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Abstract 

This paper represents the latest revision of a portion of the research work, still in progress, carried out by the 

author during the last four years. The overall aim of the study fundamentally consists in showing how, while 

postulating the absoluteness of time, the validity of the relativistic equations may be formally preserved. Starting 

from the writing of the first Friedmann – Lemaître Equation (and therefore from General Relativity), a Simple-

Harmonically Oscillating Universe (flat, upper-bounded, conventionally singular at 𝑡 = 0) is obtained. 

Subsequently, the existence of a further spatial dimension is postulated. The Universe is identified with a 4-Ball 

involved in an (apparent) cyclic evolution and the concept of (material) point is replaced by the one of (material) 

segment. This scenario, combined with the absoluteness of time, allows an alternative derivation of the 

equations that characterize Special Relativity (including Lorentz Transformations), although with a different 

connotation. Amongst the significant consequences that arise from our approach, the possibility of (apparently) 

moving faster than light stands out.  
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Quantization, Relativistic Energy, Lorentz Transformations, Faster than Light  

1. Introduction  

This paper represents the latest (systematic) review of (a portion of) the research work carried out by the author 

during the last four years (Cataldo, 2019a, 2019b, 2017a, 2017b, 2016) (in detail, this article must be regarded 

as a revised and updated version of a portion of the paper entitled “Relativity: Towards a New Interpretation”) 

(Cataldo, 2019a). The overall aim of the study fundamentally consists in showing how, while postulating the 

absoluteness of time, the validity of the relativistic equations may be formally preserved.  

Starting from the writing of the first Friedmann – Lemaître Equation (Friedmann, 1922) (and therefore from 

General Relativity) (Einstein, 1916; Cheng, 2005), a Simple-Harmonically Oscillating Universe (flat, upper-

bounded, conventionally singular at 𝑡 = 0) is obtained (Harrison, 1967). Subsequently, the existence of a further  

spatial dimension (not directly perceivable) is postulated (Cataldo, 2019a, 2019b, 2017a, 2017b, 2016).  

The Universe is identified with a 4-Ball involved in an (apparent) cyclic evolution and the concept of (material) 

point is replaced by the one of (material) segment. In detail, what is perceived as being a point may actually be 

a segment crossing the centre of the 4-Ball. Two antipodal points, since they evidently represent the end-points  

of the same segment, must be considered as being a unique entity: in other terms, the Universe may be 

characterized by a (Global) Central Symmetry (Cataldo, 2019a, 2019b, 2017a, 2017b, 2016).  

Space is considered as being a quantized physical quantity: the minimal length is derived by resorting to the 

Generalised Uncertainty Principle (Shalit-Margolyn, 2018).  

This background, combined with the absoluteness of time, allows an alternative derivation of all the equations  

that characterize Special Relativity (including Lorentz Transformations) (Cataldo, 2019a, 2019b, 2017a, 2017b, 

2016), albeit with a different connotation.  
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Amongst the significant consequences that arise from our approach, the possibility of (apparently) moving faster 

than light stands out (Cataldo, 2019a, 2016a). It is worth specifying how Relativity, at least in its original 

formulation, is clearly a 3D+1 theory, while we propose a 4D+1 model. However, all the features of our model 

are deduced by resorting to the superposition of three 3D+1 sub-models (Cataldo, 2019a, 2019b, 2017b). Gravity 

is herein not addressed. 

2. Relativistic Background 

2.1 Uniform Cosmological Models 

According to Harrison’s classification (Harrison, 1967), there are four groups of uniform cosmological models 

compatible with general relativity (from now onwards GR): static, asymptotic, monotonic, and oscillatory (each 

of this groups, in turn, may be subdivided into sub-groups or classes).  

For a uniform Universe, with the usual hypotheses of homogeneity and isotropy, the first Friedmann – Lemaître 

Equation (Friedmann, 1922; Cheng, 2005) is commonly written as follows: 

 𝑅̇ 2 = (
𝑑𝑅

𝑑𝑡
)

2

=
1

3
(8𝜋𝐺𝜌 + 𝛬𝑐2)𝑅2 − 𝑘𝑐2. (2.1) 

In the previous Equation, 𝑅 represents the scale factor (Cheng, 2005), 𝐺 the gravitational constant, 𝜌 the density, 

𝛬 the cosmological constant (Cheng, 2005), 𝑘 the curvature parameter, whose value depends on the 

hypothesized geometry (Cheng, 2005), and 𝑐 the speed of light. 

Denoting with 𝑝 the pressure, the Fluid Equation (Cheng, 2005), can be written as follows:  

 𝜌̇ =
𝑑𝜌

𝑑𝑡
= −

3

𝑅

𝑑𝑅

𝑑𝑡
(𝜌 +

𝑝

𝑐2
) = −3

𝑅̇

𝑅
(𝜌 +

𝑝

𝑐2
). (2.2) 

According to Zeldovich (Zeldovich, 1961), the relation between pressure and density (the Equation of State) can 

be expressed in the underlying form:  

 𝑝 = (𝜈 − 1)𝜌𝑐2. (2.3) 

The value of 𝜈, hypothesized as being constant, exclusively depends on the type of fluid we take into 

consideration (matter, radiation, relativistic gas, dark energy, etc.): the commonly accepted values lie in the range 

1 ≤ 𝜈 ≤ 4/3 (Zeldovich, 1961).   

From Eq. (2.2), taking into account Eq. (2.3), we obtain: 

 
𝑑𝜌

𝜌
= −3𝜈

𝑑𝑅

𝑅
 . (2.4) 

Consequently, denoting with 𝐶  the constant of integration, we have: 

 𝜌𝑅3𝜈 = 𝐶. (2.5) 

Eq. (2.1) can be rewritten as follows: 

 (
𝑑𝑅

𝑑𝑡
)

2

=
8𝜋𝐺𝜌 𝑅3𝜈

3
𝑅2−3𝜈 +

1

3
𝛬𝑐2𝑅2 − 𝑘𝑐2. (2.6) 

By virtue of Eq. (2.5), a new constant, denoted by 𝐶𝜈, can be now defined: 
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 𝐶𝜈 =
8𝜋𝐺𝜌 𝑅3𝜈

3
=

8𝜋𝐺𝐶

3
 . (2.7) 

By substituting the previous identity into Eq. (2.6) we obtain: 

 𝑅̇ 2 = 𝐶𝜈𝑅2−3𝜈 +
1

3
𝛬𝑐2𝑅2 − 𝑘𝑐2. (2.8) 

2.2 Oscillatory Class with 𝐤 = 𝟎 

If we denote with 𝜔 the pulsation of the universe we aim to describe, we can set:  

 𝛬 = −3 (
𝜔

𝑐
)

2

. (2.9) 

If we set 𝑘 = 0, by substituting Eq. (2.9) into Eq. (2.8), we have: 

 𝑅̇ 2 = 𝐶𝜈𝑅2−3𝜈 − 𝜔2𝑅2. (2.10) 

From the previous Equation, we obtain: 

 
𝑑𝑅

𝑑𝑡
= √𝐶𝜈𝑅

1−
3
2

𝜈√1 − (
𝜔𝑅

3
2

𝜈

√𝐶𝜈

)

2

 , (2.11) 

 

1

√𝐶𝜈𝑅
1−

3
2

𝜈

𝑑𝑅

√1 − (
𝜔𝑅

3
2

𝜈

√𝐶𝜈

)

2

= 𝑑𝑡, 

(2.12) 

 

𝑑 (
𝜔𝑅

3
2

𝜈

√𝐶𝜈

)

√1 − (
𝜔𝑅

3
2

𝜈

√𝐶𝜈

)

2

=
3

2
𝜈𝜔𝑑𝑡. 

