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Abstract 

Research into ancient physical structures, some having been known as the seven wonders of the ancient world, 

inspired new developments in the early history of mathematics. At the other end of this spectrum of inquiry 

the research is concerned with the minimum of observations from physical data as exemplified by Eddington’s 

Principle. Current discussions of the interplay between physics and mathematics revive some of this early 

history of mathematics and offer insight into the fine-structure constant. Arthur Eddington’s work leads to a 

new calculation of the inverse fine-structure constant giving the same approximate value as ancient geometry 

combined with the golden ratio structure of the hydrogen atom. The hyperbolic function suggested by Alfred 

Landé leads to another result, involving the Laplace limit of Kepler’s equation, with the same approximate 

value and related to the aforementioned results. The accuracy of these results are consistent with the standard 

reference. Relationships between the four fundamental coupling constants are also found. 
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1. Introduction   

Natalie Paquette has stated that “Mathematicians discovered group theory long before physicists began using 

it. In the case of string theory, it is often the other way around. Physics has lent the dignity of its ideas to 

mathematics. The result is what Greg Moore has called physical mathematics.” [1, 2]. For an additional 

comprehensive overview of these results see the work of Terry Gannon [3]. Édouard Brézin is “... in agreement 

with Paquette. We should expect to see more new insights in mathematics emerging from the rich structure of 

physical problems.” [4]. Robbert Dijkgraaf states, “Mathematics has a long history of drawing inspiration from 

the physical sciences, going back to astrology, architecture and land measurements in Babylonian and 

Egyptian times.” [5]. From Arnold Sommerfeld in the history of physics [6], Stephen Brush writes that in 1916 

“Arnold Sommerfeld generalized Bohr’s model to include elliptical orbits in three dimensions. He treated the 

problem relativistically (using Einstein’s formula for the increase of mass with velocity), ... According to 

historian Max Jammer, this success of Sommerfeld’s fine-structure formula ` ... served also as an indirect 

confirmation of Einstein’s relativistic formula for the velocity dependence of inertia mass.’” [7]. The 

electromagnetic coupling constant determining the strength of its interaction is the fine-structure constant 

α =    ⁄ ℏc in cgs units with the elementary charge e, the reduced Planck’s constant ℏ = h ⁄ 2π and the speed of 

light c. As Max Born wrote, “It is clear that the explanation of this number must be the central problem of 

natural philosophy.” [8]. This was a view also shared by Wolfgang Pauli [9, 10].  

2. Eddington’s Principle  

Regarding relativity and quantum mechanics in Dirac’s work on the electron spin, “It was not till the initiative 

inspired by Dirac’s equation that Eddington had the notion of a bridge between the theories. Comparing 

treatments would give numerical values for certain physical constants.” [11]. Helge Kragh writes, “Like many 

contemporary physicists, Dirac believed that ultimately α should be explainable by physical theory. As late as 

1978, he wrote: ‘The problem of explaining this number [fine-structure constant] is still completely unsolved. ... 

I think it is perhaps the most fundamental unsolved problem of physics at the present time, and I doubt very 

much whether any really big progress will be made in understanding the fundamentals of physics until it is 

solved.’” [12]. Helge Kragh also states that, “By 1929 the fine-structure constant was far from new, but it was 

only with Eddington’s work that the dimensionless combination of constants of nature was elevated from an 

empirical quantity appearing in spectroscopy to a truly fundamental constant.” [12]. In addition, Kragh states, 

“He was also the first to argue that α was of deep cosmological significance and that it should be derivable 

from fundamental theory.” [13]. Eddington asked himself what the minimum amount of data from observation 

was required for a physical theory. This led to Eddington’s Principle from which he maintained that the value 

of the inverse fine-structure constant was 136, which he later changed to 137. Eddington’s Principle is defined 

as: “All the quantitative propositions of physics, that is, the exact values of the pure numbers that are 

constants of science, may be deduced by logical reasoning from qualitative assertions without making any use 

of quantitative data derived from observation.” [14].  

