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Abstract 

This Paper deals wit the effects of suction (injection) on magnetohydrodynamic (MHD) steady flow of a viscous 

and electrically conducting fluid in an annular porous region between two concentric cylinders. The inner 

cylinder is rotating with uniform angular velocity and the outer one is fixed. The two cylinders are  porous with 

uniform permeability. It is assumed that the suction rate at the inner cylinder is equal to the injection rate at 

the outer cylinder. A uniform axial magnetic field was applied perpendicular to the flow direction. The flow 

resistance presented by the porous medium is governed by the Darcy law. By using similarity transformation, 

the governing partial differential equations have been transformed to a system of nonlinear ordinary 

differential equations. The solution of the obtained system in its general form has been obtained. Analytical 

expression for velocity field is obtained in terms of Bessel function of first and second kind. The effects of 

various parameters such as susction (injection), magnetic and permeability parameters on the flow are 

discussed and the obtained results are presented graphically. The obtained figures show that, the velocity 

distribution increased with the increase of permeability parameter of the the porous medium and with suction 

process. On the other hand, the velocity distribution decreased with the increase of magnetic parameter and 

with injection parameter. 
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Introduction 

Flow in porous medium has been extensively investigated due to its numerous applications in geophysics, 

petroleum industry and chemical engineering etc. Many authors deal with the flow through porous cylinders 

[1-7]. It is known that even for the Newtonian fluid, if the cylinder surfaces are porous, a uniform suction 

applied on it can sensibly change the boundary layer structure, reduce the drag and hinder viscous diffusion of 

vorticity, [8, 9]. The flows of many other fluid models have been studied in this geometry, but we shall not 

discuss them here, [10, 11]. Terrill [12] carried out a detailed study of the laminar fow through a porous 
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annulus by assuming the swirl to be zero and presented a series solution for small suction or injection. In 

recent years, the requirements of modern technology have stimulated interest in fluid flow studies, which 

involve the interaction of several phenomena. One such study is related to the flows of fluid through porous 

medium due to their applications in many branches in science and technology, viz. in the fields of agricultural 

engineering to study the underground water resources, in petroleum technology to study the movement of 

natural gas, oil, water through the oil reservoirs and in chemical engineering for filtration and purification 

processes. Such problems have also important applications in geo-thermals reservoirs and geo-thermal 

energy extractions. It is obvious that in order to utilize the geo-thermal energy to maximum, one should have 

a complete and precise knowledge of the amount of perturbations needed to generate flow in geo-thermal 

fluids. Abu-hijleh [13, 14] analyzed convection heat transfer from a  cylinder  with porous medium. Hamza et 

al. [15] have concedred Poiseuille flow between two coaxial porous cylinders with slip on inner cylinder. 

Sharma et al. [16] investigates the unsteady flow of viscous incompressible fluid through porous medium 

induced by periodically heated half filled concentric cylindrical annulus placed horizontally. The effect of 

porous inserts on the natural convection heat transfer in a vertical open-ended annulus has been numerically 

investigated by Kiwan and Al-Zahrani [17]. Recently, the problem of two-phase unsteady MHD flow between 

two concentric cylinders of infinite length has been analysed by Jha et al. [18] when the outer cylinder is 

impulsively started. Some recent available literature dealing with the flows in second grade fluid can be found 

in Tan and Masuoka [19], Fetecau and Fetecau [20], Hayat et al. [21], Erdogan and Imrak [22], Sahoo [23], Ariel 

[24], Hayat et al. [25, 26, 27]. The effects of porous medium have been investigated by Hayat et al. [28] on the 

steady flow of a third grade fluid between two stationary porous plates. The governing nonlinear equations 

are solved by a homotopy analysis method. 

The effect of magnetic field on the flow becomes important when the flowing fluid is conducting fluid. An 

understanding of MHD flows is important to the control of liquid metal pumps, of MHD power generators, 

and of liquid metal heat exchangers in nuclear fusion reactors. Experiments and numerical simulations have 

been carried out to reveal the behavior of flow under the influence of a magnetic field. Mahapatra [29] has 

investigated the problems of unsteady motion of a viscous conducting liquid between two porous non-

conducting infinite concentric circular cylinders rotating with various angular velocities for some time in 

presence of a radial field. Khan et al. [30] found the analytic solution for flow of a MHD Sisko fluid through a 

porous medium by introducing the Darcy's law using the homotopy analysis method. In the limiting case, the 

obtained solution reduces to the well known solutions for a Newtonian fluid in non porous and porous media. 