(2.13) 

If we impose that 𝑅 = 0 when 𝑡 = 0, from the previous Equation we have: 

 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝜔𝑅

3
2

𝜈

√𝐶𝜈

) =
3

2
𝜈𝜔𝑡, (2.14) 

 𝑅3𝜈 =
𝐶𝜈

𝜔2
sin2 (

3

2
𝜈𝜔𝑡) =

𝐶𝜈

2𝜔2
[1 − cos(3𝜈𝜔𝑡) ], (2.15) 

 𝑅 = (
𝐶𝜈

2𝜔2
)

1
3𝜈

[1 − cos(3𝜈𝜔𝑡) ]
1

3𝜈 . (2.16) 

According to Eq. (2.16), we have formally obtained a Universe belonging to the oscillatory class (“O Type” in 

Harrison’s classification) (Harrison, 1967). 
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From Eqs. (2.7) and (2.15) we obtain: 

 𝜌 =
3

8𝜋𝐺

𝐶𝜈

𝑅3𝜈
=

3𝜔2

4𝜋𝐺

1

1 − cos(3𝜈𝜔𝑡)
 . (2.17) 

Finally, by taking into account Eq. (2.9), we can write Eq. (2.17) as follows: 

 𝜌 = −
𝛬𝑐2

4𝜋𝐺

1

1 − cos(3𝜈𝜔𝑡)
 . (2.18) 

2.3 A Simple-Harmonically Oscillating Universe  

If we set 𝜈 = 1/3, from Equation (2.16) we have: 

 𝑅 =
𝐶1/3

2𝜔2
[1 − cos(𝜔𝑡) ]. (2.19) 

We have just achieved a simple-harmonically oscillating universe (flat, upper-bounded, conventionally singular 

at 𝑡 = 0), characterized by a variable density whose value, setting 𝜈 = 1/3 in Eq. (2.18), is provided by the 

underlying relation: 

 𝜌 = −
𝛬𝑐2

4𝜋𝐺

1

1 − cos(𝜔𝑡)
 . (2.20) 

Denoting with 𝐴 the amplitude of the motion, by virtue of Eq. (2.19) we can write: 

 𝐴 =
𝐶1/3

2𝜔2
 . (2.21) 

Denoting with 𝑅𝑚  the mean radius (𝜔𝑡 = 𝜋/2), Eqs. (2.19) and (2.21) give: 

 𝑅 (
𝜋

2
) = 𝐴 = 𝑅𝑚 . (2.22) 

By virtue of the previous, from Eq. (2.20) we obtain:  

 𝜌𝑚 = 𝜌(𝑅𝑚
) = 𝜌 (

𝜋

2
) = −

𝛬𝑐2

4𝜋𝐺
 . (2.23) 

Taking into account Eqs. (2.21) and (2.22), Eq. (2.19) acquires the underlying form:  

 𝑅 = 𝑅𝑚
[1 − cos(𝜔𝑡)]. (2.24) 

From Eq. (2.5), being 𝜈 = 1/3, we have: 

 𝜌𝑅 = 𝜌𝑚 𝑅𝑚 . (2.25) 

From Equations (2.7), (2.21), (2.22) and (2.25) we deduce: 

 𝜔2 =
𝐶1/3

2𝐴
=

𝐶1/3

2𝑅𝑚

=
4𝜋𝐺

3
𝜌

𝑅

𝑅𝑚

=
4𝜋𝐺𝜌𝑚

3
 , (2.26) 
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 (𝜔𝑅𝑚
)2 =

2 (
2
3

𝜋𝑅𝑚
3 𝜌𝑚 ) 𝐺

𝑅𝑚

 . (2.27) 

Now, let us carry out the following positions (Cataldo, 2019a, 2019b, 2017a): 

 𝑀𝑚 =
2

3
𝜋𝑅𝑚

3 𝜌𝑚 , (2.28) 

 𝜔𝑅𝑚 = 𝑐. (2.29) 

The position in Eq. (2.28) will be better understood in Section 4, by resorting to the concept of “global central 

symmetry” (Cataldo, 2019a, 2019b, 2017b, 2016).  

From Eq. (2.27), taking into account Eqs. (2.28) and (2.29), denoting with 𝑅𝑠  the so-called Schwarzschild Radius 

(Schwarzschild, 1016; Cheng, 2005), we have:  

 𝑅𝑚 =
2𝑀𝑚 𝐺

𝑐2
= 𝑅𝑠

(𝑀𝑚
). (2.30) 

In the light of the results so far achieved, we can now write the following: 

 𝜔𝑡 =
𝑐𝑡

𝑅𝑚

= 𝛼, (2.31) 

 𝑅 = 𝑅𝑚
(1 − cos 𝛼), (2.32) 

 cos 𝛼 = 1 −
𝑅

𝑅𝑚

 , (2.33) 

 𝑅̇ =
𝑑𝑅

𝑑𝑡
= 𝑐 sin 𝛼, (2.34) 

 𝑅̈ =
𝑑𝑅̇

𝑑𝑡
= 𝑐𝜔 cos 𝛼 =

𝑐2

𝑅𝑚

(1 −
𝑅

𝑅𝑚

). (2.35) 

The beginning of a new cycle (𝑡 = 0) occurs when the radius assumes a null value.  

The evolution of the Universe we have obtained is characterized by four consecutive phases: accelerated 

expansion, decelerated expansion, decelerated contraction, accelerated contraction.  

All the phases have the same duration.  