3. Fine-structure constant 

Nikos Salingaros says, “Eddington anticipated results of current interest. He discovered the Majorana spinors, 

and was responsible for the standard    notation as well as the notion of chirality. Furthermore, Eddington 

defined Clifford algebras in eight and nine dimensions which are now appearing in grand unified gauge and 

supersymmetric theories. A point which Eddington cleared up, yet is still misunderstood, is that the Dirac 

algebra corresponds to a five-dimensional base space.” [15]. In addition, “Eddington did not clearly anticipate 

current physical supersymmetry theories. He did sense that a larger Clifford algebra would be useful in a 

symmetrical description of nature, and in this aspect he was entirely correct.” [15], also see [16]-[19]. As the 

use of advanced algebras grew in the study of symmetry another development of interest happened in 1974 

when Howard Georgi and Sheldon Glashow proposed SU(5) as “ ... the gauge group of the world — that all 

elementary particle forces (strong, weak, and electromagnetic) are different manifestations of the same 

fundamental interaction involving a single coupling strength, the fine-structure constant.” [20]. As Giora Shaviv 

points out “... if you consider a symmetric matrix in 16 = 4 × 4 dimensions, then the number of independent 
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terms in this matrix is ... 136.” [21]. Eddington: 16 + (162 − 16) ⁄ 2 = 256 − 120 = 136. Inverse fine-structure 

constant is a root of:  

                                              

This equation gives a value of for x as     ≃ 137.035 999 168. The inferred value for the inverse fine-structure 

constant determined from quantum electrodynamic theory and experiment with the least standard uncertainty 

in CODATA results is     ≃ 137.035 999 160 (33) [22]. The other root of the equation is approximately 1 ⁄ 818 

and 818 = (136 + 1 ⁄ 3)6 = (4 × 136) + (2 × 137).  

In William Eisen’s research on the geometry of the “Golden Apex of the Great Pyramid,” his interpretation 

involving Euler’s identity, exp(iπ) + 1 = 0 shows a drawing of four curves of    from x = 0 to x = π, one curve on 

each side and labelled the “Graphical Representation of the Exponential Function to the Base e.” [23]. Dividing 

the side lengths of the Great Pyramid by π lengths results in a small central square called the Golden Apex, the 

geometry associated with the fivefold symmetry of the Great Pyramid and the four forces of nature [24]. 

Golden Apex A: 

          ≃      ≃      ≃                      

A is the side length of the Golden Apex square. √A ≃ e ⁄ 7 and A + 1 =   − 7π ≃ R,  radius of the regular 

heptagon with side equal to one, R − 1 = 2sin(π ⁄ 7). The sin(2πA) ≃ φ ⁄ 2,  where φ is the golden ratio [24]. Also 

related, √A + 1 ≃ K ⁄ 2π,  see references in [24]. The polygon circumscribing constant is K ≃ 2tan(3π ⁄ 7) 

≃    ⁄ 2A [25]. The Golden Apex A and the golden ratio relate simple approximations involving the four 

fundamental coupling constants: 

 ≃            ≃        ≃     ≃          
  ,   (3) 

where    is the weak nuclear force coupling constant,    is the strong nuclear force coupling constant and    

is the gravitational coupling constant [26]. The inclusion of the four fundamenal coupling constants in the 

Golden Apex design is part of the symbolic interpretation presented by William Eisen [23]. Other brief 

approximations involving the four fundamental coupling constants include: A ≃ 4πφα ≃     ⁄        ≃ πφ   

 ⁄ 4 ≃ K√π ⁄     
  . The Weinberg angle,        ≃ cot(3π ⁄ 7) ≃    . The Golden Apex A has more relatively 

simple approximations:  

 ≃      ≃     ≃     ≃         ,     (4)   

with the fine-structure constant and the related Laplace limit of Kepler’s equation, λ [27, 28]. Raji Heyrovska 

found that the Bohr radius was divided by the golden ratio into two different sections giving     ≃ 

(360 ⁄   ) − (2 ⁄   ) [29], with a difference from experiment possibly due to the g-factors of the electron and 

proton [30]. Her equation was then extended with the Golden Apex A and the polygon circumscribing 

constant K [31]. Related to Golden Apex geometry [27], 667 − 178 − 49 = 440,  4 + 49 + 49 + 178 = 280,  

667 + 136 − 137 = 666 and 4 + 49 + 667 = 280 + 440 = 720 [24]. Fine-structure constant α ≃ A/ x,  x is a root 

of:  

                                            

This equation gives a value for     ≃ 137.035 999 168.  Another approximation involving the golden ratio is 

also related to Eq. (1), recalling some of Eddington’s work, 136 + 136 + 48 = 440 − 120 and 280 = 136 + 144. 

