∗ a′′ ·w′′a + k′a ∗ a′ ·w′a − (k′′a − k′a)c (23)
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We can repeat the whole procedure by observing some two other arbitrarily chosen stars, and thus obtain the following

equations:

(k′′b ∗ b′′ − k′b ∗ b′) · v = −k′′b ∗ b′′ ·w′′b + k′b ∗ b′ ·w′b − (k′′b − k′b)c (24)

(k′′c ∗ c′′ − k′c ∗ c′) · v = −k′′c ∗ c′′ ·w′′c + k′c ∗ c′ ·w′c − (k′′c − k′c)c (25)

Equations (23),(24) and (25) can be written in the following way:

(k′′aa
′′
x − k′aa′x) ∗ vx + (k′′aa

′′
y − k′aa′y) ∗ vy + (k′′aa

′′
z − k′aa′z) ∗ vz = −k′′a ∗ a′′ ·w′′a + k′a ∗ a′ ·w′a − (k′′a − k′a)c (26)

(k′′b b
′′
x − k′bb′x) ∗ vx + (k′′b b

′′
y − k′bb′y) ∗ vy + (k′′b b

′′
z − k′bb′z) ∗ vz = −k′′b ∗ b′′ ·w′′b + k′b ∗ b′ ·w′b − (k′′b − k′b)c (27)

(k′′c c
′′
x − k′cc′x) ∗ vx + (k′′c c

′′
y − k′cc′y) ∗ vy + (k′′c c

′′
z − k′cc′z) ∗ vz = −k′′c ∗ c′′ ·w′′c + k′c ∗ c′ ·w′c − (k′′c − k′c)c (28)

In this way we have got a system of three linear equations with three unknowns vx, vy and vz, which can be easily

solved.

Suppose that by selecting three different stars we repeated the whole procedure n times. We will get a sequence noted

by v of n velocities v = {v1,v2, ..,vn}. Let V denote the arithmetic mean of this sequence.

One can consider the following cases:

1◦ V = 0

The coordinate system (K) is identical to the coordinate system (H) .

2◦ V 6= 0

Depending on the value of V, we will also determine the origin O of the coordinate system K. If V is equal to the

velocity at which the solar system moves relative to the center of the galaxy, then the origin O would be determined

by the center of the galaxy.

3◦ The sequence v represents sequence of random numbers (velocities) . The velocity V cannot be determined

and the whole idea should be rejected.

So far it has been assumed that all the stars we have observed are located in the Milky Way. Now we can re-

peat the whole procedure taking into account extra-galactic objects (the galaxy groups,the galaxy clusters,...).

One possibility is that as a final result we have got a sequence of k (k ≥ 1) different velocities denoted by V.

V = {V1,V2, ..,Vk}.

We can consider following cases:

1◦ Vi = 0 i = {1, 2, ..., k}
This means that by applying this method we are not able to detect absolute velocity.

2◦ Vi 6= 0 (for some i)

The sequence V could be be written in the following form:

V = {V1,V2, ..,Vk} where ||Vi||< ||Vi+1||. This means that we were able to detect and measure absolute velocity,

which is not uniquely determined.
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In this way, all objects in the universe would be divided into k (k ≥ 1) disjoint classes, denoted by Ki. In fact, we

have proved that this statement applies only to those objects for which certain conditions are met.

Let denote the set of these classes by K.

K={ K1,K2, ...,Kk}
To each class Ki one can assign a corresponding stationary coordinate system denoted by Ki.

The sequences V and K can be extended as follows:

V = {V0,V1,V2, ..,Vk}
K={ K0, K1,K2, ...,Kk}.
Where velocity V0 (= 0) is determined by observing objects from the solar system. Actually, a coordinate system K0

assigned to the class K0 is identical to the ecliptic coordinate system H.

4. Determining the velocity of the sender

Suppose that from a point denoted by A we observe some arbitrarily chosen star Z (Z ∈ Ki) Fig. (4). It means

that coordinate system (K) ((K) ≡ (Ki)) is defined and therefore the velocity v (v = Vi) at which the solar system

moves in relation to (K) is known. It remains to determine the velocity u at which the sender moves in relation to (K).