Hayat et al. [31] investigated the MHD flow of a non-Newtonian fluid filling up the porous space in achannel 

with compliant walls. They used constitutive equations of a Jeffery fluid. Pantokatoras and Fang [32] 

investigate the Poiseuille and Couette flow in a fluid saturated Darcy-Brinkman porous medium channel with 

an electrically conducting fluid under the action of a magnetic and electric field. Exact analytical solutions are 

derived for fluid velocity. Zhao et al. [33] extend the previous work [32] to the case with a Darcy-Brinkman-

Forchheimer porous medium. Srivastava et.al. [34] have concedred Poiseuille and Couette flow of an 

electrically conducting fluid through a porous medium of variable permeability under the transverse magnetic 

field. They used the Brinkman equation for flow through the porous medium and obtained a numerical 

solution for velocity and the volumetric flow rate using the Galerkin method. 

Magnetic fluids can be considered as liquid mixtures made of magnetic particles chains and small molecules 

of solvent. At rest, the chains of suspensions are randomly entangled and they do not set up the suspensions 

structure. When the fluid is in motion, the chains tend to align themselves parallel to the direction of flow. This 

tendency increases with increasing shear rate, so that the effective viscosity decreases [35, 36]. The orientation 

of magnetic particles in solvent under the influence of an external magnetic field is of great importance owing 

to the possibility of changes in structure and the products formation. Under the effect of magnetic field these 

particles may rearrange themselves taking the same direction as the magnetic field lines (i.e. oriented parallel 

to the magnetic lines), a circumstance that lead to an increase in suspension viscosity. Sheikhzadeh et al. [37] 

studied numerically the flow field and the heat transfer of a non Newtonian fluid in an axisymmetric channel 

with a permeable wall. Santhosh et al. [38, 39] investigate the two fluid model for the flow of a Jeffrey fluid in 

tubes of small diameters in the presence of a magnetic field. 
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Fakour et al. [40] studied the heat transfer process in nanofluid and MHD flow in a channel with permeable 

walls. Aberkane et al. [41] study numerically the effect of an axial magnetic field imposed on incompressible 

flow of electrically conductive fluid between two horizontal coaxial cylinders. The effect of heat generation due 

to viscous dissipation is also taken into account. A finite difference implicit sheme was used in the numerical 

solution to solve the governing equations of convection flow and mass transfer. Aminfar et al. [42] studied 

experimentally the effects of using magnetic nanofluid and also applying an external magnetic field on the 

critical heat flux of sub-cooled flow boiling in vertical annulus. Seth and Singh [43] studied theoretically the 

effect of Hall current and a uniform transverse magnetic field on unsteady MHD Couette flow of class-II in a 

rotating system. Verma and Dixit [44] have concerned the MHD laminar steady flow of a viscous 

incompressible fluid in an annular porous region between two coaxial cylindrical pipes under the uniform 

transverse magnetic field. Beg et al. [45] presented a mathematical model for the steady, axisymmetric MHD 

flow of viscous, Newtonian, incompressible, electrically conducting liquid in a high porous regime intercalated 

between two concentric rotating cylinders in the presence of a radial magnetic field. The flow field of a third-

grad non-Newtonian fluid in the annulus of rotating concentric cylinders has been investigated by Dizaji et al. 

[46] in the presence of magnetic field.  

In the present problem we have studied the steady and laminar flow of a viscous, incompressible fluid in an 

annular porous concentric cylinders filled saturated porous medium under the uniform axial magnetic field. 

Our interest is in understanding the interaction between the viscous fluid and porous medium and the effect 

of suction or injection at the boundary. Exact solution is obtained and the results are presented for many 

cases. The Darcy's law is used for flow through a porous medium. The velocity field is obtained and exhibited 

graphically. The efect of various parameters has been analysed. It has been shown that, the efects of 

permeability and magnetic parameters have strong effects on flow characteristics. 

Formulation of the Problem 

We consider here the steady flow of an electrically conducting viscous incompressible fluid contained between 

two concentric porous cylinders which is filled with a porous medium. The inner cylinder is rotating with 

uniform angular velocity   around the system axis and the outer one is fixed. The walls of the cylinders being  

porous with uniform permeability. We use cylindrical coordinate system (r, , z) with the z-axis coincident with 

the common axis of the cylinders. We assume radius of inner and outer cylinder is 1R  and 2R , respectively. A 

uniform axial magnetic field B  of strength oB  is acting on the axial direction, figure 1. In the analysis, we 

assume that the induced magnetic field is negligible. 

