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Introduction 

To find explicit solutions to physical phenomena and engineering problems it is necessary to choose an 

appropriate coordinate system. In fact, the choice of the coordinates must represent the geometry of the 

problem so that the corresponding mathematical formulation is simplified as much as possible. For example, 

elliptical geometry is used to explain the phenomena associated with galaxies and circular geometry is used to 

explain tropical cyclones. However, the limits of circular and elliptic geometries in explaining Nature are more 

than evident and the resulting models are not adapted to the reality of many events. 

The term theory derives from the philosophy of the Ancient Greeks, and was associated with the meaning of 

”looking at, viewing, beholding” that originates from the word ”thaumas” or wonder [1]. 

After the works of many scientists such as Copernicus, Brahe, Galileo, Descartes, Newton, it became accepted 

that the physics of the Greeks was not viable for practical purposes. 

Galileo used practical experiments as a research tool and presented his treatise in the form of mathematical 

demonstrations [2]. 

In formulating his physical scientific theories, Newton [3] introduced new mathematical tools, ”the method of 

fluxions and fluents” [4], which we know today in their formulation of the differential calculus proposed by 

Leibniz [5]. 

The Coriolis effect is a deflection of moving objects when the motion is described relative to a rotating frame. 

The mathematical expression of the Coriolis force appeared [8] in connection with the theory of water wheels. 

Nowadays, the term Coriolis force is mainly used in connection with meteorology. 

A particularly important problem in this category is the description of the movement of water particles of 

tropical storms with respect to the coordinated axis that rotate with the Earth. In this case the coordinates in 

which the Newton’s laws are valid is that of fixed stars as an ideal inertial system [9]. 

The behaviour of hurricanes is explained in terms of classical physics using the Newton’s second law and the 

thermodynamics of the moist air. Around a low-pressure centre, the pressure-gradient force directed inward 

balances the Coriolis force and the centrifugal force, both directed outward. 

However, the hurricane consists of a characteristic spiral formed by dense clouds that surround a cloud-free 

eye also in the form of a spiral that can range from a few kilometers to 100 km across. 

Starting from these simple empirical observations, the correct inductive scientific method to analyze the 

phenomena of the hurricanes, as would be taught by the philosopher Francis Bacon [6], can not disregard the 

appropriate mathematical tools. As depicted in the frontispiece of the ”Novum Organum” [6], the spiral 

differential geometry can be imagined as a new galleon passing between the mythical Pillars of Hercules 

standing at the sides of the Strait of Gibraltar, marking the exit of the well-protected Mediterranean waters in 

the Atlantic Ocean, opening a new world for exploration. Galileo, the first pioneer of the scientific method 

wrote (see pag. 4 in [7]) ”  

Philosophy is written in this grand book -I mean the Universe- which stands continually open to our gaze, but 

it cannot be understood unless one first learns to comprehend the language and interpret the characters in 

which it is composed. It is written in the language of mathematics, and its characters are triangles, circles, and 

other geometric figures without which it is humanly impossible to understand a single word of it; without 

these, one is wandering around in a dark labyrinth.” 

Since the Nature is mostly spiral-shaped, it can not be well understood unless one first learns to understand 

the language of spiral geometry. 
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Consequently, the motion of the air around the central axis of rotation of the hurricane and its inward and 

outward flows should be described in the most appropriate geometry, that is, in the spiral geometry. 

The force on a passenger who moves on a bus traveling along a trajectory depends on the geometry of the 

trajectory itself (see for example [10]). If the path of the bus is circular, we refer to the rotating frame, but if the 

path is spiral-shaped, we must introduce the spiral reference system. 

In this pioneering paper, the orthogonal spiral differential geometry [11, 12] is used to introduce new ideal 

motions, namely the uniform spiral motion and the spiral-polar motion. 

These ideal spiral motions are then used as methods for introducing the concept of fictitious spiral forces.  

Materials and Methods 

The polar and spiral geometry 

Let’s start considering the Schwarz Christoffel conformal mapping  
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And let’s consider the simplest case 0, 1, 1, 0, 1.j j jx k j k j      

In terms of Cartesian coordinates
1
, if , 0G R F   we obtain the polar coordinates  

 
cos ,

1
sin .

x r

y r









      (2) 

Whilst, if we choose , 1G C G ig   , we obtain the spiral coordinates [11, 12]. 
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The spiral coordinates, like the polar ones are curvilinear, their basis vectors change at all points in space. 

For the polar coordinates, the covariant basis vectors are identified as 
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Where ˆ ˆ,i j  are the Cartesian unit basis vectors. 

For the spiral case 

 

                                                           
1 Henceforth  1  indicates the formulas in polar coordinates and  2   in spiral coordinates. 
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   (5) 

Where G represents the angle between the spiral and the polar basis vectors. 

