

A Note on non-relativistic gravitation

Pierre Hillion Institut Henri Poincaré, 86 Bis Route de Croissy, 78110 Le Vésinet, France e-mail : pierre.hillion@wanadoo.fr

Abstract

Using the Jefimenko theory of gravitation [1] and the Le-Bellac, Levy-Leblond non relati-vistic approximations of Maxwell equations, we prove that in addition to newtonian gravi-tation, there exists a second non-relativistic gravitation.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN PHYSICS

Vol. 11, No. 3

www.cirjap.com, japeditor@gmail.com

INTRODUCTION

Using the Jefimenko theory of gravitation [1] and the Le-Bellac, Levy-Leblond non relati-vistic approximations of Maxwell equations, we prove that in addition to newtonian gravi-tation, there exists a second non-relativistic gravitation.

1. JEFIMENKO THEORY

The Jefimenko theory [1] of gravitation is obtained from electromagnetism by simply repla-cing the electromagnetic symbols and constants by the corresponding symbols and constants of gravitation in accordance with the following tables:

Table (1a) Electromagnetism	Table (1b) Gravitation
q (charge)	m (mass)
$\boldsymbol{\rho}$ (volume charge density)	ρ (volume mass density)
J (convection current)	J (mass current)
E (electric field)	g (gravitational field)
B (magnetic field)	K (cogravitational field)
ϵ_{o} (permittivity)	–1/4πG
μ ₀ (permeability)	$-4\pi G/c^2$
$\varepsilon_0 \mu_0 = \mathbf{c}^{-2}$	G (gravitational constant)

Then, using these tables, the Maxwell and gravitational equations are in vacuum:

Maxwell (2a)	Gravitation (2b)
$\nabla . \mathbf{E} = \rho / \epsilon_0$	$\nabla . \mathbf{g} = -4\pi \mathbf{G} \rho$
$\nabla . \mathbf{B} = 0$	$\nabla . \mathbf{K} = 0$
$\nabla \wedge \mathbf{E} = -\partial_t \mathbf{B}$	$\nabla \wedge \mathbf{g} = -\partial_t \mathbf{K}$
$\nabla \wedge \mathbf{B} = \mu_0 \mathbf{J} + 1/c^2 \partial_t \mathbf{E}$	$\nabla \wedge \mathbf{K} = -4\pi \mathbf{G} \mathbf{J}/c^2 + 1/c^2 \partial_t \mathbf{g}$

The cogravitational field **K** is a special feature of the Jefimenko theorY.

2 NON RELATIVISTIC GRAVITATION

Now, it is known [2,3,4] that the Maxwell equations have two nonrelativistic limits respecti-

vely called electric (3a) and magnetic limits(4a) supplying according to the tables (1a,b) the non relativistic limits of the gravitational equations that we call gravilimit (3b) and cogra-vilimit (4b) corresponding respectively to (3a) and (4a):

2	
Electric limit (3a) [3]	Gravilimit (3b)
$\nabla . \mathbf{E}_{\mathrm{e}} = \rho_{\mathrm{e}} / \epsilon_{\mathrm{0}}$	$\nabla . \mathbf{g}_{\mathbf{g}} = -4\pi \mathbf{G} \rho_{\mathbf{g}}$
$\nabla .\mathbf{B}_{\mathrm{e}} = 0$	$\nabla . \mathbf{K_g} = 0$
$\nabla \wedge \mathbf{E}_{e} = 0$	$\nabla_{\wedge} \mathbf{g}_{g} = 0$
$\nabla \wedge \mathbf{B}_{e} = -1/c^{2} \partial_{t} \mathbf{E}_{e}$	$\nabla \wedge \mathbf{K_g} = 1/c^2 \partial_t \mathbf{g_g}$
Magnetic limit (4a) [3]	Cogravilimit (4b)
$\nabla . E_{m} = \rho_{m} / \epsilon_{0}$	$\nabla.\boldsymbol{g}_{\boldsymbol{c}\boldsymbol{g}} = -4\pi\boldsymbol{G}\rho_{\boldsymbol{c}\boldsymbol{g}}$
$\nabla . \mathbf{B}_{m} = 0$	$\nabla . \mathbf{K_{cg}} = 0$
$\nabla \wedge \mathbf{E}_{\mathbf{m}} = -\hat{c}_{t}\mathbf{B}_{\mathbf{m}}$	$\nabla \wedge \mathbf{g}_{cg} = -\partial_t \mathbf{K}_{cg}$
$\nabla \wedge \mathbf{B}_{\mathbf{m}} = \mu_0 \mathbf{J}_{\mathbf{m}}$	$\nabla \wedge \mathbf{K}_{cg} = -4\pi G \mathbf{J}_{cg} / c^2$

