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Abstract 

We formulate a direct generalization of the Prigogine’s principle of minimum entropy production, according to 

a new isoperimetric variation principle by classical non-equilibrium thermodynamics. We focus our attention on 

the possible mathematical forms of constitutive equations. Our results show that the Onsager’s reciprocity 

relations are consequences of the suggested variation principle. 

Furthermore, we show by the example of the thermo-diffusion such reciprocity relations for diffusion tensor, 

which are missing in Onsager’s theory. Our theorem applied to the non-linear constitutive equations indicates 

the existence of dissipation potential. We study the forms of general reciprocity with the dissipation potential. 

This consideration results in a weaker condition than Li-Gyarmati-Rysselberhe reciprocity has. Furthermore, in 

the case of electric conductivity in the magnetic field, our theorem shows the correct dependence of the 

Onsager’s kinetic coefficient by the axial vector of magnetic induction. We show in general that the evolution 

criterion of the global entropy production is a Lyapunov-function, and so the final stationer state is independent 

of the initial, time-independent boundary conditions. 

Keywords: General Reciprocal Relations, Minimum-Entropy-Production, Bertalanffy’s Equifinality 

Introduction  

The first formulation of the minimum entropy production for the non-continuous system was firstly formulated 

by Prigogine [1], [2]. This theorem was generalized by introducing the order of stationarity by de Groot [3]. The 

present theorem valid also for continuous systems and dealing with the dynamics and stability of the stationer 

systems was formulated by Glansdorff and Prigogine [4], [5]. Their work shows that the entropy production in 

the frame of linear Onsager’s thermodynamic theory both the dynamics and the stability of the system correctly 

described, ranging the entropy production in the thermodynamics of linear stationer systems like the entropy 

in thermostatics. However, in the case of non-linear constitutive equations, this significant role of the entropy 

production vanishes and only the partial derivatives of entropy production by thermodynamical forces have 

such attributions like the entropy production itself in the linear Onsager’s theory. Gyarmati had proved [6] that 

a realistic generalization of Onsager’s principle of last dissipation of energy is equivalent to the above 

Glansdorff-Prigogine theorem. These considerations feature again the dissipation potentials introduced by 

Rayleigh and Onsager. The theories mentioned above emphasize a strong correlation between the existence of 

minimum entropy production and the possible form of constitutive equations of dissipative forces and currents.  

Onsager proved the symmetry-relations and the potential dissipation behavior of entropy production by 

methods of fluctuation-theory. Hence the properties of constitutive equations connected to the extremal 

behavior of entropy production are not consistent with the field theory formulation of the non-equilibrium 

thermodynamics. In non-linear cases, unfortunately, such a generalized method does not exist to prove the 

potential behavior of the entropy production, (like for example to prove the higher-order Onsager’s relations). 

However, by the strong correlation of the stationary behavior of the entropy production and the mathematical 

form of the constitutive equations, an interesting question arises: when we accept the extremal behavior of the 
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entropy production what the consequences on the form of constitutive equations of non-linear thermodynamics 

are?   

To study this, we investigate the constitutive equations with condition fix the extreme (more general stationer) 

behavior of the entropy production.  

Materials and Methods 

Formulation of the extremum principle  

Let us study a stationer non-equilibrium thermodynamical system, containing a transport of n various in 

extensive, having ai  and 
j

i

 densities and current-densities. We assume that the system is in cellular equilibrium. 

In this case, the Gibbs relation is valid, and the entropy density of the system (s) is a state-function of n different 

ai  quantities. We define the conjugated intensives to ai  extensive as: 
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(1) 

According to the second law of the non-equilibrium processes, the entropy production density of the system is:  
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while 
j

ii
 entropy current transported together with the i-th extensive.  

The complete entropy production (P) and the complete detailed entropy-flux (Φs) are: 
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(3) 

where we used the Gauss-theorem in the second equation, and V and Ω are the volume and surface of the 

system, respectively. Simplifying the notations, we use the Einstein’s sum-convention like:  
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(4) 

The extremum theory of entropy production is formulated like a conditional extremum principle:  

 constwhenP s == min,
 

(5) 

This could be more precisely written in the isoperimetric variation-principle:  
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(6) 

where λ is a constant scalar multiplicator. This isoperimetric variation task could be reformulated by dual form 

when we investigate the conditional stationarity of Φs concerning constant P. In this case, the variation-principle 

and the Lagrangian are: 
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iiii
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(7) 

The case of linear constitutive laws 

The material equations are:  

 jR k

ik

i =
 

(8) 

where Rik is the second-order tensor of the Onsager’s kinetic coefficients, characteristic for the given material. 

In consequence of (7) the actual form of the Lagrangian is:   
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iiL  1
 

(9) 

The Euler-Lagrange- equation belonging to the variation of the current densities as sufficient condition for an 

extremum is: 

 ( ) ( ) jRjRjRjRR k

ik

kT

ki

k

ik

kT

kiik =→+=+  1
 

(10) 

where the upper index T refers to the transpose of the tensor.  

