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Abstract 

The Numerical study of the flow of a fluid in the annular region between two eccentric sphere susing PHP Code is 

investigated. This flow is created by considering the inner sphere to rotate with angular velocity 1 and the outer sphere 

rotate with angular velocity 2 about the axis passing through their centers, the z-axis, using the three dimensional 

Bispherical coordinates ),,(  .The velocity field of fluid is determined by solving equation of motion using PHP Code 

at different cases of angular velocities of inner and outer sphere. Also Finite difference code is used to calculate surface 
tractions at outer sphere. 
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1 Introduction   

The determination of the rheological properties of fluids depends, in general, on solution of suitable boundary value 
problems based on a specific rheological model that represents the fluid under consideration. The theoretical and 
experimental studies concerning the flow of viscous or viscoelastic fluids in the annular narrow gaps between two rotating 
bodies are very interesting boundary value problems in rheology. These problems represent the keystone in the high 
developing today industries and technology such as the flow in rotation turbo machinery, in journal-bearing lubrication, 
socket joints, petroleum and so on. 

One of these problems, for two concentric spheres the numerical and experimental studies are carried out, say by 
Wimmer [1] and Yamaguchi et. al.[2,3,4] . A large number of theoretical and experimental works are done on the viscous 
flow between two eccentric spheres; Jeffery [5], Stimson and Jeffery [6], Majumdar [7], Munson [8], Menguturk and 
Munson [9].  The analytical study of  the flow of viscoelastic fluid between two eccentric spheres is investigated by Abu-El 
Hassan et .al. [10,11] . Force and torque at outer stationary sphere are studied using neural network system and genetic 
programming by Mostafa Y.Elbakry et .al. [12,13]. 

Finite difference method one of the important numerical methods in solving many problems in newtonian and non-
newtonian flow in fluid mechanics [14-18]. 

The present work is concerned with the numerical solution of this boundary value problem using PHP programming. The 
velocity field of a fluid between two eccentric spheres is investigated.  Also surface tractions at outer stationary sphere is 
calculated using Finite difference code.  

2 Formulation of the problem 

A viscous fluid is assumed to perform steady and isochoric motion in the annular region between two eccentric spheres . 

This flow is created by considering the inner sphere to rotate with angular velocity  about the axis connecting their 
centers, the z-axis, while the outer sphere is kept at rest.  

 

Fig.(1) Configuration of the two eccentric spheres 

Using the Bispherical coordinates ),,(   the  inner sphere is  the surface defined by   1  ,  while  the  outer  one  

is  defined  by 2  . The radii of the inner and the outer spheres are then given by; [19,20], 
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Where c is a parameter related to the scale factors of the coordinates by the following relations: 
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Symmetry about the z-axis implies that the velocity field x  is independent of the coordinate  . Hence, the velocity field 

can be stated in the form  

 ˆ),(ˆ),(ˆ),(),( Wvux   .                        (1) 

where the components ),(),(),,(  Wandvu are only functions of the coordinates  and  . 
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The non-slip at the boundaries 1 and 2  imposes the boundary conditions  
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The equation of continuity , 
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is satisfied identically if u and v are derivable from a stream function   by the expression  
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Or in the compact form we can write  
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The Cauchy dynamical equation of motion for a stationary flow is being 

),.),),(),(. ),( ((.  xx
E

TT   ,                                               (4) 

whereT is the stress tensor,
E

T is the extra stress tensor,  is the hydrostatic   pressure  function  and     is  the  density 

of  the  fluid .  

The constitutive equation for a viscous fluid is stated as follow  
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where  is the coefficient of viscosity.  

Substitution from equations (1)and (3b)into equation (5)the extra stress tensor becomes 
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WWUUT ))ˆ(()ˆ()(   ,                                          (6) 

Substitution from equation (6) into equation (4) we get two equations of velocity components, 

The axial velocity satisfies the harmonic equation, 

0)ˆ(2  W .                                                                                                             (7) 

with the boundary conditions , 
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This boundary value problem has the solution which determined by finite difference iteration method.
   