By virtue of Eqs. (2.31), (2.32) and (2.34), the Hubble Parameter (Hubble, 1929), commonly denoted by 𝐻, can be 

written as follows: 

 𝐻 =
𝑅̇

𝑅
=

𝑐

𝑅𝑚

2 sin (
𝛼
2

) cos (
𝛼
2

)

2 sin2 (
𝛼
2

)
=

𝑐

𝑅𝑚

1

tan (
𝑐𝑡

2𝑅𝑚
)

 . (2.36) 
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Figure 1. Cyclic Universe 

In Figure 1, the Universe is portrayed as a 3 – Ball with centre 𝐶 . The point 𝐶′′ represents the centre of a (virtual) 

horn torus. The straight line segment bordered by 𝐶′ and 𝑂 (the radius of the section of the torus) represents 

the mean radius (𝑅𝑚 ) defined in Eq. (2.22). When 𝑡 = 0 (at the beginning of a new cycle), 𝐶 ≡ 𝐶′′. The point 𝑂, 

which belongs both to the boundary of the ball (a spherical surface) and to the torus, moves tangentially 

(following the poloidal direction) with a constant speed equal to 𝑐 . The angle 𝛼 is defined in Eq. (2.31). The 

straight line segment bordered by 𝐶  and 𝑂 represents the variable radius (𝑅) defined in Eq. (2.32). 

3. Mechanical Background 

Let us consider a material point whose motion is defined by Eq. (2.32) (in other terms, a simple harmonic 

oscillator consisting of a mass and an ideal spring).  

Denoting with 𝑚 the mass of the point, taking into account Eq. (2.29), the elastic constant, denoted by 𝑘𝑒 , can 

be written as follows: 

 𝑘𝑒 = 𝑚𝜔2 = 𝑚 (
𝑐

𝑅𝑚

)
2

. (3.1) 

Consequently, the total (mechanical) energy acquires the underlying form: 

 𝐸𝑅𝑚−𝑝𝑜𝑖𝑛𝑡 =
1

2
𝑘𝑒𝑅𝑚

2 =
1

2
𝑚𝑐2. (3.2) 

Now, by solely modifying the amplitude of the motion, denoted by 𝑅𝑚
′ , keeping the values of mass and pulsation 

constant, we can generalize Eq. (2.32) as follows: 

 𝑅′ = 𝑅′(𝑅𝑚
′ , 𝛼) = 𝑅𝑚

′ (1 − cos 𝛼),       𝑅𝑚
′ ∈ ]0, 𝑅𝑚

]. (3.3) 

From Eqs. (2.32) and (3.3) we have: 

 
𝑅𝑚

′

𝑅𝑚

=
𝑅′

𝑅
 . (3.4) 
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At any given time, the value of 𝑅 is univocally determined by means of Eq. (2.32), being 𝑅𝑚  constant. On the 

contrary, the value of 𝑅′, provided by Eq. (3.3), clearly depends on the amplitude of the motion (𝑅𝑚
′ ). 

Taking into account Eqs. (3.1) and (3.4), the total energy of a material point, whose motion is described by Eq. 

(3.3), acquires the following form: 

 𝐸𝑅𝑚
′ −𝑝𝑜𝑖𝑛𝑡 =

1

2
𝑘𝑒 𝑅𝑚

′2 =
1

2
(

𝑅𝑚
′

𝑅𝑚

)

2

𝑚𝑐2 =
1

2
(

𝑅′

𝑅
)

2

𝑚𝑐2. (3.5) 

The material point can now be replaced by a homogeneous material segment (in other terms, we consider a 

spring, no longer ideal, with a length at rest equal to 𝑅𝑚 ).  

The length of the segment (𝑅) evolves in accordance with Eq. (2.32). 

If we denote now with 𝑀 the mass of the segment (the linear mass), the linear density can be defined as follows:  

 𝑀 =
𝑀

𝑅
 . (3.6) 

By virtue of the homogeneity, denoting with 𝑀′ the mass of a portion of segment characterized, at any given 

time, by a length equal to 𝑅′, we can write: 

 𝑀′ = 𝑀𝑅′ =
𝑅′

𝑅
𝑀, (3.7) 

 𝑀 =
𝑀

𝑅
=

𝑀′

𝑅′
 . (3.8) 

Eq. (3.8) clearly underlines how the linear density does not vary along the segment.  

Taking into account Eqs. (3.5) and (3.7), the energy related to an infinitesimal material segment can be evidently 

written as follows: 

 𝑑𝐸𝑅′ =
1

2
(

𝑅′

𝑅
)

2

𝑐2𝑑𝑀′ =
1

2
(

𝑅′

𝑅
)

2

𝑐2𝑀̅𝑑𝑅′ =
𝑀𝑐2

2𝑅3
𝑅′2𝑑𝑅′. (3.9) 

By virtue of Eqs. (3.7) and (3.9), the energy of a material segment, whose length, at any given time, is equal to 

𝑅′, can be expressed in the underlying form: 

 𝐸𝑅′ = ∫ 𝑑𝐸′
𝑅′

0

=
1

6
(

𝑅′

𝑅
)

3

𝑀𝑐2 =
1

6
(

𝑅′

𝑅
)

2

𝑀′𝑐2 . (3.10) 

4. Introducing the 4th Spatial Dimension 

4.1 Mass – Energy “Equivalence” 

The Universe we hypothesize is identifiable with a 4-Ball. 

The radius, denoted by 𝑅, evolves in accordance to Eq. (2.32). The corresponding boundary, which may represent 

the space we are allowed to perceive (at rest) (Cataldo 2019a, 2019b, 2017b, 2016), is a three-dimensional surface 

(a hyper sphere) described by the following identity: 

 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2 = 𝑅2. (4.1) 



Journal of Advances in Physics Vol 17 (2020) ISSN: 2347-3487                          https://rajpub.com/index.php/jap 

140 

 
 

The 4-Ball is banally described by the following inequality: 

 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2 ≤ 𝑅2. (4.2) 

Let us consider the point 𝑃+ defined as follows: 

 𝑃+ = (0,0,0, 𝑅). (4.3) 

Denoting with 𝑃− the antipode of 𝑃+ (the point diametrically opposite), we have: 

 𝑃− = (0,0,0, −𝑅). (4.4) 

We must now consider the straight line segment bordered by the points 𝑃+  and 𝑃−.  

Figure 2 provides a representation of the segment, obtained from Eq. (4.2) by setting equal to zero, one at a 

time, all the four coordinates.  

 

Figure 2. Representation of a Material Segment 

As shown in Figure 2, by setting 𝑥4 = 0 we obtain nothing but a single point. Therefore, we have to examine the 

three-dimensional scenarios that arise from the underlying identity: 

 𝑥 𝑖 = 0,       𝑖 = 1,2,3. (4.5) 

Let us set, e.g., 𝑥1 = 0. Consequently, from Eqs. (4.2), (4.3) and (4.4) we have: 

 𝑥2
2 + 𝑥3

2 + 𝑥4
2 ≤ 𝑅2, (4.6) 

 𝑃1
+ = (0,0, 𝑅), (4.7) 

 𝑃1
− = (0,0, −𝑅). (4.8) 

Let us now consider the straight line segment bordered by the centre of the 4-ball and the point defined by Eq. 

(4.7).  If the segment in question, the length of which evolves in accordance with Equation (2.32), is provided 

with a mass 𝑀 , its energy can be deduced from Eq. (3.10) by setting 𝑅′ = 𝑅.  