Also, 346 − 280 − 36 = 30,  280 − 30 = 250,  3 × 36 = 108,  3 × 48 = 144 and      +      =      [24]. This 

polynomial equation gives a value for the inverse fine-structure constant     ≃ 137.035 999 168 and     ≃ 

φx,  where x is a root of: 
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In 1939 Alfred Landé, who found the Landé g-factor of the electron, stated that the sinh(2π) was significant to 

an understanding of the fine-structure constant [32, 33]. From the Golden Apex view,     ≃ λsinh(2π) ⁄ KA ≃ 

sinh(2π) ⁄ λ√K and αsinh(2π) ≃      (4 ⁄ π) ⁄       (1 ⁄ 2),  base angle of the physical structure defining the 

Golden Apex A divided by the ancient ‘golden angle’ [24, 31]. Another Landé inspired approximation of 

αsinh(2π) is a root of a cubic equation. The root of this cubic equation divided into sinh(2π) gives a value for 

    ≃ 137.035 999 168. 

                                            

with Fibonacci numbers, 517 − 377 = 140,  377 − 137 = 240,  720 − 377 = 377 − 34 and 89 = 122 − 33 [24]. Also, 

818 − 440 − 377 = 137 − 136. Related to Alfred Landé again is the Laplace limit of Kepler’s equation, λ ≃ 

A ⁄     ≃ φπ      [28] and π ⁄    ≃        where       = μ is the real fixed point of the hyperbolic 

cotangent related to the anomalous magnetic moment of the electron: sinh(μ) ≃     and αsinh(2π) ≃ 2μ√λ 

[34]. For the value of     ≃ 137.035 999 168 as the inverse fine-structure constant:     ≃ x ⁄ λ,  where x is a 

root of: 

                                               

Related, 455 − 375 = 360 − 280,  455 ⁄ 5 = 5 + 86,  375 − 136 − 86 = 153 and 153 ⁄ 136 = 9 ⁄ 8,  from the source 

geometry of the physical structure determining the Golden Apex [27]. Additionally, 137 + 137 = 360 − 86,  and 

455 − 375 = 440 − 360. Also related, 360 + 360 ⁄ 5 = 432 ≃ 360π ⁄    ≃ φsinh(2π). With hyperbolic functions, 

    ≃        λ ≃        μ and φ ≃       (2μ). The dimensionless proton-electron mass ratio is    ⁄    

≃   sinh(2π) and    ≃ A +      ≃ 7 − A.  

4. Squaring the circle  

Squaring the circle has been a metaphor for the effort to unify relativity and quantum theory [35]. Related to 

the squaring of the circle are more approximations involving the four fundamental coupling constants. The 

proportion significant to ‘squaring the circle’ in the classical tradition was found by John Michell and 

presented in his study of what he named the Cosmological Circle: 3 ⁄ 11 ≃ √φ − 1 ≃ √φα ⁄    ≃         ≃ 

√φ ⁄ ln(ln   
  ) [31]. S is the silver constant from the regular heptagon [34]. 

S = 4    (2π ⁄ 7) = 2 + 2sin(2π ⁄ 7) = 2 + √S ⁄ R,  the regular heptagon and the golden ratio are both closely 

associated with the classical geometry of ‘squaring the circle.’ S ≃        ≃ 4√λ ≃ 2φ and     ≃ tanh     . 

Also, 3 ⁄ 11 = 120 ⁄ 440 ≃      ≃ A√S  ≃ √α ⁄ 2A ≃       ≃ 76.3 ⁄ 280 and the apex angle is       [24]. The 

Golden Apex A ≃ π ⁄ (3 × 7) ≃ 2παS. [28, 31]. The conceptual structure defining the Golden Apex has a 

significant relationship to advanced algebras, modular forms and fundamental physics [27]. 

5. Conclusion  

These calculations of the inverse fine-structure constant are aimed toward a fuller explanation of the 

fundamental physics and the interrelated mathematics. As Albert Einstein noted, “Our experience up to date 

justifies us in feeling sure that in Nature is actualized the ideal of mathematical simplicity. It is my conviction 

that pure mathematical construction enables us to discover the concepts and the laws connecting them which 

give us the key to the understanding of the phenomena of Nature.” [36]. Besides Eddington, Einstein’s view in 

this regard was also shared most notably by Paul Dirac [37]. Natalie Paquette, quoted in the introduction, 

concludes her article with, “If mathematics and physics are in so many respects in equipoise, then the 

differences between them may be less a matter of their content than their technique; and that, in the end, they 

serve to show that there is only one reality to which they both appeal.” [1].  
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