3.GRAVITATION AND POTENTIALS

The electromagnetic potentials V, **A** relating to fields in vacuum have the magnetic limit [3] satisfying the coulomb gauge with a scalar potential V_m independent on time $\partial_t V_m = 0$

$$\mathbf{E}_{m} = -\nabla V_{m} - \partial_{t} \mathbf{A}_{m} \qquad , \qquad \mathbf{B}_{m} = \nabla \wedge \mathbf{A}_{m} \qquad , \qquad \nabla . \mathbf{A}_{m} = 0 \qquad (5a)$$

Similarly in the electric limit, the potentials satisfy the Lorentz gauge and $\partial_t \mathbf{A}_e = 0$

$$\mathbf{E}_{e} = -\nabla V_{e}$$
 , $\mathbf{B}_{e} = \nabla \wedge \mathbf{A}_{e}$, $\nabla \cdot \mathbf{A}_{e} + 1/c^{2} \partial_{t} V_{e} = 0$ (6a)

Then, changing **E**, **B**, according to the tables (1,a,b) into the gravitational and cogravitational fields **g**, **K** and the subscripts e,m into g, cg gives similarly the gravilimit ($\partial_t \mathbf{A}_g = 0$) and the cogravilimit ($\partial_t V_g$) = 0

$$\label{eq:gg} \boldsymbol{g}_g = -\nabla V_g \qquad , \qquad \qquad \boldsymbol{K}_g = \nabla \wedge \ \boldsymbol{A}_g \qquad , \qquad \quad \nabla.\boldsymbol{A}_g + 1/c^2 \partial_t V_g = 0 \tag{6b}$$

$$\mathbf{g}_{cg} = -\nabla V_{cg} - \partial_t \mathbf{A}_{cg}$$
 , $\mathbf{K}_{cg} = \nabla \wedge \mathbf{A}_{cg}$, $\nabla \cdot \mathbf{A}_{cg} = 0$ (5b)

The gravitational potentials have the Poisson approximation [1]

$$\nabla^2 V_{\rm q} = 4\pi G \rho \qquad \qquad \nabla^2 \mathbf{A}_{\rm cq} = 4\pi G \mathbf{J}/c^2 \tag{7}$$

So, the gravilimit supplies the newtonian gravitation generalized by the existence of the co-gravitational field K in accordance with the Heaviside suggestion [5].

Remark: It has been proved [6] that E_g may be expressed in terms of a vector potential and K_{cg} in terms of a scalar potential.

4. CONCLUSION

The generalization of the basic gravitational equation of General Relativity theory is based at a large extent on the existence of the cogravitational field. Many applications of this gene-ralized gravity may be found in the Jefimenko books [1,7] (in a curious work [8] the advance of Mercury perihelion is explained by the cogravity).

We have proved here that the non relativistic approximation of the Jefimenko theory sup-plies in addition to a generalization of newtonian gravity (reducing in fact to newtonian gravity since the term due to the cogravitational field is very small and negligible), a second

3

non relativistic gravity. The interpretation os fhese approximations fall out of the scope of this pre esnt Note.

REFERENCES

- [1] Jefimenko O.D. 1992 Causality, Electromagnetic Induction and Gravitation. Electret Scientific Company.
- [2] LeBellac M, LevyLeblond.J.M .1973, Galilean electromagnetism Nuo.Cim..14B 217-233.
- [3] De Montigny M., Rousseaux G. 2006 On the electrodynamics of moving bodies at low velocities Eur. J.Phys.27 . 755-768.
- [4] Manfredi, G 2013. Nonrelativistic limits of Maxwell's equations. Eur. J. Phys. 34, 859-871.
- [5] Heaviside O. 1893 A Gravitational and Electromagnetic Analogy. The Electrician 31 81 and 359.
- [6] Jefimenko O.D. 1989 Electricity and Magnetism Electret Scientific, Star City).
- [7] Jefimenko O.D. 2006 Gravitation and Cogravitation, Electret Scientific, Star City.
- [8] De Matos, Tajmar M.. Advance of Mercury Perihelion Explained by Cogravity.arxiv.org /pdf/gr.qc/0005040