Consequently, underlining how the same procedure can be obviously adopted for the point defined by Eq. (4.8), 

we can write, with obvious meaning of the notation, as follows: 

 𝐸𝑅 ,1
+ = 𝐸𝑅 ,1

− =
1

6
𝑀𝑐2, (4.9) 
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 𝐸1 = 𝐸𝑅 ,1 = 𝐸𝑅 ,1
+ + 𝐸𝑅 ,1

− =
1

3
𝑀𝑐2. (4.10) 

Generalizing, we have: 

 𝐸𝑖 = 𝐸𝑅 ,𝑖 = 𝐸𝑅 ,𝑖
+ + 𝐸𝑅 ,𝑖

− =
1

3
𝑀𝑐2 ,       𝑖 = 1,2,3. (4.11) 

Finally, by superposition, we can easily write the total amount of energy related to the material segment 

bordered by the points 𝑃+ and 𝑃−  defined, respectively, by Eqs. (4.3) and (4.4): 

 𝐸 = ∑ 𝐸𝑖

3

𝑖=1

= 𝑀𝑐2. (4.12) 

As far as our perception is concerned, each point and its antipode are to be considered as being the same entity,  

since they both belong to the same straight line segment. In other terms, according to our model, the Universe 

may be characterized by a global central symmetry (Cataldo, 2019a, 2019b, 2017a, 2017b, 2016). 

4.2 Imposing the Conservation of Energy 

Let us consider one amongst the scenarios defined by Eq. (4.5). E.g., we can set, once again, 𝑥1 = 0. Initially, the 

homogenous material segment, bordered by the points 𝑃1
+  and 𝑃1

− defined in Eqs. (4.7) and (4.8), is characterized 

by a length equal to 2𝑅 and a mass equal to 2𝑀 .  

Let us suppose that the segment starts rotating around the centre of the ball.  

If we impose the conservation of energy, the motion must necessarily modify length and/or mass of the 

segment: otherwise the kinetic energy would be simply added to the energy defined in Eq. (4.11), and the total 

energy could no longer be regarded as being constant.  

Obviously, the length of the segment in motion cannot increase: otherwise, the inequality in Eq. (4.6) would be 

violated (in other terms, the points 𝑃+  and 𝑃− would end up with being paradoxically placed beyond the 

boundary).  

Let us impose the two following conditions (Cataldo, 2019a): 

Condition 1. The tangential speed of the endpoints (of the segment), from now onwards denoted by 𝑣 , is less 

than the speed of light (𝑣 < 𝑐); 

Condition 2. The motion does not cause any linear density variations (this condition will be later legitimized):  

therefore, the value of the linear mass must keep on abiding by the simple rule established in Eq. (3.7).  

Ultimately, according to our model, the motion may produce, concurrently, a loss of linear mass and a 

(symmetric) reduction of the length of the segment. 

If 2𝑅′ represents the total length of the segment in motion (with 0 < 𝑅′ ≤ 𝑅), denoting with 𝐼 the moment of 

inertia, we can write the kinetic energy as follows: 

 𝐸𝑘,1 =
1

2
𝐼 (

𝑣

𝑅′
)

2

. (4.13) 

If 2𝑀′ represents the (reduced) mass of the segment in motion, we have: 
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 𝐼 =
1

12
(2𝑀′) (2𝑅′) 2 =

2

3
𝑀′𝑅′2. (4.14) 

From the two previous Equations we immediately obtain: 

 𝐸𝑘 ,1 =
1

3
𝑀′𝑣2. (4.15) 

From Eq. (3.10), taking into account the symmetry, we can state that the segment, since it is involved in the cyclic 

evolution described by Eq. (3.3), is also provided with the following energetic amount:  

 𝐸𝑅′,1 = 𝐸𝑅′ ,1
+ + 𝐸𝑅′ ,1

− =
1

3
(

𝑅′

𝑅
)

2

𝑀′𝑐2 = 𝐸𝑝 ,1. (4.16) 

From Eqs. (4.15) and (4.16), taking into account the condition in Eq. (3.7), we have:  

 𝐸𝑘 ,1 + 𝐸𝑝,1 =
1

3
𝑀′ [𝑣2 + (

𝑅′

𝑅
)

2

𝑐2] =
1

3
𝑀 [𝑣2 + (

𝑅′

𝑅
)

2

𝑐2]
𝑅′

𝑅
 . (4.17) 

Since 𝑣 < 𝑐 , when 𝑅′ approaches 0 (when the segment tends to completely lose its mass), 𝐸𝑘 ,1 + 𝐸𝑝 ,1 tends to 

vanish. Therefore, in order to safeguard the conservation of energy, we need to introduce a further energetic 

term, denoted by 𝐸𝑤 ,1 (Cataldo 2019a, 2019b). Obviously, when 𝑅′ approaches 0 (when the segment tends to 

completely lose its mass), 𝐸𝑤,1 must tend to the value provided by Eq. (4.11); on the contrary, when 𝑅′ = 𝑅 (when 

𝑀′ = 𝑀), 𝐸𝑤 ,1 must vanish.  

By imposing a linear dependence between 𝐸𝑤,1 and 𝑀′, we have (Cataldo, 2019a, 2019b, 2017b): 

 𝐸𝑤,1 =
1

3
(𝑀 − 𝑀′) 𝑐2. (4.18) 

Taking into account Eqs. (4.11), (4.15), (4.16) and (4.18), the conservation of energy, fo r the considered scenario 

(𝑥1 = 0), can be finally written as follows: 

 𝐸1 =
1

3
𝑀𝑐2 =

1

3
𝑀′𝑣2 +

1

3
(

𝑅′

𝑅
)

2

𝑀′𝑐2 +
1

3
(𝑀 − 𝑀′)𝑐2. (4.19) 

By multiplying by three all the members of the previous Equation, taking into account Eq. (4.12), we finally obtain 

the underlying general relation: 

 𝐸 = 𝑀𝑐2 = 𝑀′𝑣2 + (
𝑅′

𝑅
)

2

𝑀′𝑐2 + (𝑀 − 𝑀′ )𝑐2 = 𝐸𝑘 + 𝐸𝑝 + 𝐸𝑤 . (4.20) 

𝐸𝑘  represents the (real) kinetic energy, 𝐸𝑝  the potential (background) energy (related to the cyclic evolution of 

the Universe), 𝐸𝑤  (a “non-material” aliquot, related to the so-called “quantum potential”) (Bohm, 1952a, 1952b) 

represents the energy needed to obtain the motion (to obtain the mass reduction) (Cataldo, 2019a, 2019b, 

2017b). 

