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Abstract

In connection with recent studies of extremely long-living spin-cyclotron excitations
(actually magneto-excitons) in a quantum Hall electron gas, we discuss contribution to
the light-absorption related to the presence of a magneto-exciton ensemble in this purely
electronic system. Since the weakly interacting excitations have to obey the Bose-Einstein
statistics, one can expect appearance of a coherent state in the ensemble. A comparative
analysis of both incoherent and coherent cases is done. Conditions for a phase transition
from the incoherent state to the coherent one are discussed.
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Introduction

The cyclotron spin-flip excitation (CSFE) in the ν = 2 quantum Hall system, being
the lowest-energy one [1–3], has an extremely long lifetime. The latter is theoretically
estimated to be up to several milliseconds [4]. Actually, as is usually the case in relaxation
problems, the time experimentally turns out to be shorter due to the presence of additional
relaxation channels which could hardly be predicted before specific experimental study. In
fact the CSFE relaxation found experimentally in the unpolarized quantum Hall system
created in a GaAs/AlGaAs heterostructure reaches 100 µs [5] that seems to be a record
value for a delocalized state excited in the conduction-band electron system. Such a slow
relaxation suggests that ensemble of the excitations obeying the Bose statistics may
experience at sufficiently high CSFE concentration a transition to a coherent state –
Bose-Einstein condensate. Note that both the CSFE creation and the CSFE monitoring
are performed by optical methods [3, 5]. In this connection, it is interesting to study the
contribution to the light absorption related to the CSFE ensemble in the 2DEG. In the
present work we perform a comparative analysis of the absorption by the CSFE ensemble
in incoherent and coherent phases. (This also strongly correlates with the light emission
if the resonant reflection technique is used [5].)

The CSFE is a solution of the many-electron Schrödinger equation with the δS = 1
change of the total spin as compared to the ground state where S = 0. In other
words, generally, this excitation is a triplet with S = 1 and Sz = 1, 0,−1. All three
components have equidistant energies gapped by the Zeeman value |gµBB|. The lowest-
energy component corresponds to Sz = 1 because the g-factor is negative in the GaAs
heterostructures. We will consider only these S = Sz = 1 magnetoexcitons in our study.
A noticeable concentration of such excitations, N/Nφ . 0.1 (Nφ is the total number of
states in the spin sublevel of the Landau level), can be achieved experimentally [5]. At
high concentrations the inter-excitonic (CSFE-CSFE) interaction seems to become fairly
strong. Yet, in the following we study the exciton ensemble only in the ‘dilute limit’, thus
ignoring the CSFE-CSFE coupling. Due to the very long CSFE relaxation time we study
the exciton ensemble as a metastable system with a given number of excitons N .

First the dependence of the CSFE energy on the 2D momentum q in the ν = 2
unpolarized quantum Hall system was calculated by C. Kallin and B. Halperin [1]. The
authors studied the problem to within the first order in small parameter given by the ratio

of characteristic Coulomb energy EC to cyclotron energy ~ω
(e)
c (EC = 〈εq〉. e2/κlB, κ is

the dielectric constant, lB =
√

c~/eB is the magnetic length). Besides, they considered
the ultra two-dimensional limit in the absence of any disorder. Really the CSFE energy
counted off the ground-state level is determined by formula Eq = δ + Eq, where

Eq =
∫ ∞

0

ds e−s2/2Fee(s)

(

1− s2

2

)

[1− J0(sq)] (1)

is the q-dispersion (here and everywhere below q is measured in 1/lB units; J0 is

the Bessel function), and δ ≡ ~ω
(e)
c − |gµBB|+ ε0 is the q = 0 energy including the

cyclotron and Zeeman ones, and the negative Coulomb shift ε0 remaining nonzero even
if q → 0. (ε0 is calculated in the work [2] and experimentally measured in [3].) Here

Fee(q) = e2

κlB

∫∫

dz1dz2e
−q|z1−z2|/lB |χe(z1)|2|χe(z2)|2, where χe(z) describes the electron

size-quantized functions in the quantum well. The CSFE q-dispersion for the ν=1 filling
is the same as Eq in the ν = 2 case if obtained within the “single-mode approximation”.
So, an example of the calculation (1) for a certain real system is presented, e.g., in Ref.
[6]. It shows a very weak q-dispersion: |Eq| . 0.01EC down to q ∼ 1 (∼ 1/lB in common
units).
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The CSFE represents a purely electronic kind of magnetoexciton [7] where the quantum-
mechanical average of distance between positions of a promoted electron and an effective
‘hole’ (vacancy in the spin-down sublevel of the zero Landau level) is equal ∆r = lBq×ẑ
[1]. Thus this excitation possesses electric dipole-momentum

dq = elBq×ẑ. (2)