(K)
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y

x

z

v

u

wa

a

Figure 4: The sender Z moves uniformly by velocity u with respect to the coordinate system (K)

The unit vector determined by the direction AZ regarding the coordinate system (K) is denoted by a, and the

wavelength of the signal sent by Z and measured at point A is denoted by λa. The velocity at which the receiver of

the signal moves with respect to the barycenter S is denoted by wa , Section (2).
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Employing formula (12) we have the following equations:

λa
λ
∗ a · (v + wa) = −za ∗ c+ a · u (29)

ka =
λa
λ

(30)

a · u = ka ∗ a · (v + wa) + za ∗ c (31)

Suppose we repeated the same procedure two more times. It follows that:

b · u = kb ∗ b · (v + wb) + zb ∗ c (32)

c · u = kc ∗ c · (v + wc) + zc ∗ c (33)

We finally got the a system of three linear equations with three unknowns ux, uy and uz, which can easily be solved.

axux + ayuy + azuz = ka ∗ a · (v + wa) + za ∗ c (34)

bxux + byuy + bzuz = kb ∗ b · (v + wb) + zb ∗ c (35)

cxux + cyuy + czuz = kc ∗ c · (v + wc) + zc ∗ c (36)

In this way we determined the velocity u of the star regarding the coordinate system (K).

5. Determining the distance between the sender and the receiver

Suppose we observe some arbitrarily chosen cosmic object denoted by Z (Z ∈ Ki). Therefore one can assume that the

coordinate system (K) ((K) ≡ (Ki)) is defined. The velocities v (v = Vi) and u, at which solar system and cosmic

object move regarding the (K) respectively, are known. It remains to find out the distance between the sender and

the receiver.

Suppose that at time τ1 a signal has been sent sent from the point marked by Za. The time when the signal was

registered by the receiver at point A is denoted by t1. Let the same measurement be repeated after six (eighteen,

thirty, ...) months. The time when a signal has been sent from point Zb is denoted by τ2 and the time when the signal

was received at point B is denoted by t2.
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Figure 5: Distance da between the observer A the sender Z

We will first define three well-known constants

R = AU (an astronomical unit) (37)

c = constant speed of light (38)

year sec = 365.25 ∗ 24 ∗ 3600 (39)

Referring to Fig. (5) one can find that

∆τ = τ2 − τ1 (40)

∆t = t2 − t1 (41)

{∆t = (0.5 + k) ∗ year sec, k = (0, 1, 2, ..)} (42)

v = [vx, vy, vz] (43)

u = [ux, uy, uz] (44)

a = [ax, ay, az] =
AZ

||AZ||
(45)

b = [bx, by, bz] =
BZ

||BZ||
(46)

(47)

Let define the angle α and unit vector e as functions of time t:

α(t) = 2Π ∗ t

year sec
(48)

e(t) = [cos(α), sin(α), 0] (49)

A = A(t1) = t1v +Re(t1) (50)

B = t2v +Re(t2) (51)

AB = B −A = ∆tv +R ∗ (e(t2)− e(t1)) (52)
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We will first determine the vectors da and db

da = da ∗ a (53)

db = BZb = db ∗ b (54)

Za = A+ da ∗ a (55)

Zb = Za + ∆τu = A+ da ∗ a + ∆τu (56)

BZb = A+ da ∗ a + ∆τu−B = −(B −A) + da ∗ a + ∆τu = da ∗ a + (∆τu−AB) (57)

dbb = da ∗ a + (∆τu−AB) (58)

d2b = d2a + 2(∆τu−AB).a ∗ da + (∆τu−AB)2 (59)

d2b = d2a + 2(∆τu.a−AB.a) ∗ da + (∆τu−AB)2 (60)

We assume that the following equation is valid:

da
c

+ ∆t =
db
c

+ ∆τ (61)

It follows that:

db = da + c∆t− c∆τ = da + (c∆t− c∆τ) (62)

d2b = d2a + 2(c∆t− c∆τ) ∗ da + (c∆t− c∆τ)2 (63)

From Equations (60) and (63) one finds that

2(∆τu.a−AB.a) ∗ da + (∆τu−AB)2 = 2(c∆t− c∆τ) ∗ da + (c∆t− c∆τ)2 (64)

da = d(t1) =
(c∆t− c∆τ)2 − (∆τu−AB)2

2 ((∆τu.a−AB.a)− c(∆t−∆τ))
(65)

On the right-hand side of the equation (65) all variables are known except ∆τ .

Suppose that the interval ∆t is divided by n intervals ∆ti and that we have assigned to each of these intervals

the frequency fi. Applying the formula derived in [1] we have following equations:

∆t =

n∑
i=1

∆ti (66)

∆τ =

n∑
i=1

∆τi =

n∑
i=1

f (i)

f
∆ti =

1

f

n∑
i=1

f (i)∆ti (67)

Where f is source frequency of light and fi frequency measured by the observer. In this way we obtained all the

necessary parameters needed to determine the distance between the receiver and sender of the signal.

6. Conclusion

All algorithms have been tested using data generated by the computer program. Unfortunately the author could not

obtain real data that would be suitable to be used as input parameters (the coordinates of the observer regarding the

ecliptic coordinate system, the time when the measurement was performed, wavelength shift,..). Because this is the

only way to prove or disprove the correctness of the proposed methods, it would be too early to draw any conclusions

at this point.
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