From Eq. (4.20) we immediately deduce the underlying noteworthy relation:  

 𝑀′𝑐2 = 𝑀′𝑣2 + (
𝑅′

𝑅
)

2

𝑀′𝑐2 = 𝐸𝑘 + 𝐸𝑝 = 𝐸′. (4.21) 
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The linear dependence between 𝐸𝑤,1 and 𝑀′ has allowed the writing of 𝐸′ as the product between the (reduced) 

mass and 𝑐2. In other terms, net of the non-material aliquot, the energy can be still expressed in the form 

achieved in Eq. (4.12). 

4.3 Specific Energies   

According to the definition of Lorentz Factor (Lorentz, 1904), we have: 

 
𝛾 =

1

√1 − (
𝑣
𝑐

)
2

 , 
(4.22) 

 (
𝑣

𝑐
)

2

= 𝛽2 = 1 −
1

𝛾 2
 . (4.23) 

From Equation (4.21), exploiting Eqs. (4.22) and (4.23), we easily obtain:  

 𝑅′ = 𝑅√1 − (
𝑣

𝑐
)

2

= 𝑅√1 − 𝛽2 =
𝑅

𝛾
 . (4.24) 

We have just found the relation between the tangential speed (of the endpoints) and the radial extension (net 

of the symmetry) of the segment in motion. 

From Eq. (3.6), by virtue of Eq. (4.24), we obtain: 

 

𝑀

𝑅′
=

𝑅

𝑅′
𝑀 =

𝑀

√1 − (
𝑣
𝑐

)
2

= 𝛾𝑀. 
(4.25) 

Consequently, taking into account Eqs. (3.7), (3.8), (4.20), (4.23), (4.24) and (4.25), the specific energies (the 

energies per unit of length) can now be written, with obvious meaning of the notation, as follows:  

 
𝐸̅ =

𝑀𝑐2

𝑅′
=

𝑀𝑐2

√1 − (
𝑣
𝑐

)
2

= 𝛾𝑀𝑐2, 
(4.26) 

 𝐸̅𝑘 =
𝑀′𝑣2

𝑅′
= 𝑀𝛽2𝑐2 = (1 −

1

𝛾2
) 𝑀𝑐2, (4.27) 

 𝐸̅𝑝 = (
𝑅′

𝑅
)

2
𝑀′𝑐2

𝑅′
=

𝑀𝑐2

𝛾2
 , (4.28) 

 𝐸̅𝑤 = (
𝑀

𝑀′
− 1)

𝑀′𝑐2

𝑅′
= (

𝑅

𝑅′
− 1)

𝑀′𝑐2

𝑅′
= (𝛾 − 1)𝑀𝑐2. (4.29) 

Therefore, by dividing both members of Eq. (4.20) by 𝑅′, we obtain: 

 𝐸̅ = 𝐸̅𝑘 + 𝐸̅𝑝 + 𝐸̅𝑤 , (4.30) 

 𝛾𝑀𝑐2 = (1 −
1

𝛾2
) 𝑀𝑐2 +

𝑀𝑐2

𝛾2
+ (𝛾 − 1)𝑀𝑐2. (4.31) 
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If we denote with 𝐸0  the energy at rest (𝑅′ = 𝑅), whose value has been obtained in Eq. (4.12), by virtue of Eqs. 

(3.6), (4.26) and (4.29) we have: 

 𝐸̅0 =
𝑀𝑐2

𝑅
= 𝑀𝑐2 , (4.32) 

 𝐸̅ = 𝛾𝑀𝑐2 = 𝐸̅0 + (𝛾 − 1)𝑀𝑐2 = 𝐸̅0 + 𝐸̅𝑤 . (4.33) 

Now, by dividing both members of Eq. (4.21) by 𝑅′, taking into account Eqs. (3.8) and (4.24), we easily obtain: 

 𝑀𝑐2 = 𝑀𝑣2 +
𝑀𝑐2

𝛾2
 . (4.34) 

Finally, by multiplying both members of the foregoing Equation by 𝛾, by virtue of Eq. (4.26) we have: 

 𝛾𝑀𝑐2 = 𝛾𝑀𝑣2 +
𝑀𝑐2

𝛾
 , (4.35) 

 𝐸̅ =
𝑀𝑐2

√1 − (
𝑣
𝑐

)
2

=
𝑀𝑣2

√1 − (
𝑣
𝑐

)
2

+ √1 − (
𝑣

𝑐
)

2

𝑀𝑐2. (4.36) 

4.4 Punctual Mass and Space Quanta: the “Relativistic” Energy 

In order to obtain the formal definition of the so-called relativistic energy, we have to impose a space 

quantization.  

If 𝑅 is regarded as a primary measurable quantity, denoting with ∆𝑅𝑚𝑖𝑛  the (radial) quantum of space (Cataldo, 

2019a) and with 𝒩 an integer, we can write: 

 𝑅 = 𝒩∆𝑅𝑚𝑖𝑛 . (4.37) 

According to the generalized uncertainty principle (Shalit-Margolyn, 2018), for ∆𝑅𝑚𝑖𝑛  we have:  

 ∆𝑅𝑚𝑖𝑛 = 2√𝛼′ℓ𝑃 . (4.38) 

In the previous, ℓ𝑃  represents the so-called Planck Length and 𝛼′ a constant. There are several methods to 

estimate the value of 𝛼′ (Cataldo, 2019a; Veneziano, 1986; Adler et al., 1999; Maggiore, 1994; Capozziello et al., 

2000): in any case, 𝛼′ ≅ 1. Consequently, from Eq. (4.37) and (4.38), making explicit the expression of ℓ𝑃  and 

setting 𝛼 ′ = 1, we obtain: 

 𝑅 = 𝒩 ∆𝑅𝑚𝑖𝑛 = 2𝒩√
ℏ𝐺

𝑐3
 . (4.39) 

The punctual (three-dimensional) mass, denoted by 𝑚, can be defined as follows: 

 𝑚 = 𝑀∆𝑅𝑚𝑖𝑛 . (4.40) 

Condition 2 can be now fully understood. From Eqs. (3.6) and (4.40), in fact, we can immediately deduce how 

the value of the punctual mass is not influenced by the motion. In other terms, by virtue of the constancy of the 

linear density, 𝑚 is considered as being constant (and the misleading concept of relativistic mass can be 
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definitively rejected). Now, taking into account Eq. (4.30), for a material point, with obvious meaning of the 

notation, we can write: 

 𝐸𝑚 = 𝐸̅∆𝑅𝑚𝑖𝑛 = (𝐸̅𝑘 + 𝐸̅𝑝 + 𝐸̅𝑤 )∆𝑅𝑚𝑖𝑛 = 𝐸𝑘 ,𝑚 + 𝐸𝑝,𝑚 + 𝐸𝑤,𝑚. (4.41) 

By multiplying both members of Equation (4.31) by ∆𝑅𝑚𝑖𝑛 , we have: 

 𝐸𝑚 = 𝛾𝑚𝑐2 = (1 −
1

𝛾2
) 𝑚𝑐2 +

𝑚𝑐2

𝛾2
+ (𝛾 − 1)𝑚𝑐2. (4.42) 