The entropy-production from this considering its constant demand, we get: 

 jjRjjR ik
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kiT

ik =
 

(11) 

It could be valid in all the arbitrary cases of current densities only, when λ=1, so the following Onsager’s 

symmetry-relations are valid:  

 
ik
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(12) 

The entropy-production will be minimal in this case, and this result remains valid in the case of quasi-linear 

constitutive cases as well. The symmetry-relations in (12) are more general than the original Onsager’s theory. 

This will be shown in the case of the thermo-diffusion.  

Results and Discussion 
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Thermodiffusion in the triclinic system 

In the case of thermodiffusion the global entropy-production and the detailed global entropy flux are [6]:  

Let us consider the following linear constitutive equations:  
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(15) 

With these equations the Lagrangian of (7) is:  

 

( )

)

(1
1

ki
ik

kαiq
ik

kαiq
ik

kqiq
iki

iα

i

iq

jjDjjD

jjjj
x

j

Tx

j

T
L












−−

−+



++



+
=

 

(16) 

Determination of the kinetic coefficients of (15) is possible from the Euler-Lagrange- equations belonging to the 

variation of i-th coordinate qji and αji of the heat and α-the chemical component current densities: 
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From these (due to the arbitrary current densities) we receive: 
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Using the (14) the λ=1, and hence we get the symmetry relations: 
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Last relations obtained elements of diffusion tensor αβDik are more general than found in the available literature 

[7].  
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General evaluation of the extremum principle: Based on the above description we show below an essential 

consequence of the extremum principle: it is the existence of the dissipation potential for the case of non-linear 

constructive equations. Very general symmetry relations (like was established by Li-Gyarmati-Rysselberghe [8], 

[9], [10]) are the consequence of the dissipation potential.  Suppose n different constitutive equations describe 

the system, instead of the linear constitutive equations (8). In this case, the Euler-Lagrange equations as 

conditions of extremum are: 
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Using (21), we get the following derivative tensors:  
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Assuming the continuity of second-order derivatives, using Young’s theorem, we obtain generalized reciprocity 

relations:  
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These relations are necessary and sufficient for the existence of a 
),( j

jj
 dissipation potential with the 
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The dissipation potential is tightly connected to the entropy production density.  

To show this calculation, the partial derivatives of σ by 
j

i

 and using (21), we get from (2): 
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In consequence:  
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moreover, from (24) follows: 
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Disregarding the scalar function  
)(0  j

 which depends only on the intensives, in consequence of (26) and 

(27) the dissipation potential satisfies the following significant relation:  
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Hence the dissipation potential   is Θ-the order homogenous Euler-function of the current transport densities. 

The entropy production density is zero at zero current densities, so Θ >0. However, due to the non-negativity 

of entropy production, Θ≥2, and an integer. In the case of Θ=2 the constitutive equations are linear, the 

reciprocity relations are Onsager-type and the Lagrange multiplicator λ=1.  

The Li-Gyarmati-Rysselberghe’s non-linear constitutive equations are derived from the Taylor series of the 

general equation (20): 
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 are the second- and third-order tensors of the kinetic coefficients.  

As we have seen above, in consequence of the various principles the dissipation potential is a homogeneous 

Euler function of the current transport densities. On the other hand, the first-order partial derivatives of the Euler 

functions (in our case the constitutive equations) are also Euler functions having an order less than the original 

was. Because the constitutive equations (29) are not homogeneous Euler functions, they cannot be derived from 

the dissipation potential. Consequently the linear equation alternatively, the second-order equation   
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could be derived from the potentials of second- and third-order. These could be constructed, for example, by 

the method of Vainberg [11] as follows: 
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(32) 

From the above potentials, we get in the case of the linear equation the while in non-linear case the reciprocal 

relations. 
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These last reciprocal relations are weaker than the Li-Gyarmati-Rysselberghe’s because that allows changing the 

cycle of the indexes of the third-order kinetic tensor, while (34) does not change the cycle of the indexes, only 

shifts ahead twice the last index, ie.  
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Also, these relations are a generalization of Li-Gyarmati-Rysselberghe-type reciprocal relation. The original 

reciprocity was introduced by Onsager for the case of α-type variables having even-functions of the velocities 

of molecular particles [12], [13]. This was generalized by Casimir for β-type variables, having odd-functions of 

the given velocities, [14]. The generalized reciprocity relations containing both the conditions are called Casimir-

Onsager-reciprocity relation, (CORR). Due to the unreasoning meaning of the velocity in quantum-mechanical 

conditions, there are certain doubts about the correctness of CORR. 

On the other hand in case of the magnetic field and rotating movements for the reversibility of the orbits of 

particles the mirroring of the axial vectors (like B and ω) is necessary. Accepting, however, the role of the 

molecular velocities in CORR, the mirroring has to be seen in the constitutive equations too. This is investigated 

below connected to the electric conductivity in triclinic system.  