On the other hand, the stream function   satisfies the boundary value problem,  
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with the boundary conditions 
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It can be easily shown that the only solution for the boundary value problem defined by equations (9) and (10) is the trivial 

solution   =0.   

The velocity field reduces to,  

 ˆ),(Wx  ,                                                          (11)   

3Surface Tractions at outer stationary sphere 

The surface traction at the boundary 
2  .when the inner sphere rotate with angular velocity  and the outer sphere 

at rest, is defined by  
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This expression describes the stress vector per unit area on the surface of a spherical shell 
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The constitutive equation for a fluid of grade two is defined by the relation,[21], 
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The velocity field, as expressed by equation (11) leads to the following expression  
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Substituting from equations(16), (17) and (18) into the constitutive equation (13) and multiplying by the unit vector 


;  we 

obtain the surface tractions , 
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At the surface of the stationary outer sphere, 
2   , the velocity field vanishes; i.e. 0
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The surface traction at the stationary outer sphere, 
2  in equations (22) and (23) can be normalized as follows 
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4 Finite Difference code For the problem 

4.1Numerical calculation: 

In our numerical calculation we used the finite differences schema to handle this boundary value problem, this schema is 

𝜕2𝑊

𝜕𝛽2
=
𝑊𝑖+1,𝑗 − 2𝑊𝑖,𝑗 + 𝑊𝑖−1,𝑗

ℎ2
     + 𝑂(ℎ3) 

𝜕2𝑊

𝜕 ∝2
=
𝑊𝑖,𝑗+1 − 2𝑊𝑖,𝑗 + 𝑊𝑖,𝑗−1

𝑘2
     + 𝑂(ℎ3) 

𝜕𝑊

𝜕𝛽
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2ℎ
     + 𝑂(ℎ3) 

𝜕𝑊

𝜕 ∝
=
𝑊𝑖,𝑗+1 −𝑊𝑖,𝑗 −1

2𝑘
     + 𝑂(ℎ3) 

Where h and k are the increments in α and β directions and i,j =0,1,2…….n 

We used the PHP code to carry the numerical calculation, we found this code is useful and very fast to perform the 
calculations. 

The following algorithm can be written in a different  programing languages 

1-defining the increment in α and β directions 

n=20; 

m=n-1; 

C=4 , (C is the half distance betweenthe two poles of the bispherical coordinates) 

the boundaries of α: 
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α0 =0; 

αn=π; 

the two radii of the spheres: 

R1=2; 

 R2=4;  

the boundaries of β: 

 β1 = sinh
-1

(C/ R1)  ;  

 β2 = sinh
-1

(C/ R2) ; 

the increment in β direction  is  h=( β2- β1)/m; 

the increment in α direction is  k=pi/m; 

K=k
2
; 

H=h
2
; 

2- Calculating the boundary conditions 

 i=0; 

While(i<=n) 

{ 

 α(i)=i*k; 

β(i)= β1 +i*h; 

h1=cosh(β(0))-cos(α(i)); 

u(0,i)=sin(α(i))/h1; 

𝑊(n,i)=0; 

𝑊(i,0)=0; 

𝑊(i,n)=0; 

i++; 

} 

3- beginning the iteration 

GG=10; 

HH=H/K; 

while (abs(GG)>0) 

{ 

i=1; 

while( i<=m) 

{ 

j=1; 

while (j<=m) 

{ 

h2=cosh(β(j))-cos(α(i)); 

h3=1-cosh(β(j))*cos(α(i)); 

f1=1; 

f2=1; 

f3=0; 

f4=-sinh(β(j))/h1; 

f5=-h3/(h1*sin(α(i))); 
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f6=-1/power(sin(α(i)),2); 

D1=2*(f1+f2*HH)+H*f6; 

D2=f1+h*f4/2; 

D3=f1-h*f4/2; 

D4=f2+k*f5/2; 

D5=f2-k*f5/2; 