By multiplying all the members of Eq. (4.36) by ∆𝑅𝑚𝑖𝑛 , taking into account Eq. (4.40), the well-known relation for 

the relativistic energy is finally obtained (Einstein, 1916; Cheng, 2005): 

 𝐸𝑚 =
𝑚𝑐2

√1 − (
𝑣
𝑐

)
2

=
𝑚𝑣2

√1 − (
𝑣
𝑐

)
2

+ √1 − (
𝑣

𝑐
)

2

𝑚𝑐2. (4.43) 

Denoting with 𝑝𝑚  the momentum, with ℒ the (relativistic) Lagrangian, and with ℋ the Hamiltonian, we have: 

 
𝑝𝑚 =

𝑚𝑣

√1 − (
𝑣
𝑐

)
2

 , 
(4.44) 

 ℒ = −√1 − (
𝑣

𝑐
)

2

𝑚𝑐2, (4.45) 

Consequently, Eq. (4.43) can be concisely rewritten as follows: 

 𝐸𝑚 = ℋ = 𝑝𝑚 𝑣 − ℒ. (4.46) 

4.5 Relativistic Phenomenology: Towards a New Interpretation 

According to the results up to now obtained, what we perceive as being a (material) point may actually be a 

straight line (material) segment crossing the centre of the 4-Ball described by the inequality in Eq. (4.2). The 

endpoints represent all we are allowed to perceive of any segment. Coherently with the hypothesized central 

symmetry, moreover, the endpoints are to be considered as being a unique entity.  

The Uniform Linear Motion of a punctual mass may actually be a rotation (with a constant angular speed) of  the 

corresponding material segment around the centre of the 4-Ball. The rotation produce, concurrently, a loss of 

linear mass (although the value of the punctual mass is clearly preserved) and a (symmetric) reduction of the 

length: the new radial extension of the segment (half its length), denoted by 𝑅′, depends on the value of the 

tangential speed acquired by its endpoints (the constant speed, denoted by 𝑣 , which characterizes the apparent 

linear uniform motion. The relation between 𝑅′ and 𝑣 is expressed by Eq. (4.24) (Cataldo, 2019a, 2019b, 2017a, 

2017b, 2016). 

The Universe perceived by an observer involved in a linear uniform motion, characterized by a constant speed 

equal to 𝑣 (being 0 ≤ 𝑣 < 𝑐), may be closed and curved (Di Valentino at al., 2019), and therefore described by 

the following equality: 

 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2 = 𝑅′2. (4.47) 
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5. The Lorentz Transformations 

5.1 Bringing into Question the Real Meaning of the Lorentz Transformations 

The Lorentz Transformations (Lorentz, 1904) can be considered, without any doubt, as the backbone of Special 

Relativity (from now onwards SR). Nonetheless, both the conventional derivation of the transformations and the 

meaning usually assigned to them have been often brought into question (Cataldo 2019a, 2019b, 2016).  

Firstly, it is worth underlining how, as Lorentz himself was forced to admit at a later time (Lorentz 1909), the 

transformations had been already conceived, several years before the publication of the famous paper (Lorentz, 

1904), by Voigt (Voigt, 1887). Secondly, the work of Lorentz was anything but concretely linked to relativistic 

issues, at least in the Einsteinian sense of the term (Einstein, 1916).  

Very simply, Lorentz’s aim fundamentally lay in finding some transformations able to formally make the Maxwell 

Equations (Maxwell, 1873) invariant. On this subject, moreover, it can be even proved how the Lorentz 

transformations are not the only ones able to preserve the formal validity of the Maxwell equations (Cataldo, 

2019a, 2019b, 2016; Di Mauro et al., 1997).  

The so-called direct transformations are usually written as follows:  

 
𝑥 =

𝑥 ′ + 𝑣𝑡′

√1 − (
𝑣
𝑐

)
2

 , 
(5.1) 

 𝑡 =
𝑡′ +

𝑣𝑥′
𝑐2

√1 − (
𝑣
𝑐

)
2

 . (5.2) 

The so-called inverse transformations are usually written in the following form: 

 
𝑥 ′ =

𝑥 − 𝑣𝑡

√1 − (
𝑣
𝑐

)
2

 , 
(5.3) 

 𝑡′ =
𝑡 −

𝑣𝑥
𝑐2

√1 − (
𝑣
𝑐

)
2

 . (5.4) 

It is commonly said that, when the speed assumed by the mobile frame of reference is far less than that of light, 

the Lorentz Transformations tend to the Galilean ones. In other terms, Galilean Relativity should be regarded as 

a particular case of the Einsteinian one. This is an erroneous conviction (Cataldo, 2016; Ghosal et al. 1991). In 

fact, referring to the ratio that appears in the numerator of Eqs. (5.2) and (5.4), it is easy to understand how no 

limitation turns out to be imposed, respectively, on the variables 𝑥  and 𝑥′. Therefore, since the above mentioned 

variables should be allowed to assume arbitrarily large values, the ratio we have taken into consideration could 

even not tend to zero, so making de facto impossible a real identification of the Lorentz Transformations with 

the Galilean ones (Cataldo, 2019a, 2019b, 2016; Di Mauro et al., 1991).  

5.2 Lorentz Transformations: Alternative Derivation and Different Meaning 

In order to deduce the direct transformations, we will consider the scenario depicted in Figure 3. The deduction 

will be carried out net of the symmetry.  
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Figure 3. First Scenario: Direct Transformations 

We denote with 𝑂 the origin of the frame of reference at rest, and with 𝑂′ the origin of the frame in motion. At 

the beginning 𝑂 and 𝑂′ coincide. We have to hypothesize that when 𝑂′ starts moving, with a constant speed v,  

a light signal is simultaneously sent from a source, which both the observer at rest and the one in motion 

perceive as being punctual. The initial angular distance between the origins and the source is denoted by 𝜒. The 

signal is actually sent, with a constant speed 𝑐 , from each of the points that belong to the straight line segment 

bordered by the centre, denoted by 𝐶 , and 𝑃 (which represents the source as perceived by an observer at rest). 

The radial extension of any point at rest is equal to the radius of the 4-Ball (𝑅). 

As soon as 𝑂′ starts moving, its radial extension, denoted by 𝑅′, assumes the value provided by Eq. (4.24).  