Electric conductivity in the triclinic system in the presence of external magnetic field 

For simplicity, we suppose the investigated process is isotherm. In this case, the entropy density and the specific 

entropy current density could be written as:  
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where the intensity parameter φ is the electric potential. The linear constitutive equation is:  
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where R is the specific resistivity tensor of the given crystal, κ is constant material characteristics, and εijk is a 

permutation symbol, equal 1 when the series of I,j,k is even or -1 when odd permutation of numbers 1,2,3. The 

corresponding Lagrangian is:  
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With a variation of the j-th coordinate jj
 of electric current density, we get the following Euler-Lagrange-

equations: 
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which by algebraic rearrangement leads to the equations:  
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Regarding the λ=1 in case of linear constitutive equations as is, we receive the relations:  
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which is valid for every jj
 and Bk. However it could be satisfied only when the elements of the resistivity tensor 
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satisfy the well-known reciprocity relations. 
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A nonlinear generalization of the Prigogine-Glansdorff’s evolution criterion 

Introducing the dissipation potentials depending on the thermodynamic forces by Legendre transformation:  
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(46) 

It was shown by Prigogine and Glansdorff that the   thermodynamic potential depending on the 

thermodynamic forces at time-independent boundary conditions satisfies the following general condition of 

evolution:  
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In consequence of this and (44) the global entropy production (in the same way as was in the case of linear 

constitutive equations) satisfies the following general criterion of evolution:   
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This means that the global entropy production of a system with time-independent boundary conditions always 

decreases, till it reaches its stationer value determined by the global entropy-flux as a restriction.  
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When the global entropy production in case the fluctuations of the thermodynamical forces and the current 

densities satisfy the condition:  

 0P  (49) 

Then the stationary value is minimum, and regarding the (48) evolution criterion of the global entropy 

production is a Lyapunov-function. It has two significant consequences. First is that the stationer state is stable, 

and second that the system starting in any neighboring states of the final stationer, one always reaches the same 

final state by its evolution. Shortly: these systems (in this general formulation also) show the Bertalanffy’s 

equifinal behaviour [15]. 

Conclusions 

 We have demonstrated, that a suggested modification of the principle of minimum entropy production has 

essential applications in the theory of constitutive laws of non-equilibrium thermodynamics, including reciprocal 

relations. In the rigorous phenomenology, we may regard the reciprocal relations as experimentally proven 

axioms, or we have to derive them on the direct phenomenological way. We have to accept the opinion of 

Truesdell [16]: „if the reciprocal relations are true, we have to derive them by pure phenomenology also”. We 

did this job, showing the Onsager’s reciprocal relations and their dependence on magnetic induction field is a 

consequence of a phenomenological variations principle in the frame of linear constitutive equations. The 

existence of the dissipation potential is a consequence of the various principles, which was valid only in linear 

cases till now. In non-linear cases, these relations can be derived from a dissipation potential which is the 

homogeneous function of the current transport densities. The potential is at the same time assures the validity 

of the more general reciprocal relations than the Onsager’s. We had shown furthermore, that compatible theory 

with dissipation potential does not exist in the case of Li-Gyarmati–Rysselberghe’s constitutive equation; which 

anyway is frequently used in the non-equilibrium thermodynamics, because these are not homogeneous Euler’s 

functions.As a consequence of this and the general reciprocal relations, we have limits for the kinetic tensors of 

the Taylor approximation. The second-order tensor in the linear approximation shows asymmetry relation which 

is identical with the well-known Onsager’s reciprocal relation. This result suggests that the Onsager’s reciprocal 

relations are general in linear cases. Consequently, this approximation is same accurate as the linear case itself.  

In linear theory, the global entropy production decreased by evolution to stationer state (at constant boundary 

conditions) and became minimal when the system reaches its stationary case. Consequently, the derivative of 

the global entropy production concerning time is nonpositive. Two parts of the time-derivative of global entropy 

production (containing the time-derivatives of the thermodynamical forces and the time derivatives of 

thermodynamical currents) are equal and decreasing with the time-evolution of the system, realizing the 

minimal entropy production conditions. In non-linear case, the part that contains the time- derivatives of the 

thermodynamical forces decreases in the same way as in the linear one. However, we have no information about 

another part that contains the time-derivation of the thermodynamical currents. By Legendre transformation of 

the dissipation potentials depending on the current densities introduced another dissipation potential, which is 

a function of thermodynamic forces and we had proven their proportionality to the density of entropy-

production. According to Prigogine-Glansdorff’s evolution criterion and the properties of Legendre 

transformation, the time-derivative of this dissipation function is nonpositive. 

Consequently, the global entropy production decreases in every case and has a similar role in this non-linear 

theory as the entropy has in the linear thermodynamics. In consequence of this, the Prigogine-Glansdorff’s 

general evolution criteria are valid for the global entropy production like it is valid in the linear theory. When in 

stationer state the global entropy production of a system has a local minimum than it is described by a Lyapunov 

function. According to Bertalanffy, this system is equifinal, having equivalent final state starting in the vicinity of 

the stationer state. In case of convex dissipative functions when the local and global minima are equal, all the 

initial states are equifinal.  
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