In polar coordinates, the contravariant dual basis vectors are identified as 
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While, the spiral contravariant dual basis is 
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The position vector in polar coordinates can be written as 

  ˆ ˆ1 ,rr rg rg         (8) 

Whilst, in spiral coordinates 
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The covariant ˆ ˆg g g  
         and contravariant ˆ ˆg g g           metric coefficients in polar 

coordinates are identified as 
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Whilst, in spiral coordinates 
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  (11) 

Uniform spiral and circular motions with constant phases 

Uniform circular motion describes the motion of a point-like body of mass m along a circular path at constant 

speed. The distance of this body from the axis of rotation remains constant at all times. 

Similarly, the uniform spiral motion of a point-like body of mass m is characterized by constant kinetic energy 

along a spiral path. 

 

Figure 1: a) The spiral uniform motion, b) the circular uniform motion. 

In terms of coordinates, if we identify the trajectory of the body with     ,r t t  we have 
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In polar coordinates, the velocities are identified by
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By using the following relations 

 
ˆ ˆ ,

1

ˆ ˆ ˆ .

r

r

g g
r

r
g g r g

r



 









  


      (15) 

eq. (14) can be rewritten as ˆ ˆ
rr rg g   or as 

 

 2 2 2

,

ˆ,
1

,

1
.

2

rr
r r

r

k

r r

T m r r



 




  








  


      (16) 

In spiral coordinates 
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2 /x dx dt  
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By using the following relations 
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The kinetic energy can be written as 
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The uniform circular motion is obtained for .T const , which means, . ,r const R     , where R   
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For .r const , eq. (16) can be simplified as r r  and for .const   eq. (19) as S Sr g r r     , 

where ˆ
S k  , is defined the spiro-angular velocity. 

The acceleration in polar coordinates is identified as
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or in terms of the basis polar convectors 
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In spiral coordinates, the acceleration becomes 
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        
                
       

cos ,

.



  





  
  
  

   


 



     (24) 

or in terms of the basis spiral convectors 

 

    ˆ ˆ2 ,r g g g g g
g g g

 

   
         
      

              
      

  

  (25) 

For the uniform circular motion, eq. (23) reduces to 

 

2

2
2

ˆ ,

ˆ ˆˆ ˆ cos sin ,

1
,

.

R

R r

c
c

c

r R g

g g i j

v
a r R

R

v r R



 





  


  



  

  


     (26) 

Whilst, for the uniform spiral motion eq. (25) reduces to       
0

2 2

0 0
ˆ ˆr g g g g         . 

It appears clear that the spiro-centrifugal acceleration has two components, the first along the direction of 

movement ĝ  and the second one orthogonal to it. 

According to eq. (21), acceleration for uniform spiral motion is reduced to 
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

 

 



   
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   (27) 

Taking into account for eq. (21) and eq. (25), it is possible to rewrite the spirocentrifugal acceleration for 

uniform spiral motions as 

 
 

   

 
   

0

0

2
* *1
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g

K
x e g t t

g K K t

K
y e g t t

g K K t





 

 


    




     

   (28) 

 

Figure 2: a) centrifugal Force versus time b) mass m moving on a stretch of spiral curve and c) circular curve. 
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Comparing the eq. (26) and eq. (27) it is possible to notice that, while in the first case the centrifugal 

acceleration is constant, in the second it depends on the time. Consequently, a mass in a circular curve will 

experience a constant centrifugal force perpendicular to the direction of uniform motion, while a mass in a 

spiral curve will experience a spiro-centrifugal force perpendicular to the direction of motion as a function of 

time. 

A constant centripetal force is required to maintain uniform circular motion, whereas a time-dependent spiro-

centripetal force is required to maintain uniform spiral motion. In many real physical cases, such as the motion 

of a car in a turn [13], the centrifugal force Fc is compensated by the friction force Fcp = μmg which is 

generated between the tire and the road surface and depends on the mass itself and on the gravitational 

acceleration g. When a vehicle is cornering, the centrifugal force acting outwards must be balanced by lateral 

forces on the wheels so that the vehicle is able to follow the curve of the road, 

 

 
 

0

2

2 2

1

2 1

1 ,

1
2 .

c

g

sc

F m R mg

K g
F me mg

g K K t



 



 


 



    (29) 

Observing eq.(29) (2), we notice that there is always a maximum time to exit a spiral curve for a ”safe turning” 

avoiding lateral slippage, defined by 

 
02

12
max 2

1

1
2 .gK gK

t e
K g






      (30) 

The spiral-polar uniform motion 

We now consider a point-like body of mass m which is characterized by constant spiral path 0 , 0,     

and the constant kinetic energy 0T T  where 0T  is a constant. 

