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ABSTRACT 

The aim of this work is to obtain exact analytical solution to the two dimensional laminar compressible boundary layer flow 
with an adverse pressure gradient in the presence of  heat and mass transfer with MHD. The method applied is homotopy 
analysis method. It is shown that this solution agrees very well with numerical solution which is obtained by Runge-Kutta 
Merson method and results are shown graphically for different magnetic parameters. 
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INTRODUCTION  

The boundary layer theory for incompressible fluids under the effect of an applied magnetic field has been studied 
extensively by many scientists. But the study of compressible fluid flow problems in boundary layer with an applied 
magnetic field is studied by very few.  In history Rossow [12] seems to be the first person to study this topic.  After him 
recently, these problems have received lot of attention [10]. Compressible boundary layer flow is important in many 
devices of Mechanical and Aerospace engineering. Flow of compressible fluid in boundary layer region tends to have an 
unpredictable behavior due to frictional effects and which leads to flow control problems. These problems may become 
more complicated if there exist an adverse pressure gradient which may lead to reverse flows and flow separation [4] 

(Adverse pressure gradient means 0
y

x





 i.e., pressure increases in the direction of flow). 

Boundary layer Suction is the best solution for prevention of separation. Control of flow instabilities is studied by Arnal [11]. 
Kafoussias [1] have studied  two dimensional laminar boundary layer numerically for compressible fluids and have shown 
that suction or cooling of wall will stabilize the boundary layer. 

Naidu et al. [6] discussed the growth of the boundary layer due to   applied electric and magnetic fields during their study 
of laminar compressible MHD flow over a flat plate.  Martin et al. [7] suggests that the high gradients created by MHD 
terms will lead to continuum breakdown, during the study of flow in a laminar boundary layer of an electrically conducting 
gas near the continuum limit, which is computed numerically. Kumari et al.[5] studied the steady laminar compressible 
boundary layer flow of an electrically conducting fluid in the stagnation region of a sphere with an applied magnetic field 
taking  into account the effects of the induced magnetic field, mass transfer, and viscous dissipation and solved 
numerically using  shooting method. The  results obtained  can be used in controlling the heat transfer rate. Also They 
observed that  boundary layer solutions break down as the magnetic parameter tends to a certain critical value. Adhikari et 
al.[8] applied Keller - box method for solving nonlinear ordinary differential equations obtained during the study of steady 
three-dimensional magnetohydrodynamic (MHD) boundary layer viscous flow and heat transfer due to a permeable 
stretching sheet with prescribed surface heat flux in presence of a uniform applied magnetic field transverse to the flow. 

Xenos et al. [2] studied numerically the problem of magnetohydrodynamic compressible boundary-layer flow over a flat 
plate, in the presence of an adverse pressure gradient. Xenos et al. [3] numerically examined the steady compressible 
boundary-layer flow with adverse pressure gradient and heat transfer over a wedge under the effects of blowing and 
suction. 

In this paper, boundary layer flow of compressible fluid with adverse pressure gradient under the effect of heat and mass 
transfer with MHD is studied [2]. The governing partial differential equations of this model are transformed into ordinary 
differential equations by Falkner Skan Transforms and the solution is studied by Homotopy Analysis Method (HAM). The 
same is compared with numerical studies. 

Mathematical formulation of the problem 

 
Fig 1: Flow configuration and co-ordinate system 
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The equations governing the steady, compressible, two-dimensional boundary layer flow, of a heat conducting perfect gas, 
are the continuity, momentum and energy equations, which, in the absence of body forces, using Prandtl Boundary layer 
assumptions  are 

(ρu) ,(ρv) 0
x y

 
 

 
                                                             (1) 

 2e
e e 0

du
ρ u ,e

u u u
u v B u u

x y dx y y

    
       

    
,                                           (2) 

   

1
μ 1 ,

Pr Pr

H H H u
u v u

x y y y y

       
      

       ,

     (3) 

respectively, where H is the total enthalpy of the fluid defined for a perfect gas by the expression  

21

2
, PrpH C T u   is the Prandtl number defined as 

pC
Pr

k


  and the other quantities have their usual meaning. 