Results and Discussion

a. Incoherent state

Using the ‘excitonic representation’ technique (see, e.g, Ref. [8]) we study an incoherent
state of the CSFE ensemble:

|ini, N〉=Q†
qN
Q†

qN−1
...Q†

q1
|0〉, (3)

where operator Q†
q =Nφ

−1/2
∑

p e
−iqx(p+qy/2)b†pap+qy (first used in works [9]), acting on the

ground state |0〉, creates a magnetoexciton with 2D momentum q; |0〉 denotes the ν=2
ground state with a fully occupied zero Landau level; a†p is the operator creating an electron
on the upper spin sublevel of the zero Landau level with spin-down, i.e. antiparallel to the
magnetic field, and b†p creates an electron on the first Landau level with the spin directed
along the magnetic field (p-numbers are also measured in 1/lB units). Considering the
general case under the condition N ≪Nφ where all q’s are assumed to be different, one
can find the squared norm: 〈N, ini | ini, N〉=1+O(N/Nφ).

The perturbation operator responsible for the light absorption has the form

Â=A
∑

p

V †
p a

†
p, (4)

where V †
p is creation operator of a valence heavy-hole, and A is a certain constant.

Operator (4) is uniquely determined by two features of absorption: (i) only ‘vertical’
electronic transitions are relevant in the case, i.e. the photon generates pare consisting of a
valence hole and an a-sublevel electron – both in the same intrinsic p-states of their Landau
levels; (ii) all p-states equiprobably participate in the absorption process. Such properties
of the light absorption are related to the condition L kphoton‖ ≪ 1 where length L is a
characteristic of the electron 2D-density spatial fluctuations and kphoton‖ is the photon
wave-vector component parallel to the electron system plane. This condition actually
is of met [5]. The action of the Â operator on state |ini, N〉 results in the A

∑

i |f,qi〉
combination of N states:

|f,qi〉=−X̂q

∏

j6=i

Q†
qj
|0〉. (5)

Here X̂q = Nφ
−1/2

∑

p e
−iqx(p+qy/2)V †

p b
†
p+qy is the exciton operator which, by acting on the

ground state generates the valence hole and the b-sublevel electron. If N ≪ Nφ, then

neglecting any interaction of Q†
qj
|0〉 excitons with each other and with the X̂q|0〉 exciton,

we find |f,qi〉 has a norm approximately equal to unity. Matrix element squared for
transition to the final state |f,qi〉 is

|Mi|2=〈qi, f |Â|ini, N〉2 ≈ |A|2 (6)

The following calculation of the absorption rate represents a procedure of summation over
all possible final states

RI = (2π/~)
∑

i

|Mi|2δ(Dqi
) ≈ (2π|A|2/~)

∑

i

δ(Dqi
). (7)
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The used approach is actually single-excitonic, hence

Dq = ~ω+Eq−Ev−e,q, (8)

where ω is the probing laser-beam frequency, Eq the total energy of the CSFE Q†
q|0〉,

and Ev−e,q the energy of creation of the valence-hole–conduction-electron magnetoexciton
state,

|v − e,q〉 = Nφ
−1/2

∑

p

e−iqix(p+qiy/2)V †
p b

†
p+qiy |0〉 . (9)

The following study, i.e., in fact, summation of the δ-functions in Eq. (7), becomes
impossible without a certain concretization concerning the initial state (3), representing
actually the distribution of the qi-numbers over their possible values. This distribution
is established and determined by two competing effects: by thermal diffusion related
to interactions with phonons, and by drift motion, where the drift velocity of the
magnetoexciton ∂Eq/∂q is determined by two parameters, namely, momentum q and

smooth random electric field ~E =−∇ϕ(r) [r=(x, y)]. We assume that only drift motion
accompanied by cooling due to phonon emission results in establishment of the initial
state (3).