If we denote with 𝑙𝑂𝑃  the arc bordered by 𝑂 and 𝑃 , which represents the distance at rest from the source, and 

with 𝑙𝑂′𝑃′ the arc bordered by 𝑂′ and 𝑃′, which represents the distance between 𝑂′ and the source as soon as 

the motion occurs, taking into account Eq. (4.24), we can write the following: 

 𝐶𝑂̅̅ ̅̅ = 𝐶𝑃̅̅ ̅̅ = 𝑅, (5.5) 

 𝐶𝑂′̅̅ ̅̅ ̅ = 𝐶𝑃′̅̅ ̅̅ ̅ = 𝑅′, (5.6) 

 𝑙𝑂𝑃 = 𝑅𝜒, (5.7) 

 𝑙𝑂′𝑃′ = 𝑅′𝜒, (5.8) 

 

𝑙𝑂𝑃

𝑙𝑂′𝑃′

=
𝑅

𝑅′
=

1

√1 − (
𝑣
𝑐

)
2

 , 
(5.9) 

 
𝑙𝑂𝑃 =

𝑙𝑂′𝑃′

√1 − (
𝑣
𝑐

)
2

 . 
(5.10) 

The coordinate of the source as measured by the observer at rest, up until now denoted by  𝑙𝑂𝑃 , can be replaced 

by 𝑥 . After a certain time, denoted by 𝑡′, the observer in motion intercepts the signal in  𝐸′. The distance covered 

by the observer in motion is equal to 𝑙𝑂′𝐸′ (the arc bordered by 𝑂′ and 𝐸′).  
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The time elapsed is equal to the time taken by light to cover the distance 𝑙𝐸′𝑃′ (the arc bordered by 𝐸′ and 𝑃′): 

this distance coincides with the coordinate of the source, denoted by 𝑥′, as measured by the observer in motion 

(as soon as the signal is received). We have: 

 𝑙𝑂𝑃 = 𝑥, (5.11) 

 𝑙𝐸′𝑃′ = 𝑥 ′, (5.12) 

 𝑡′ =
𝑙𝐸′𝑃′

𝑐
=

𝑥′

𝑐
 , (5.13) 

 𝑙𝑂′𝐸′ = 𝑣𝑡′,  (5.14) 

 𝑙𝑂′𝑃′ = 𝑙𝐸′𝑃′ + 𝑙𝑂′𝐸′ = 𝑥 ′ + 𝑣𝑡′. (5.15) 

From Eqs. (5.10) and (5.15), exploiting the position in Eq. (5.11), we can deduce Eq. (5.1), which represents the 

first direct Lorentz Transformation. 

By dividing both members of Equation (5.1) by 𝑐 , we obtain: 

 
𝑥

𝑐
=

𝑥 ′

𝑐
+

𝑣𝑡′
𝑐

√1 − (
𝑣
𝑐

)
2

 . (5.16) 

The first member of the previous equation, which can be denoted by 𝑡 , represents the time elapsed between 

the light signal emission and the moment in which the observer at rest succeeds in seeing it. From Eqs. (5. 13) 

and (5.16) we can obtain Eq. (5.2), which represents the second direct Lorentz Transformation.  

In order to deduce the inverse transformations, we will consider the scenario depicted in Figure 4. 

 

Figure 4. Second Scenario: Inverse Transformations 

This time, we have to suppose that the motion occurs anti-clockwise (once again, with a constant speed equal 

to 𝑣). Obviously, the Eqs. from (5.5) to (5.10) are still valid. 



Journal of Advances in Physics Vol 17 (2020) ISSN: 2347-3487                          https://rajpub.com/index.php/jap 

149 

 
 

We can exploit the line of reasoning previously followed in deriving the direct transformations, being careful 

to switch the superscripts: from the point of view of the observer in motion, in fact, the one at rest, placed in 

𝑂, seems to approach the light source (moving with a constant speed equal to 𝑣). Therefore, we can write:  

 𝑙𝑂𝑃 = 𝑥 ′, (5.17) 

 𝑙𝐸′𝑃′ = 𝑥, (5.18) 

 𝑡 =
𝑙𝐸′𝑃′

𝑐
=

𝑥

𝑐
 , (5.19) 

 𝑙𝐸′𝑂′ = 𝑣𝑡, (5.20) 

 𝑙𝑂′𝑃′ = 𝑙𝐸′𝑃′ − 𝑙𝐸′𝑂′ = 𝑥 − 𝑣𝑡. (5.21) 

From Eqs. (5.10) and (5.21), exploiting the position in Eq. (5.17), we can deduce Eq . (5.3), which represents the 

first inverse Lorentz Transformation.  

By dividing both members of Equation (5.3) by 𝑐 , we obtain: 

 

𝑥′

𝑐
=

𝑥
𝑐

−
𝑣𝑡
𝑐

√1 − (
𝑣
𝑐

)
2

 . (5.22) 

The first member of the previous equation, which can be denoted by 𝑡′, represents the time elapsed between 

the light signal emission and the moment in which the observer placed in 𝑂, actually at rest but considered as 

being in relative motion towards the source, succeeds in seeing it. From Eqs (5.19) and (5.22) we can o btain Eq. 

(5.4), which represents the second direct Lorentz Transformation. 

It is fundamental to underline that, if we take into account the symmetry, both the direct transformations and 

the inverse ones can be simultaneously applied to whatever point in motion with a constant speed equal to 𝑣 .  

 

Figure 5. First Scenario with Symmetry 
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Referring to Figure 5 (which represents just a modified version of Figure 3), in fact, we can easily notice how, due 

to the symmetry, the light signals start not only from 𝑃+ and 𝑃′+, but also from 𝑃−  and 𝑃′−, moving both 

clockwise and counterclockwise. Very simply, the observer in motion travels towards the signal that propagates 

anti-clockwise (starting from 𝑃+  and 𝑃′+), so making possible the adoption of the direct transformations; 

simultaneously, the same observer moves away from the signal that propagates clockwise (starting from 𝑃− and 

𝑃′−), so making possible the adoption of the inverse transformations. 

5.3 Apparent Speed and Reduced Distances 

The distance between the origin of the mobile frame of reference and the light source undergoes a reduction 

as soon as the motion takes place: the higher the value of the speed, the higher the entity of the reduction. For 

example, referring to the first of the two cases previously examined, we can state that the observer in motion is 

able to cover the distance 𝑙𝑂′𝑃′ by taking a time, denoted by 𝑡𝑚𝑜𝑏 , provided by the following relation: 

 𝑡𝑚𝑜𝑏 =
𝑙𝑂′𝑃′

𝑣
 . (5.23) 

However, once the observer in motion reaches the light source, the observer at rest believes that the covered 

distance may be equal to 𝑙𝑂𝑃 . As a consequence, from the point of view of the observer at rest, the mobile frame 

is moving with an “apparent” speed, denoted by 𝑣𝑎𝑝𝑝 , provided by the following relation: 

 𝑣𝑎𝑝𝑝 =
𝑙𝑂𝑃

𝑡𝑚𝑜𝑏

=
𝑙𝑂𝑃

𝑙𝑂′𝑃′

𝑣.  (5.24) 

From the foregoing, taking into account Equation (5.9), we immediately obtain:  

 
𝑣𝑎𝑝𝑝 =

𝑣

√1 − (
𝑣
𝑐

)
2

 . 
(5.25) 

Consequently, the observer at rest will measure, in any case, a speed greater than  𝑣 . Obviously, the “real” speed 

(𝑣) can never equate that of light. On the contrary, the apparent speed (𝑣𝑎𝑝𝑝 ) tends to infinity when the speed 

tends to that of light.  