 

Figure 3: The spiral-polar motion of a mass m. 

The spiral-polar motion is composed of the spiral motion  t  superimposed to the rotation ψ(t). In terms of 

coordinates, if we identify the trajectory of the body with     ,t t   we have 
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     (31) 

The velocity is characterized by 
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cos sin ,

2 sin cos ,

.

g
g

g
g

x e g
g

y e g
g








   


   

   
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     

    


    
     

   


  



    (32) 

using the following relationships 

 
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  


 
   
 

    (33) 

Eq. (32) can be rewritten as 
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 

    


  


  

    


              

    (34) 

Results and Discussion 

The polar and the spiral Coriolis forces 

Imagine that we have two right-handed frames, the inertial frameF with origin O  and the basis vectors 

ˆˆ ˆ, ,i j k  and frame F'with origin 'O  and the basis vectors ˆˆ ˆ', ', 'i j k . 

Now, let’s consider a point P in space, its position in frame is 

ˆˆ ˆ ,OP xi yj zk          (35) 
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and in frame F'

 

ˆˆ ˆ' ' ' ' ' ' ',O P x i y j z k         (36) 

we also note that ' ' ,OP O O O P 

 

The velocity observed in the inertial frame F  is 

' ' '
ˆˆ ˆ' ' ' ' ' ' ' 'ˆ ˆˆ ˆ ˆ ˆ' ' ' ' ' ' .O O Odx dy dzdO O dO P dx dy dz di dj dk

v i j k i j k x y z
dt dt dt dt dt dt dt dt dt dt dt

    
                   

(37) 

If the frame F'

 

rotates uniformly with constant angular velocity  in respect to the inertial frame F then  

eq. (37), according to eq. (16), becomes 
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
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  



   


     (38) 

 

Figure 4: Coriolis relative motion a) Circular b) Spiral. 

If each point of the frame F' moves with uniform spiral motion with a spiralangular velocity 

 ,g

S S Se K      with respect to the inertial frame F  , then the eq. (37) according to eq. (19), 

becomes 
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(39) 

Since   is constant, the effect on the axis ˆˆ ˆ', ', 'i j k due to the uniform spiral motion is that of a partial 

rotation  . 

If we define 

2 2 2

2 2 2
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dt dt dt
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(40) 

taking into account the eq. (38) for the uniform circular motion, the acceleration 
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 (42) 

Taking into account the eq. (39) for the case of uniform spiral motion, the acceleration 
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 

'
''

2 .
S

O
d O Pdvdv dv

a
dt dt dt dt

 
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 (44) 

As can be observed from eq. (44), the fictitious forces are four: 

1) the Coriolis force 2 'Co SF m v   , acting perpendicular to the direction of motion, 

2) the spiral-centrifugal force 'ce S SF m O P     with one component along the direction of motion and 

another perpendicular to it. 

3) the spiral force 1 2 'sp SF mg v   which acts along the direction of motion. 

4) the spiral force 2 'sp S SF mg O P     with one component along the direction of motion and another 

perpendicular to it. 

The spiral-polar coriolis Force 

If each point of the frame F' is spiro-rotating  0   with spiral-angular velocity  S S     and 

angular velocity  L J L S      in respect to the inertial frame F  then eq. (37) according to eq. 

(34) becomes 
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(45) 

and the acceleration 
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(47) 

Eq. (47) highlights many new terms compared to the classical case of circular force. 

Although the analysis of these terms is interesting, it goes beyond the scope of this article and its use refers to 

other specific researches. 

 

Figure 5: The spiral-polar coriolis relative motion. 

Conclusions 

The predictions of many natural phenomena such as the intensity of tropical storms (hurricanes/tornadoes) by 

scientists are unsatisfactory. The reason of this is intrinsic, their spiral motion is quite unknown. 

In this paper, for the fi rst time, the spiral dynamics is introduced with the study of the two basic uniform spiral 

and spiral-polar motions. 

New projects such as CYGNSS (Cyclone Global Navigation Satellite System) were launched by the US space 

agency (NASA) to study tropical storm systems [14] and predict rapid changes in their intensity. 

This paper has introduced new physical quantities to be measured to better under-stand the physical 

behaviour of the masses of water that spiral in tropical storms. 

In particular, the spiral centrifugal forces and the Coriolis forces that can be used to calculate the intensities of 

the storms. 
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Spiral trajectories are currently used by airplanes and spacecrafts, as cars follow spiral curves in their 

movement. The spiral dynamics allow an analytical study of the forces acting on the moving masses along 

spiral trajectories. 

Moreover, the spiral dynamics could be used to study the motion of stellar bodies in spiral galaxies and their 

gravitational waves. 

Applications can be countless and many new tools can be designed. 
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