 

For steady flow the equations governing the flow are the continuity and momentum equations: 

Fig 1: Schematic diagram of the problem and cross section of cylinders. 
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0V   ,                                                                                                                                                    (1) 

  fpVV 2  ,                                                                                                                       (2) 

here V  is the velocity, p is the pressure,  is the coefficient of viscosity and f  is the body force per unit 

volume. The presence of a magnetic field and porous medium require that an additional forces be included in 

the equations of fluid motion aside from the usual pressure and shear forces. The added force takes the form: 

 BJf  ,                                                                                                                                              (3a) 

V
k


  ,                                                                                                                                               (3b) 

where J  is the current density, B  is the magnetic induction vector,   is the Darcy resistance for the fluid in 

the porous medium,  and k are the porousity and the permeability of the porous medium. The current 

density may be expressed by the generalized Ohm’s law as: 

 BVEJ   ,                                                                                                                                           (4) 

in which the terms E  and  BV , respectively, represent the conduction and induction currents and  is the 

electrical conductivity. In the present study, we assume that the magnetic field is in z-direction. Therefore, 

neglecting the electric field E  in equation 4 and replacing B  by the externally applied field 

ẑBB o .                                                                                                                                                     (5) 

We shall seek an axisymmetric two dimentional solution and thus assume that all variables are independent on 

the coordinate  due to the symmetry about the z-axis.Therefore, In cylindrical coordinates the velocity field, 

magnetic force and and the Darcy resistance may be written as:  

])r(,)r(u[V  ,                                                                                                                                           (6) 
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k
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  .                                                                                                               (8) 

Therefore, the governing equations 1 and 2 in component form are: 
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We assume that the inner cylinder is rotating with angular velocity ẑ  while the outer one is kept 

stationary. The angular velocity at the inner cylinder  ˆRr̂Rẑ)R( 111  while at the outer cylinder 
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vanishes 0)R( 2  . The cylinders have porous walls and a constant radial velocity 1u  is applied to the inner 

one, denoting a uniform suction )0u( 1   or injection )0u( 1  . A suction at the inner wall corresponds to an 

injection at the outer one and vice versa. Therefore, the boundary conditions can be formulated as: 

0)R(,R)R(,u)R(u 21111  .                                                                                             (12) 

The solution of the continuity equation, 9, gives 

r

uR
u 11  ,                                                                                                                                                (13) 

the last equation satisfy the boundary conditions, 11 u)R(u  , which represents the suction value at the inner 

cylinder and gives the radial velocity component at 2R  as 
2

11
2

R

uR
)R(u   which represents the injection value 

at the outer cylinder. 

The following dimensionless quantities are used: 

2
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   ,                                                 (14) 

after straightforward computations it follows that the dimensionless radial velocity u is given by (after 

dropping the dimensionless mark "*" for simplicity):  

r

1
u   ,                                                                                                                                                       (15) 

and the dimensionless azimuthal velocity  satisfies the boundary value problem: 
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with the boundary conditions  

  0)(,1)1(  ,                                                                                                                      (17) 

where 

1

2
2
1

2
1

2
o211

R

R
,

k

R

K

1
,

RB
M,

K

1
M,

uR
S 












 ,                                                             (18) 

and S is the suction (injection) parameter, M is the magnetic parameter and K is permeability parameter. The 

values of M and K are an index to the relative importance of magnetic forces and permeability of the porous 

medium respectively. When 0M  , magnetic forces are absent; when M increases, the magnetic force 

becomes increasingly important. The value 0K   is for blocked medium (solid); and when K  (or 

0K/1  ) the annular region beween the two cylinders becomes a hollow cylinder.  
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Solution of the Problem 

Equation 16 is to be solved subject to the boundary conditions in equation 17. Also equation 16 can be 

reduced and an exact solution can be found. The classical Couette flow (Newtonian fluid without suction, 

mamnetic field and porous medium) is obtained as a special case. 

Special Cases 

(a) Couette flow with suction (injection) only 

In this case 0  (there is no magnetic field 0M   and hollow region between the two cylinders K ). 

Therefore, equation 16 takes the form: 

0
r

)S1(

dr
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r
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d
22

2
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 ,                                                                                                              (19) 

the solution of the last equation is: 

 2S

2S2S

1r

r
)r(
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
 .                                                                                                                                   (20) 

(b) Couette flow with magnetic field and porous medium 

For no suction (injection) an analytical solution of the system of equations 16 and 17 can be found. In this case 

0S   and the governing equation is: 
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 ,                                                                                                                    (21) 

the solution of the last equation is: 

)ri(YA)ri(JA)r( 1211  ,                                                                                                               (22) 

where 1J  and 1Y  are the Bessel functions of first and second kind, respectively. Using the boundary conditions 

17, 1A  and 2A  are obtained as follows 
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(c) Couette flow with suction (injection), magnetic field and porous medium 

In this case the general solution of the governing equations 16 and 17 is: 


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where 
2

2SJ   and 
2

2SY   are the Bessel functions of order 
2

2S  of first and second kind, respectively. 1C  and 2C  

are constants of integration. Introducing the boundary conditions 17, to equation 25 we have 
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,                                                                                           (27) 

Results and Discussion 

We noticed a strong correlation among the many parameters upon which the flow depends. Among a variety 

of numerical experiments we report here only the most significant: we always fixed 12 R2R   

( 2 ), 1,6.0,3.0,1.0,0S   (negative values for suction and positive values for injection), 

2.1,8.0,4.0,2.0,1.0M   and 9.0,5.0,2.0,1.0,03.0K  . A brief description of the efforts due to changes of 

each parameter is given below. In order to understand the physical situation of the problem and the effect of 

suction (injection), magnetic and porousity parameters, we have found the variation of velocity field for 

 r1  in all special cases and for values of the included physical parameters.  