From Eq. (5.25) we can deduce the relation that expresses 𝑣 as a function of 𝑣𝑎𝑝𝑝 : 

 
𝑣 =

𝑣𝑎𝑝𝑝

√1 + (
𝑣𝑎𝑝𝑝

𝑐
)

2
 . 

(5.26) 

Let us choose a generic “destination”. Generalizing Eq. (5.10), if we denote with 𝑙 the distance (at rest) from the 

point that we have to reach, and with 𝑙𝑚𝑜𝑏  the corresponding reduced distance (the distance that a traveler, who 

starts moving with a constant speed 𝑣 , should actually cover in order to reach the destination), we have: 

 𝑙𝑚𝑜𝑏 = 𝑙√1 − (
𝑣

𝑐
)

2

 . (5.27) 

6. Short Remarks and Conclusions 

- The variation of the cosmological distances is actually considered as being an apparent phenomenon: in other 

terms, we postulate that the amount of space between whatever couple of points remains the same with the 

passing of time (on this subject, it could be worth bearing in mind how Hubble himself started bringing into 

question the relation between redshift and recessional velocity of the astronomical objects) (Hubble, 1947).  
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More precisely, we hypothesize that the so-called cosmological redshift may banally related to the conservation 

of energy.  

As is well known, the energy of a quantum of light can be expressed as the product between the value of its 

frequency and the Plank Constant.  

On the one hand, as an alternative to the conventional interpretation of the cosmological redshift, we could 

imagine that, in travelling through the interstellar vacuum, light may somehow "get tired", so losing part of its 

energy (Zwicky, 1929; Geller, 1972; LaViolette, 1986).  

On the other hand, we may accept that the Plank Constant could vary over time (Seshavatharam, 2013; 

Seshavatharam et al., 2013; Mangano et al., 2015): in this case a photon, in order to preserve its energy, would 

be forced into modifying its frequency. In the latter case, all the cosmological equations can be rewritten as a 

function a Plank parameter. 

From Eq. (2.36), taking into account Equation (4.39), we can easily deduce:  

 (
𝑅̇

𝑅
)

2

= 𝐻2 =
1

4
(

ℎ̇

ℎ
)

2

. (6.1) 

By virtue of the previous, Eq. (2.1) (with 𝑘 = 0), can be rewritten as follows: 

 (
𝑑ℎ

𝑑𝑡
)

2

=
4

3
(8𝜋𝐺𝜌 + 𝛬𝑐2)ℎ2 . (6.2) 

The problem related to the singularity (Harrison, 1967; Turok, 2015), herein not addressed, may be solved by 

resorting to the (space and time) quantization: a “quantum bounce” (Gielen et al., 2016; Ijjas et al. 2016), in fact, 

may prevent the radius from assuming a null value. To extremely simplify, the time at which the Planck Constant 

should mathematically assume a null value would fall between two consecutive time-steps. 

- Referring to each of the three-dimensional scenarios that arise from Eqs. (4.2) and (4.5), the position 𝜈 = 1/3 

banally entails the constancy of the surface energy.  

Denoting with 𝜎 the surface tension, the Young-Laplace Equation (Young, 1805) can be written as follows:  

 𝑝 =
2𝜎

𝑅
 . (6.3) 

From the foregoing, by virtue of Eqs. (2.3) and (2.5) (being 𝜈 = 1/3), we have: 

 
𝑑𝜎

𝑑𝑡
=

1

2

𝑑

𝑑𝑡
(𝑝𝑅) = −

1

3
𝑐2

𝑑

𝑑𝑡
(𝜌𝑅) = −

1

3
𝑐2

𝑑𝐶

𝑑𝑡
= 0. (6.4) 

- The Universe is identified with a 4-Ball (involved in an apparent cyclic evolution). The concept of material point 

is replaced by the one of material segment: what is perceived as being a point may actually be a segment 

crossing the centre of the 4-Ball. Two antipodal points, since they evidently represent the end-points of the 

same segment, must be considered as being a unique entity: in other terms, the Universe may be characterized 

by a (global) central symmetry.  

Although the topic is herein not addressed, it is worth underlining how the centre of the 4-Ball with which we 

identify the Universe cannot be exactly located. The quantization proposed in Eq. (4.37), in fact, must be regarded 

as approximate. Actually, the “centre” may consist in a minimal 4-Ball, characterized by a diameter equal to the 
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minimal length defined in Eq. (4.38): inside the corresponding border (a minimal hyper -sphere), the concept of 

“separation” may become de facto meaningless.  

- The extra spatial dimension and the space quantization allow the writing of all the relativistic equations  

concerning energy, although with different connotations. The conservation of energy is derived by considering 

an additional non-material component, introduced in Eq. (4.18), related to the concept of Quantum Potentia l 

(Bohm, 1952a, 1952b). In particular, albeit the punctual mass is considered as being constant, the linear mass 

may undergo a reduction with the increasing of speed. (Cataldo, 2019a, 2019b, 2017b, 2016). The non-materia l 

component may simply compensate for the linear mass reduction. In particular, there is no mass in the range 
]𝑅′,𝑅] . Ultimately, any rotating segment (perceived as a translating point) may also exhibit a wave-like behavior. 

On this subject, taking into account Eq. (5.25), denoting with ℎ the Planck Constant and with 𝜆 𝑅𝑒𝑙 the de Broglie 

(relativistic) Length (de Broglie, 1970), we have:  

 𝜆 𝑅𝑒𝑙 =
ℎ

𝑚𝑣𝑎𝑝𝑝

=
ℎ

𝑚𝑣
√1 − (

𝑣

𝑐
)

2

. (6.5) 

- As underlined in the introduction, time is considered as being absolute. Nevertheless, instruments and devices 

of whatever kind, commonly employed to measure time, may be (even significantly) influenced by motion (and 

gravity). To be clearer, time does not slow down with the increasing of speed (or in approaching a gravita tional 

source) (Cataldo, 2019a). Muons succeed in covering a distance not compatible with their mean life -time (Rossi 

at al., 1941): this phenomenon is commonly legitimised by resorting to SR. Actually, muons may simply exploit 

a “shortcut”, as it were. According to our model, in fact, the proper distance between whatever couple of points  

depends on their speed and, what is more, is no longer symmetric. In other terms, the very moment a particle 

starts moving, all the proper distances must be redefined as a function of the speed: on the contrary, all the 

angular distances preserve their initial value. Obviously, both the angular distances and the proper ones vary 

during the motion. This scenario is formally coherent with the Lorentz Transformations, the meaning of which, 

however, is completely altered. Amongst the significant consequences that arise from our approach, the 

possibility of (apparently) moving faster than light stands out.  
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