The boundary conditions of the problem, including a transpiration velocity wv  at the wall, are 

   w wy  0 :  u  0;  v  v x ;  H  H x ;                                           (4) 

  e ey  :  u  u x ;  H  H ;         (5) 

where   is the boundary layer thickness. 

The system of equations (1) - (3) constitutes a coupled nonlinear system of partial differential equations with the unknown 

functions  u  u x,  y ,    v  v x,  y  and  H  H x,  y  defined in the rectangular domain 

( , ) / 0 ,0 .D x y x L y      

Introducing the compressible Falkner - Skan transformation, defined by 

                                          
1/2

1/2

0

( ) ( , )
, ( , ) ( , ),

( ) ( )

y

e
e e e

e e

u x x y
dy x y u x f x

x x x


    

 

 
  

 
                                      (6)   

where ( )e x  is kinematic viscosity at the edge of the boundary layer and ( , )f x   is the dimensionless stream function. 

Using (6), the boundary layer equations reduce to ordinary differential equations for similar flows and defining the stream 

function ,  for a compressible flow as 

                                                         , ,u v
y x

 
 

 
  
 

                                                                                      (7) 

which satisfy the continuity equation (1) exactly. The system of equations (2) - (5) reduce to 

                              

23 2 2 2

1 2 33 2 2
1 ,

f f f f f f f f
b m f m c x m

x x      

             
                          

               (8)              

                                       

2
2 3 2

12 3 2
,

S f f f S f S S f
e d d m f x

x x      

           
       

          
                             (9) 
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 
1

0
2

1
0; 0, (0, ) ( ) , ( ),

x

w w w w

e e e

f
f f x v x dx S S x

u x

 


 


     


                                        (10) 

                                                                              ; 1, 1,e

f
S 




  


                                                                       (11) 

where the quantities ,b ,c  ,d  ,e  1,m 2m  and 3m  are defined as follows 

                                      

2Cu 1
b=C,C ,c ,   1 , , ,

Pr Pr

e e

e e e e

b H
d e S

H H



  

 
      

 
                                   (12) 

 1 2 2

du1
1 , ,

2 dx dx

e
e e

e e e

x d x
m m m

u
 

 

 
    

 
                                                                   (13) 

         
20

3 0 0, m , ,e
x

e e e

u x m c
R m B

u


 
                                                                         (14)      

We solve equations (8) and (9) with the boundary conditions (10) and (11) by treating quantities in (12), (13) and (14)  as 
constants. The quantity C in the equation (12) can vary through the boundary layer. However, the constant C assumption 
is made and is evaluated at the surface conditions by using the Sutherland viscocity law. The flow is assumed to be 

similar, in other words, ( )f f  and ( )g g  such that the term  

2 2

2

f f f f

x x  

   


    
  of the momentum equation 

(8) and right hand side of energy equation (9) become zero. Thus we get 

23 2

1 2 33 2
1 ,

f f f f
b m f m c xm

   

       
                 

                                            (15) 

2
2 3 2

12 3 2
0.

S f f f S
e d d m f

    

     
    

     
                                                          (16) 

The equations (15) and (16) are solved by homotopy analysis method.                                                

Homotopy Analysis Method 

The given non linear equation (15) is written as 

23 2

1 2 33 2
[ ( )] 1 .