𝑊(i,j)=(D2* 𝑊(i+1,j)+D3* 𝑊(i-1,j)+HH*D4* 𝑊(i,j+1)+HH*D5* 𝑊(i,j-1))/D1; 

𝑊β(i,j)=( 𝑊(i+1,j)- 𝑊(i-1,j))/(2*h); 

𝑊α(i,j)=( 𝑊(i,j+1)- 𝑊(i,j-1))/(2*k); 

j++; 

} 

i++; 

} 

For( i=5:1:5) 

{ 

sum=0; 

for j=1:1:m-1 

sum=sum+ 𝑊(i,j); 

} 

area(i,l)=sum*h/2; 

GG=area(i,l)-area(i,l-1); 

l++; 

} 

} 

5- plot the results 

Plot(β, 𝑊); 

Plot(α, 𝑊); 

5Results and discussion   

The present work represents a numerical investigation of the isochoric and isothermal flow of a viscous fluidin the annular 

region between two eccentric spheres using finite difference method. The results show that the axial component,W(  , )is 

determined for different cases of angular velocities of two spheres, while the planar secondary velocity field U  vanishes. 

The surface tractions at stationary sphere is obtained. 

We have different cases of flow as follows: 

Case(1):If the inner sphere 1 is being at rest;i.e, 01   and the outer sphere 2 rotates with angular velocity ,  

Fig.(2)show that the distribution velocity field W (  , ) versus   at different values of  , while Fig.(3) shows the 

velocity field W (  , ) versus   at different values of  . 
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Fig.(2) velocity field W (  , ) versus   at different values of  when the outer sphere rotate with angular 

velocity   and the inner sphere at rest for  radii are cmRcmR 4,2 21  and the distance between two poles 

c=4cm. 

 

Fig.(3) velocity field W (  , ) versus )/)( 211   at different values of   when the outer sphere rotate 

with angular velocity   and the inner sphere at rest for  radii are cmRcmR 4,2 21  and distance between 

two poles c=4cm. 

Case(2):In contrast to case(1) the outer sphere 2 is being at rest ;i.e, 02   and the inner sphere 1 rotates with 

angular velocity ,  Fig.(4)show that the distribution velocity field W (  , ) behaves as the same manner as in case (1) 

with   while it is inversely proportional  to  =const. ;Fig.(4),while Fig.(5) shows the velocity field W (  , ) versus   at 

different values of    . 
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Fig.(4) velocity field W (  , ) versus   at different values of   when inner sphere rotate with angular velocity

   and outer sphere at rest for  radii are cmRcmR 4,2 21  and distance between two poles c=4cm. 

 

Fig.(5) velocity field W (  , ) versus )/)( 211    at different values of  when inner sphere rotate with 

angular velocity   and outer sphere at rest for  radii are cmRcmR 4,2 21  and distance between two poles 

c=4cm. 

Case(3):If the two spheres 1  and 2 are rotating with the same angular velocity  but with opposite directions;i.e, 

12  ,  Fig.(6) ,while Fig.(7) shows the velocity field W (  , ) versus )/)( 211    at different values of 

   . 
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Fig.(6) velocity field W (  , ) versus   at different values of   when the inner sphere rotate with angular 

velocity
1   and the outer sphere 

12  for  radii are cmRcmR 4,2 21  and distance between two poles 

c=4cm. 

 

Fig.(7) velocity field W (  , ) versus )/)( 211    at different values of   when inner sphere rotate 

with angular velocity 1   and outer sphere 12  for  radii are cmRcmR 4,2 21  and distance between 

two poles c=4cm. 

Surface tractions  

We have two components of normalized surface tractions S and S Fig.(8)show the distribution of normalized surface 

traction S versus   at different values of radii of inner and outer spheres, while Fig(9)show the normalized surface 

traction S versus   at different values of radii of inner and outer spheres. 
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Fig(8)The normalized surface traction S versus   at different values of radii of inner and outer spheres 

 

Fig(9)the normalized surface traction S versus   at different values of radii of inner and outer spheres. 
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