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ABSTRACT 

Our objective is to generalize the Weaver-Astumian (WA) and Kaune (KA) models of thermal noise limit to the case of 
cellular membrane resistivity asymmetry. The asymmetry of resistivity causes different effects in the two models. In the KA 
model, asymmetry decreases the characteristic field strength of the thermal limit over and increases it below the breaking 

frequency (

1
0

 m
), while asymmetry decreases the spectral field strength of the thermal noise limit at all frequencies. 

We show that asymmetry does not change the character of the models, showing the absence of thermal noise limit at high 
and low frequencies in WA and KA models, respectively.  
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INTRODUCTION 

There are long-time debates about the thermal noise limit in the cellular membrane [1], [2], [3], [4]. As we presented in one 
of our earlier works [5], the Weaver-Astumian (WA) model [1] and the Kaune-modification (KA) [3] could be described in 
an integrative manner by the method of symmetric components [6]. The method was further developed and significantly 
simplified [7].  

Membrane homogeneity is a rough simplification of the membrane reality, which has multiple clusters of transmembrane 
proteins (membrane rafts [8]) and could be changed by various diseases [9]. In addition, membrane resistivity differs 
robustly in the cancerous state from that of the healthy membrane condition [10]. Membrane rafts are novel targets of 
cancer therapies [11]. Membrane rafts have many specialized proteins involved in sensory mechanisms [12] as well as 
cell-cell connections, which could change the conductivity of the spot [13], leading to drastic changes in the thermal noise 
limit [14].  

Our objective is to generalize these models, keeping their physical meaning, but questioning the effects of inhomogeneity 
of the membranes, which is caused by rafts that are present on them.   

The symmetrical component networks of a symmetrical membrane 

In constructing the simple model, we first investigate a two-segment situation, in which the segments are identical in their 
physical parameters. The model circuit of this looks as shown in fig.1. [3].  

 

Figure 1. Equivalent circuit of membrane approximated by two segments, where mR
 is the resistivity, 

mC
 the capacity of the membrane and 21 ,

 are the noise potentials originating from the individual 
segments.  

For the Fourier transforms of noise potential, the Kirchhoff's equations can be written 

 

 

212

211

1
2

1

,
11

2

I
Cj

RI
Cj

I
Cj

I
Cj

R

m
m

m

mm
m































 

(1) 

 

and may also be expressed in the following matrix form: 
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Let us calculate the spectral energy distribution from the Nyquist-Twiss law [15].  
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Therefore, the noise potentials of each segment are independent.  

Let us perform the decomposition into symmetrical components in accordance with Kirchhoff equations (1) in a descriptive 
way. It is easy to see that the equations 
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(4) 

 

follow from (1), and these are the symmetrical components. 

The equivalent circuit of symmetrical component networks is set forth in the following figure. 

 

Figure 2. Symmetrical component networks of the membrane 

From Nyquist's law, we may calculate the spectral power density of the symmetrical components of noise potentials. 
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We may see that the symmetrical component transformation did not change the spectral power densities. 

Connection of the WA and KA models with symmetric components 

Accordant to the WA model, for the calculation of the effective field strength, we shall specify the double value of the 
spectral power density of the capacitor of a zero sequence equivalent circuit. In accordance with Figure 2. 
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(6) 

 

where we applied the relationships (4) and (5). 

Let us specify the Kaune field strength from the dissipated power generated on the resistances of the equivalent circuit. 

In the equivalent circuit of zero sequence 
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(7) 

which conforms to the result of Kaune where we applied the relationships (4) and (5). 

We get the field strength in the first sequence equivalent circuit from the relationships (4) and (5). 
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(8) 

 

We shall observe that these results seem not to be dependent on the number of membrane segments. 

In reality, the number of symmetrical components is identical to the number of membrane segments.  

This means that the white noise of form (7) appears in each component. 

Thermal noise models of the asymmetric membrane 

A criticisable point of the Kaune treatment is that it sets out from membrane segments of the same properties, and it is not 
clear in what way it is possible to extend the theory to a membrane consisting of different segments. The method 
described below can be applied in this case as well. 

We are dealing with a membrane consisting of segments of different electrical properties (for example, because of an 
illness). 

Next, for the sake of simplicity and demonstration we are going to examine a two-segment membrane. 

The equivalent circuit of membrane can be seen in the following picture. 
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Figure 3. Equivalent circuit of membrane approximated by two segments and having resistance failure 

 Let us formulate the Kirchhoff equations for the Fourier transforms of noise quantities: 
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Let us introduce for these the symmetrical components as described above: 
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The equivalent circuit from Figure 4 can be attached to the equations. 

 

Figure 4. Equivalent circuit of faulty membrane represented by symmetrical component networks 

The above equations can be written in matrix form as follows: 
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(11) 

 

From the impedance matrix we may specify the spectral power density of noise potential by using the Twiss theorem. 
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Now, we see that the noise potentials are correlated! 

Let us formulate the assumption of Kaune [3] as follows: the effective field strength dissipates the same energy in the 
cellular membrane as the zero sequence current on the resistance of zero sequence circuit, 
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For this we have to specify the zero sequence current from (11). Then we get that 
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We get the result from (12) (13) and from the above assumption of Kaune by taking into account the order of magnitude: 
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Applying the WA model, we get the following result: 
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Consequently, the resistance failure of the membrane decreases the effective field strength. 