First, let us study a domain with linear dimensions smaller than the spatial dispersion
parameter Λ of the smooth random potential ϕ but still larger than the magnetic
length. (For definiteness we will consider Λ to be the correlation length of the ϕ spatial
distribution, and the mean value of the potential is ϕ≡0.) Within this domain we use a
gradient approximation considering field ϕ(R) as well as gradients ∇Rϕ and coordinate R
as parameters inherent to the domain (for example, R indicates the domain center.) So,

within the domain the electrostatic term in the Hamiltonian is equal to ϕ̂= ~E (R)
∑

i ri

and, when choosing ~E ‖ x̂, in terms of secondary quantization it is presented as

ϕ̂ = E lB

[

∑

σ=↑,↓

(K̂†
σ + K̂σ)− P̂y

]

(10)

(E denoting | ~E |), where

P̂y =
∑

n,p,σ=↑/↓

p c†npσcnpσ (11)

is a component of the Gor’kov-Dzyaloshinsky momentum operator P̂ [7] rewritten in the
‘generalized’ form valid for purely electronic magnetoexcitons in a quantum Hall system
(see Ref. [10]; in particular, P̂Q†

q|0〉=qQ†
q|0〉). Operator

K̂†
σ =

∑

n,p

√

n+1

2
c†n+1pσcnpσ (12)

is the Landau-level ‘raising’ operator; c†npσ is the creation operator for the n-th Landau
level, e.g., ap ≡ c0p↓ and bp ≡ c1p↑. Now we can obtain the contribution of electrostatic
term (10) to magnetoexciton energy Eq. The first order correction is 〈0|Qq|ϕ̂|Q†

q|0〉 ≡
−lB ~E ×〈0|Qq|P̂†|Q†

q|0〉 = lB(q × ~E )z. In principle, the second order correction should
be determined by the K-terms of operator (10). By so calculating, attention should be
given to the fact that the energy of the Q†

q|0〉 state is counted off the ground state energy.
However, the latter for its part also includes second order electrostatic correction, and both
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corrections turn out to be equal. Thus, the difference vanishes and the total correction is
reduced to a null result [11].

Now we can write out the relevant energy of the magnetoexciton within the domain. We
consider its q dispersion (1) in the vicinity of the weakly manifested roton minimum (see
Ref. [6]). So, to within a constant independent of the parameters q and R, the relevant
part of the energy is

E ′(q,R) = α(q − q01)
2 + lB(q× ~E )z , (13)

where parameters α and q01 are positive and supposedly estimated as α≃ 0.1meV and
q01 ≃ 1 (in the 1/lB units). This energy reaches a local minimum value at q = qm(R) =

− (lB/2α+q01/E ) ~E×ẑ which is the root of equation ∂E/∂q = 0. The local minimum
corresponds to zero velocity and, hence, to the zero drift velocity of the electron and
effective ‘hole’ composing the magnetoexciton. Physically this means vanishing of the
total electric field that acts on each quasiparticle since the electron-‘hole’ interaction field
just compensates the external one. It is natural to consider the initial metastable state
corresponding to this minimum. Due to cool-down processes, diffusion and drift, which
are fast compared to the CSFE lifetime, the magnetoexciton gets “stuck” in the smooth
random potential with energy δ′+ Em(R), where

Em(R) = E ′(qm,R)= −lBq01E − (E lB)
2/4α. (14)

(δ′ is a constant independent of R; cf. the study of spin-exciton kinetics in Ref. [12]). Thus,
the system represents a frozen but chaotic state held by the smooth random potential.
Magnetoexciton trapping occurs only in domains where |Em|& T , hence, for T ∼ 1K we
get lBE & 1K (i.e. E & 100V/cm). In principle, this is in agreement with the mean E

value expected for the wide-thickness quantum well employed in the experiment.
The final state |v− e,qm〉 emerging within the domain as a result of photon absorption

is explicitly defined. It represents a ‘common’ two-particle 2D magnetoexciton studied,
for instance, in Ref. [13] which is now, however, considered against the background of the
zero Landau level completely occupied by conduction-band electrons. This background
is a rigid system whose state, if calculated to the first order in the Coulomb interaction
and external electric field, is not changed even in the presence of the magnetoexiton.
The occupied electronic Landau level for its part does not influence the q-dispersion
of the energy Ev−e,q studied within the same approximation. However, if we discuss
the q-dispersion using, as in Refs. [7, 13], the parabolic valence band model, allowance
should be made for the fact that the corresponding effective formfactor Fve(q) in the
dispersion equation similar to Eq. (1) is still larger than Fee(q). (It occurs owing to the
greater “compactness” of heavy-hole size-quantized function |χv(z)|2 compared to electron
function |χe(z)|2.) Energy dependence on the external random field can be studied in the
way described above with the only replacement of the field operator ϕ̂ by the operator