F F F F
N f b m F m c x m

   

         
                    

                                  (17) 

Homotopy for this equation is constructed as below 

 
23 2

0 1 2 33 2
(1 ) ( , ) ( ) hp 1

F F F F
p L F p f b m F m c xm 

   

         
                       

,           (18) 

with boundary conditions 

(0, ) , (0, ) 0, ( , ) 1,w

F F
F p f p p

 

 
    

 
                                          (19) 

where [0,1]p ò  is the embedding parameter,  0h   is a non zero parameter. The initial guess approximation 0 ( )f   

of ( )f   chosen in accordance with  boundary condition (14). 
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When p = 0, we have the solution 

0( ,0) ( ).F f                                                                      (20) 

When p = 1, 

( ,1) ( ).F f                                                                          (21) 

Thus as p increases from 0 to 1, the solution varies from the initial guess 0 ( )f   to the exact solution ( ).f  The initial 

guess approximation 0 ( ),f  is chosen as the solution of linear equation  

3 2

3 2
0,Lf f

 

  
   

  
                                                                  (22) 

where L must be of same order as N and 0 ( )f   has to satisfy given initial and boundary conditions. Thus we get initial 

approximation as 

0 0( ) 1f e          .                                                           (23) 

The final solution consists of a convergence parameter h which has to be selected by drawing a h curve such that the 

equations (17) and (18) have solutions at each point [0,1]p ò . Using Maclaurin series for ( , )F p as 

1

( , )
( , ) ( ,0)

!

k k

k
k

p F p
F p F

k p


 






 


 ,                                                          (24) 

and defining 

0 0( ) ( ,0) ( ),F f          (25) 

Thus we get 

0
1

( , ) ( ) ( ) ,k

k
k

F p p    





                                                            (26) 

Using equations (21) and (26) for p = 1, we get 

0
1

( ) ( ) ( ),m
m

f     





        (27) 

where ( )m  are unknowns to be determined. 

Differentiating equation (18) m times about the embedding parameter p, using Leibnitz theorem, setting p = 0 and dividing 

by  m! ,  we get 

 1 ( ),m m m mL hR                        (28) 

where 

0 when 1
,

1 when 1
m

m

m



 


      (29) 

1 1

1 1 1 2 1 2 3 1
1 1

[ ] (1 ) ,

m m

m m m k k m k k m m
k k

R b m m m c xm       

 

     
 

                                   (30) 

with boundary conditions 

(0) (0) ( ) 0,m m m                                                                       (31) 

We solve these linear equations given by (28) for m  by MATHEMATICA. 
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We get the solution f as below 

0
1

,k
k

f  





                                                                           (32) 

Equation (9) is also solved by Homotopy analysis method with linear operator  L  as 

2

2
,sL

 

 
 
 

                                                                     (33) 

and nonlinear equation (9) is written as 

2
2 3 2

12 3 2
[ ( )] .

S F F F S
N S e d d m F

    

       
      

       
                (34) 

The Homotopy for this equation is constructed as below  

 
2

2 3 2

0 12 3 2
(1 ) ( , ) ( ) hp ,

S F F F S
p L S p S e d d m F 

    

         
         

         

                         (35) 

with boundary conditions 

(0, ) , ( , ) 1.wS p S S p         (36) 

Initial approximate solution, 0 ( )S    is chosen in accordance with boundary conditions (36) which satisfies the linear 

equation 

2

2
( ) 0,L S S

 

  
   

  
     (37) 

The final solution consists of a convergence parameter h which has to be selected by drawing a h curve such that the 

equations (21) and (22) have solutions at each point [0,1].pò  

Using Maclaurin series for ( , )S p as 

1

( , )
( , ) ( ,0) ,

!

k k

k
k

p S p
S p S

k p


 






 


                                                             (38) 

and defining 

0 0( ) ( ,0) ( ),S S          (39) 

Thus we get 

0
1

( , ) ( ) ( ) .k

k
k

S p p    





      (40) 

Using equations (40) and (41) for p = 1, we get 

0
1

( ) ( ) ( ),m
k

S     





                                                                   (41) 

where ( )m   are unknowns to be determined. 

Differentiating equation (36) m times about the embedding parameter p, using Leibnitz theorem, setting p = 0 and dividing 

by m!, we get 

 1 ( ),m m m mL hT          (42) 
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0 when 1
,

1 when 1
m

m

m



 


      (43) 

 

1 1 1

1 1 1 1 1
0 0 0

[ ] ,

m m m

m m m k k m k k m k k
k k k

T e d d m       

  

      
  

                                       (44) 

(0) , ( ) 1,m m           (45) 

We solve these linear equations given by (44) for m  by MATHEMATICA. 