It could be shown by analogy with the above, that when a membrane having N segments where the resistivity of one of 

those is higher by R , mRNR 2/
. Consequently, the effect of asymmetry by increasing the number of 

segments by N of segments decreases.  
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The next two figures show the mmm
net

dA

kT
E



4
/2

normalized spectral value of these field strengths as a function of 

normalized frequency and in two different areas. The ratio of resistances is 
3.04/  mRR

 on the figures. 

 

Figure 5. Normalized field strength as a function of normalized frequency 

 

 

Figure 6. Normalized field strength as a function of normalized frequency in a larger area 

DISCUSSION 

We have shown that both KA and WA models can be generalized to cases where membrane resistivity is asymmetric.  

In the case of faulty membrane resistance, not only the zero but also the first symmetrical components influence the 
course of the effective field strength. Asymmetry causes different effects in the two models.  

The change in field strength of the noise limit in the KA model grows under the 

1
0

 m
 break-point frequency, while 

the above does the opposite. However, in the WA model, asymmetry decreases the field strength of the noise limit at 
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every frequency. With a growing number of segments, the effect of membrane asymmetry of resistivity gradually 
decreases.  

Asymmetry of resistivity does not change the character of the described models, having no noise limit at low and high 
frequencies in the KA and WA models, respectively.  

Therefore, membrane resistance asymmetry does not cause substantial change. We do not have to change the models 
because of membrane failures, as the modification effect is slight.  

Additional note  

The symmetric component transformation is unitary; therefore, the instantaneous powers of noise are equal in the several 
equivalent circuits introduced above, i.e.  
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Due to this, two possible definitions of field-strength characterize the noise limit. These are only apparently different, 
because the simplest characterization of stochastic processes can be made by their power-density spectrum.  

According to Kaune’s original definition [3], the field-strength characterising the noise limit is constructed by the conductive 
current through the membrane, which has the same value as the displacement current (capacitive current) on the 
membrane (a detailed analysis see below). Consequently, using the circuit-picture,  
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However, only the power spectrum has meaning:  
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From this we conclude with our definition: the field-strength characterising the noise-limit is determined by the dissipated 
power in the unit volume of membrane in a zero-order substitutive network.  

We will show that it is possible to define two concepts: There are conceptual differences in the effective field strength of 
the cell membrane by the WA, and Kaune models. On the basis of the cellular membrane model (Figure 7.), we suppose 

that the lipid double layer is a glossy, dielectric material with m  permittivity and finite, non-zero m  conductivity. As a 
consequence of thermal motion, a random electromotive force (emf) develops in the membrane. The field strength 

belonging to this emf is denoted by 
E

. This is the so-called Jonhson's field strength. According to the Langevin 

hypothesis, the net electric field strength E  in the membrane can be resolved into two components: (i) the 
E

 field 
strength, which is a temporally uncorrelated randomly fluctuating quantity having zero-mean and (ii) and a dissipative field 

strength, which is proportional to the conducting current density dj  of the membrane. The conduction current is 
statistically independent of the Jonhson's field strength. This assures the fulfilment of the second law of thermodynamics 
in accordance with Langevin's statement. The conduction current generates, in the ion layer to be found on both sides of 

lipid layer, the   random surface charge density represented in figure 7. The surface charge density generates the 

displacement current density dj , which closes the current circuit, thus assuring the conservation of electric charge. 
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Figure 7. For the calculation of the effective field strength of the cell membrane 

From an energetic point of view, we may have two possibilities to choose the effective field strength. One of them is that 
we consider that field strength as effective which belongs to the electric energy density is storage in membrane. That is 
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This selection means that the dielectric polarization is considered relevant, for example, we could assume that polarization 
might lead to a degree at which the polarized charges are separated and can contribute to  membrane conduction with 
some biological consequences. Another option is that we consider the field strength as effective and belonging to the field 
strength as part of to the electric energy dissipation density per unit time of the membrane, namely  

 

 

diss

m

c

m

c
netKaune E

jj
E 

 2

2

 

 

(20) 

In this case, we could suppose that the thermal effect of dissipation generated by noise (for example thermal breakdown) 
might causes the biological effect. Next, we are going to specify the consequences of these. We can set up the equations 
according to Figure 7: 
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If we suppose that the distribution of field strengths and current densities is homogenous in the membrane, we get 
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Where mU
 is the potential, mR

 is the resistance, mA
 is the surface, md

 is the thickness and m  is the random 
voltage, that is the so-called Johnson emf generated in the membrane. The equivalent circuit of Figure 8. belongs to the 
above equations, and here we marked the introduced effective field strengths. 
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Figure 8. Equivalent circuit of the cell membrane 

From the equations (21) and (22) we get the differential equation of the network, namely 
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where m  is the time constant and mC
 is the capacity of the membrane. By multiplying the equation by mU

 and 
calculating the average, we get the equation, 
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from which it follows that the electric energy generated by the fluctuation of membrane potential is transformed into heat 

by the membrane resistance . The characteristic time constant of the transformation is 2

m

.  

If we knew 
  jm , the Fourier transform of m , then we would have the following solution to equation (23): 
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But, instead of 
  jm  we know the 
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. Accordant to 
the Nyquist theorem: 

 

 
mkTRfS 4)( 

 
(26) 

 

Thus, the power spectral density of the membrane potential: 
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(27) 

 

Also the effective field strength accordant to the WA theory: 
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(28) 

 

The Fourier transform of the dissipative field strength from equations (20) and (21) has the form of 
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(29) 

 

from which we get the effective field strength accordant to the Kaune theory 
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(30) 

 

The basic character of the models does not change.  

CONCLUSION 

The appearance of membrane rafts in the models of thermal limit does not have a drastic influence on the homogeneous 
membrane models of thermal limit. 
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