ϕ̂ − ~E(R) rh, where rh is the position of the valence hole within the domain. The first
order correction in electric field E is the same as for the purely electronic magnetoexciton.
Meanwhile the second order correction does not vanish. Indeed, first, the ∼ E 2 corrections
to energies of purely electronic states b†p|0〉 and |0〉 determined by the Eq. (12) operators
do not compensate each other now, unlike the situation above taken place with the states
Q†

q|0〉 and |0〉. Second, the ∼ E 2 correction to the state V †
p |0〉 should also be taken into

account. As a result, the total correction is the same as that found by L.P. Gor’kov and
I.E. Dzyaloshinsky [7]. Finally, the relevant part of the Ev−e,qm

energy is

Ev−e(qm,R) = β(qm − q02)
2 + lB(qm× ~E )z−

E 2l2B
2~

(

1

ω
(e)
c

+
1

ω
(h)
c

)

, (15)
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where β > α, q02 ∼ 1; ω
(e)
c and ω

(h)
c are the cyclotron frequencies in the conduction and

valence bands, respectively. The last term in Eq. (15) is definitely small and, within the
framework of the absorption mechanism studied here, it has to be taken into account
only in the symmetric case where α ≈ β and q01 ≈ q02. However, this term also becomes
essential in further calculations relating to the coherent ensemble of magnetoexcitons.

Domains participating in summation (8) must satisfy two conditions: (i) they contain a
magnetoexciton and (ii) correspond to a vanishing argument of the δ-function. Therefore,
to within a constant C independent of the coordinate, we come to the equation ~ω−C =
Ev−e(qm,R)−Em(R) for R. This equation, by substituting expressions (14) and (15), can
be rewritten as

F (R) = ~ω − const , (16)

where

F (R) = (β/α)lB(q01− q02)E + (β − α)(E lB)
2/4α2 , (17)

and const is a combination of the forbidden gap and the Coulomb, Zeeman and cyclotron

shifts relevant to the case (the ∝ E 2/ω
(e,h)
c terms are ignored). The frequency ω of the

probing laser beam seems to be appropriately tuned in order to ensure a maximum signal,
i.e. specifically, in terms of our study, to provide the maximum number of domains
participating in the sum (7). The solution of Eq. (16) determines a certain line in
the (X, Y ) plane. We introduce local orthogonal coordinates s and u, where s is the
length along the line, and unit vector û is parallel to ∇F . Obviously, in the general
case of a smooth and random field F (R) (these features are related to smoothness and
randomicity of E ) the line represents a closed non-self-intersecting curve (loop) with a
length determined by the inhomogeneity characteristic Λ and frequency ω. First, consider
a certain domain du×ds adjacent to the curve. If the distribution of magnetoexcitons
over area S = 2πl2BNφ of the spot created by the pumping laser is equiprobable, then
the probability to find a CSFE within the domain is (N/S)duds and the contribution of
the domain to the sum in Eq. (7) is (N/S)ds

∫

δ(|∇F |u)du = Nds/S|∇F |. Summating
over all such domains we estimate the contribution of a single loop to the sum (7)

as NLω/S|∇F |, where Lω is the loop length and |∇F | is the mean value along the
loop. It is natural to assume that at frequency ω corresponding to the maximum of
the absorption signal the largest contribution to the (7) signal is provided by ‘standard’
loops (cf. discussion on electron-drift trajectories in a quantum Hall system presented
in Ref. [14]). For those we estimate Lω ∼ πΛ′ where Λ′ is the linear characteristic of
the inhomogeneity for the E = |∇ϕ| field, and, hence, Λ′ ∼ Λ. A more delicate estimate

shows that Λ′= kΛ where k<1. Indeed, for example, if it is assumed that E ≃
√

(∇ϕ)2

and ϕ is a Gaussian random field, then (∇ϕ)2 = 2(∆/Λ)2 [∆ describing the potential

amplitude
(

ϕ2
)1/2

]. Therefore, E ≃
√
2∆/Λ, and k ≃ 1/

√
2 in this case. By analogy

we find |∇E | ≃ ∆/Λ′2 and |∇E 2| ≃ ∆2/Λ′3. These estimates should be substituted

into |∇F | ∼ (β/α)lB|q01− q02||∇E |+(β−α)|∇E 2|l2B/4α2. The last step in performing
the summation in Eq. (7) is the calculation of the total number of standard loops
corresponding to frequency ω. Intuitively, this number is γS/(πΛ′2/4) with the factor
γ ≃ 1/4 for standard loops. Multiplying it by the contribution of one standard loop found
above, we obtain an estimate for the absorption rate RI =KIN , where KI is the “oscillator
strength”:

KI = 2π|A|2/~Φ∆ . (18)
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In this formula

Φ(B,Λ,∆) ∼ |q01 − q02|
√
2βlB
αΛ

+ (β/α− 1)
∆l2B
2αΛ2

. (19)

Since α, β and lB are inversely proportional to the square root of the magnetic field B,
the oscillator strength (18) should grow with B.

b. Coherent state

The employed single-exciton approximation fails with growing magnetoexciton density
n=N/S. We discuss the dependence of the oscillator strength on density n at temperature
which is certainly assumed to be lower than the value that enables to consider the
incoherent magnetoexciton system as a frozen spatial chaos. Two scenarios of the influence
of the inter-exciton interaction on the oscillator strength may be assumed. The first
represents a gradual evolution: the larger is the magnetoexciton density, the smoother
becomes the effective random potential since the increasing density apparently results in
larger effective correlation length Λ. Indeed, dipole momenta dqm

(2) oriented to minimize
electrostatic energy should also create in the 2D space a screening electric field reducing
the external one. The absorption signal should grow with weakening of the random electric
field E ∼ ∆/Λ [see Eqs. (18) and (19)].

In the other scenario, which we will consider in more detail, the oscillator strength
increases abruptly at a certain value of n = nc. This increase can be explained by
spontaneous rearrangement of the magnetoexciton system. We do not study the origin and
features of this ‘phase transition’ definitely related to the inter-magnetoexciton interaction
and favorable for occurrence of a coherent state. Moreover, we will stay within the
framework of a model formally ignoring the inter-magnetoexciton interaction.

We demonstrate how the light absorption rate can be estimated within the framework of
the model of the coherent state where a considerable number of magnetoexcitons belongs
to the same state, i.e. they have equal wave vectors. First, we consider a cluster with area
L×L (so that Nφ =L2/2πl2B) where all N excitons in the cluster form a single coherent
state. Now, instead of the initial state (3), we have

|N〉=(Q†
q)

N |0〉. (20)

The energy ENq of this state does not depend on any spatial fluctuations of the
electrostatic field in the case of a large size of the cluster: L ≫ Λ. Indeed, at constant q

summation of electrostatic contributions lB(q×ẑ)∇ϕ(r) over the cluster area is reduced to
integration ∝

∫

dr∇ϕ(r) and thereby yields zero result. However, if L.Λ, the electrostatic
energy still contributes to EN,q. The norm of state (20) is calculated in the same way as
it was done earlier in the case of q≡0 [15]. The result,

R2
N =〈N |N〉=N !Nφ!/NN

φ (Nφ−N)!, (21)

does not depend on q. Now we find the result of the Â operation [see Eq. (4)] on the initial

state: Â|N〉 = −ANX̂q|N−1〉. Within our approximation ignoring any inter-excitonic

coupling we obviously can consider |fq〉= X̂q|N−1〉 as the final state that has norm equal
to RN−1 and energy EN−1q+Ev−e [see Eq. (15) for Ev−e], and thus calculate the transition
matrix element squared

|MN |2 = (|〈f |A|N〉/RnRN−1)
2 ≈ |A|2N. (22)

(the N ≪ Nφ condition is used). This result is by factor N larger than |Mi|2 found in
the above calculation (see also [16]). However, the comparative absorbing capacity must
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again be estimated by calculating the oscillator strength, and again we are forced to take
into account the external random field.