Initial approximate solution, 0 ( )S   is chosen in accordance with boundary conditions (38) as 

0 0( ) ( ) 1 ( 1) .S e             (46) 

Thus we get the solution as 

0
0

,k
k

S  





                    (47) 

The HAM solution of equations (15) and (16) are depicted graphically in next section  for different parameters and are 
compared with the solution obtained by Xenos [2]. 

Graphs of Homotopy Analysis Method 

no suction

suction

injection

x = 0.7

m3 = 4.0

1 2 3 4 5 6 7


0.2

0.4

0.6

0.8

1.0

f '

no suction

suction

injection

x = 0.7

m3 = 8.0

1 2 3 4 5 6 7


0.2

0.4

0.6

0.8

1.0

f '

 

         Figure 2: Velocity curves  for 3m  = 4.0                                        Figure 3: Velocity curves  for 3m  = 8.0  

   (1) no suction , (2) with suction,(3) with injection                                 (1) no suction , (2) with suction,(3) with injection 

no suction

with suction

with injection

x = 0.7

m3 = 0

1 2 3 4 5 6 7


0.2

0.4

0.6

0.8

1.0

f '

 

           Figure 4: Velocity curves  for 3m = 0                                 Figure 5: Temperature Profiles 2,0,2    

  (1) no suction , (2) with suction,(3) with injection      
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   Figure 6: Domb Syke Plot for f HAM (no suction)                           Figure 7: Domb Syke Plot for f HAM (injection) 

 

     

     Figure 8: Domb Syke Plot for f HAM (with suction)                    Figure 9: Domb Syke Plot for S HAM (no suction) 

 

  

Figure 10: Domb Syke Plot for S HAM (with injection)                Figure 11: Domb Syke Plot for S HAM (with suction) 
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Figure 12: Velocity Profile for 
3 0m                                                     Figure 13: Velocity Profile for 

3 4m   

Figure 14: Velocity Profile for 3 8m                                                        Figure 15: Temperature Profile for 3 0m   

 

Figure 16: Temperature Profile for  3 4m                                           Figure 17: Temperature Profile for 3 8m   
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Result and Discussions 

In this paper, the problem of MHD compressible boundary layer flow over a flat plate, in presence of adverse pressure 
gradient is studied by HAM and Ruge-Kutta Merson methods.  The fluid is Newtonian, the transverse magnetic field 
applied is constant, the flow is subjected to a constant velocity of suction or injection and there is no heat transfer between 
the plate and fluid. The governing equations are a system of nonlinear partial differential equations and are transformed 
into nonlinear ordinary differential equations by Falkner-Skan transforms. 

Homotopy analysis method is applied to these transformed ODEs  for some limiting cases. The solution obtained matches 
exactly with numerical solution. HAM solution curves for velocity are drawn for different values of magnetic parameter 

3m in fig 2, 3 and 4 for  0, 0   and 0  . 

Temperature profile for for  0, 0   and 0   are drawn in fig 5. 

The HAM solution obtained for velocity and temperature is also tested for convergence by drawing Domb-Syke plots (fig 6, 
7, 8, 9) where we estimate the radius of convergence for suction, no suction and injection which has values R=12.68 for 

0  (fig 8), R=12.15 for 0   (fig 6) and R=16.48 for 0   (fig 7) for velocity,  and R=12.49 for 0   (fig 11), 

R=12.49 for 0   (fig 9) and R=12.49 for  0    (fig 10) for temperature. In fig 12, 13, 14, the effect of magnetic 

parameter 3m  on velocity profile is drawn by Runge-Kutta Merson method for suction, no suction and injection. In fig 15, 

16, 17, the effect of 3m  on temperature profile is shown by Runge-Kutta Merson method for 0, 0   and 0   . 
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