The variation of velocity profile with suction and injection parameter S for fixed value 0M   and 0
K

1
  

)0or(   is shown in figures 2 and 3 for 2 . We observe that velocity profile decreases with increment in 

suction and increases with increasing injection in annular region of concentric cylinders. This is because 

increase in S means decrease in the permeability of the porous medium. For 0S   (suction) a strong 

departure of the solution is obtained from that for the case 0S  . The velocity profile becomes steeper and 

steeper at the inner wall as S grows. The fluid particles are pushed towards the inner wall and the velocity  

can overshoot values at the boundaries, figure 2. A similar effect is evidenced for 0S   (injection). The fluid 

particles are deriven to the outer wall, but it turns out that there is no solution if S exceeds some critical value, 

figure 3. 

Figures 4-6 give the velocity profiles in the presence of magnetic field for various values of suction (injection) 

parameter S. The influence of magnetic parameter M on the velocity profile is presented in figure 4 for 0S   

and 5.0K  . From these figures, it is noted that an increase in magnetic parameter M reduces the velocity 

profile monotonically due to the effect of the magnetic force against the direction of the flow. It is clear that, 

the velocity profile without magnetic field, 0M  , is quasi linear. An increase in magnetic parameter, which 

causes a reduction of the velocity in the annular space because the centrifugal force, is counter productive and 

the Lorentz electromagnetic foces acts as a flow damper. The effect of magnetic parameter M on the flow 

velocity for 6.0S   and 5.0K   is shown in figure 5. It is clear that,  the velocity decreases with increase in 

magnetic parameter. The same behaviour is shown in figure 6 for 6.0S   and 5.0K  . This is because of the 

fact that increase in magnetic field increases the Lorentz force in opposite to the direction of flow . So we can 

use magnetic field to control the fluid velocity. 

The enfluence of permeability parameter K on the flow velocity for fixed 0S   and 4.0M   is depicated in 

figure 7. From the figure we can observe that the velocity is showing increasing behavior with the increasing 

the value of K. The same behavour is observed in the presence of suction, 6.0S  , figure 8, and injection 

6.0S  , figure 9, for fixed 4.0M  . This is because permeability K increases as  decreases. 
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Fig 2: Effect of suction parameter on velocity profiles of the fluid in the annulus for 2 and 0 . 

 

 

Fig 3: Effect of injection parameter on velocity profiles of the fluid in the annulus for 2  and 0 . 
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Fig 4: Effect of magnetic parameter on velocity profiles for 0S   and 5.0K  . 

 

 

Fig 5: Effect of magnetic parameter on velocity profiles for 6.0S   and 5.0K  . 
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Fig 6: Effect of magnetic parameter on velocity profiles of the fluid in the annulus for 6.0S   and 

5.0K  . 

 

Fig 7: Effect of permeability on velocity profiles of the fluid in the annulus for 0S   and 4.0M  . 
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Fig 8: Effect of permeability on velocity profiles for 6.0S   and 4.0M  . 

 

Fig 9: Effect of permeability on velocity profiles for 6.0S   and 4.0M  . 
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Conclusions 

The main objective of the theoretical solution is to examine in detail the effect of suction and injection on 

MHD flow of  viscous and electrically conducting fluid in an annular porous region between two concentric 

cylinders. The walls are porous and a suction or injection is applied at one of them. The governing equation 

are solved in exact manner considering the Lorentz force to account the resistance offered by the magnetic 

field and Darcy's law to account the flow resistance presented by the porous medium. The obtained velocity 

profiles possess modified Bessel functions of first and second kind. The results presented show how the 

solution varies along the flow and exhibits a strong dependence on the suction parameter. The effects of 

various parameters on the flow characteristics such as suction (injection), magnetic and permeability 

parameters are studied and obtained results are exhibited graphically. In limiting case when magnetic field 

and permeability is zero the obtained results reduces to the classical results of Couette flow in an annular 

cylinder. Therefore, we conclude the following remarks: 

 An increase in suction (injection) parameter S decrease (increase) the velocity profile monotonically. 

 An increase in magnetic parameter M reduces the velocity profile monotonically due to the effect of 

magnetic force against the flow direction.This is because of the fact that increase in magnetic field 

increases the Lorentz force in opposite to the direction of flow. So we can use magnetic field to control the 

fluid velocity. 

 An increase in the parameter K yields an effect opposite to that of the magnetic field. 
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