Indeed, according to Eq. (15) the energy of the Xq|0〉 exciton depends on the field
E (R). We divide the cluster area L×L into small domains parameterized by coordinate
R, and therefore consider E (R) and ∇E(R) within every domain as constant parameters.
(Linear dimension of the domain is assumed to be smaller than Λ but larger than lB.)
Then the matrix element for transition resulting in creation of the Xq|0〉 exciton within
the R-domain is determined by Eq. (22) with N replaced by n dR. (n = N/L2 to describe
density of CSFEs considered to be constant in the cluster.) Thus the absorbtion rate
represents a sum over all domains – actually integration over the 2D space:

RII=
2π|A|2n

~

∫

dR δ(~ω+EN,q− EN−1q− Ev−e,q). (23)

Considering the difference ENq− EN−1q− Ev−e(q,R) within the domain [see Eq. (15)
for Ev−e] we conclude that first-order electrostatic terms lB(q× ẑ)∇E(R) are again
compensating each other in the initial and final states, and therefore do not enter the
difference. Now, however, the electrostatic contribution to the argument of the δ-function
in Eq. (23) is related to the ∝ E

2 terms in Eq. (15). The situation differs from the

previous one in replacement of the field F (R) with the field −E 2(R)
(

1/ω
(e)
c +1/ω

(h)
c

)

l2B/2~.

Considering the (u, v) local coordinate system (dR = dudv) we choose unit vector û
directed along the gradient ∇E 2(R). As a result, estimating |∇E 2| ∼ ∆2/Λ′3, we find
according to Eq. (23): first, the contribution of one ‘standard’ loop to the absorption rate;
and, finally, multiplying by the number of standard loops within the cluster ∼L2/πΛ′2

(assuming L ≫ Λ), the contribution of the cluster to the absorption rate RII = KIIN ,
where the oscillator strength is

KII ∼ |A|2πω(h)
c (Λ/lB∆)2 (24)

(it is taken into account that ω
(h)
c < ω

(e)
c and Λ′ ≃ Λ). Thus, the enhancement of the

absorption/reflection signal due to magnetoexciton clustering is KII/KI. In the case where
the first term in Eq. (19) is assumed to be larger than the second one we obtain

KII/KI ∼
~ω

(h)
c βΛ|q01 − q02|

αlB∆
. (25)

Using actual experimental data [5]: ∆/~ω
(h)
c ≃0.1, α/β≃0.5, lB/Λ≃0.2, and |q01 − q02|≃

0.1, we obtain an estimate

KII/KI ≃ 10 .

So, when studying the light absorption/refelection, we expect an amplification effect
approximately by an order of magnitude in the case of a quantum transition from the
incoherent phase of the CSFE ensemble to the coherent one.

Conclusion

In conclusion, we estimate the CSFE concentration N/Nφ at which the above single-
exciton approximation definitely fails. The effect of magnetoexciton interaction is studied
using the classical approach and considering the electro-dipole-dipole interaction. In case
all their momenta are equal to q, the total interaction energy of the magnetoexcitons is

U =
ECl

3
B

2

∑

i,j

[

q2/R3
ij − 3(q×Rij)

2/R5
ij

]

. (26)
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[we recall the magnetoexciton dipole momentum is given by Eq. (2)]. Here Rij=Ri−Rj

is vector in the 2D space directed from the i-th magnetoexciton to the j-th one, and
EC=e2/κlB ≈ 9meV if B ≃ 5T. After averaging over angles between q and Rij at given
value q and at fixed distance Rij one finds that the average interaction is attractive. This
property of the CSFE-CSFE interaction reveals that (i) in the absence of disorder the
dilute limit is hardly valid for a long-living magnetoexciton ensemble; (ii) in the presence
of a smooth random potential the inter-magnetoexcitonic interaction favors clasterization
of magnetoexcitons and thus formation of a coherent phase.

Then changing in Eq. (26) from summation to integration:
∑

i,j ... → (N2/S)
∫

... dR

(where Rij→R and S = L2 is the area), we obtain an estimate U∼−πq2l2BN
2EC/2lS ≡

−N2q2lBEC/4lNφ. Here l is the lower limit of the integral which has been set equal to
the magnetoexciton characteristic ‘dimension’ qlB if q ∼ 1 (however one must consider
l∼ lB in the q≪ 1 case). The interaction energy per one magnetoexciton, U/N , should
obviously be compared to energy (14) holding the magnetoexciton by the external random
potential. If q≃1, E ≃∆/Λ where ∆≃0.5−0.8meV and Λ=50 nm, then the comparison
leads to an estimate for the critical concentration N/Nφ ≃ 5-7% essentially rearranging
the initial incoherent state.
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