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 ABSTRACT 

The vanadium dioxide VO₂ is a material described as being intelligent because it can transit [1,2] from a reversible way of 

the semiconductor state to the metal state at a temperature θt = 68°C. When we are at a temperature θt < 68°C, this 
material is in the semiconductor state with a gap [3,4] approximately 0.7 ev. When θt > 68°C, the vanadium dioxide 

becomes metal [14], there is an abrupt change of its structure and its optical properties [14,15] and electronic. We are 
interested in this study in the VO₂ semiconductor state [15] and, especially, in widening its gap by the application of a 

magnetic field B    = Bz . By taking into account the spin of the electron of the band of conduction after having neglected the 
term of Coulomb interaction, we solved the Schrödinger’s equation in an exact way. Obtaining the levels of Landau [5,6,7] 

enables us to conclude the variation of the gap of  ∆Eg =
1

2
ℏωc, where ωc  is the frequency cyclotron ωc =

eB

μ
, with e: the 

electron charge; μ: the reduced mass of the quasi particle (electron-hole); ħ: the Planck's constant reduced, and B is the 
intensity of the applied magnetic field. We will simulate by Maple this variation according to B for fixed μ on the one hand, 
and ΔEg  according to μ for fixed B on the other hand. 

               

Simulated curves of the variation ∆𝐄𝐠 of the vanadium dioxide according to the magnetic field B for the fixed 

reduced mass μ on the one hand, and on the other hand according to μ for fixed B.
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 Academic Discipline And Sub-Disciplines  

Science; Quatum Physics; materials optics 

SUBJECT  CLASSIFICATION  

Materials Physics. 

TYPE (METHOD/APPROACH) 

Calculation by exactly solving the Schrödinger’s equation , based on simulation and modeling. 

INTRODUCTION 

The semiconductor gap depends on several physical parameters. We quote, for example, the temperature, the pressure, 
the containment effect of the exciton or the size quantum effect and the magnetic field effect. We will apply a magnetic 

field B    according to the direction (OZ) in the massive vanadium dioxide whose energy of gap is about   0.7 ev. After the 

exact resolution of the Schrödinger’s equation of an electron in the band of conduction, we obtain the levels of Landau’s 
energy [5,8,9] by taking into account the spin [10,11] of the electron after having neglected the term of the Coulomb’s 
interaction. This technique involves a growth of the gap of VO₂ which is considered as a weak gap [12].  

 Methods 

We solve the Schrödinger’s equation [10,11] in an exact method: Hψ = Eψ   

H : The Hamiltonian of the system ( the electron of the conduction band). 

Ψ : The wave function of the electron. 

H =
1

2m∗
 −iħ∇   +

e

c
 A   0 

2

+
1

2
g0μBB   0 ∙ σ    

μB   :  the magneton of Bohr. μB =
eħ

2m∗  Where  m∗ : the electron effective mass.                                                                                                  

g0   : the factor of Lande                                                                                                                                                                                                 

e     : the elementary charge    .                                                                                                                                                                                           

ħ =
h

2π
 ; h: Planck's constant   .                                                                                                                                                                                         

M     :  the electron magnetic moment linked to its spin existence , M    = −γS  .                                                                                              

S   :   the spin operator.                                                                                                                                                                                                

γ :   the gyromagnetic report.                                                                                                                                                                             

σ   :   the vector whose components are the Pauli matrices  σx , σy , σz . 

σ   =  

σx

σy

σz

       ;       γ =
2

ħ
μB         ;         S  =

ħ

2
σ    

 σx , σy = 2iσz     ;       σy , σz = 2iσx      ;        σz , σx = 2iσy  

   +  ,   −    : the base space of the spin states Es  

  +  =   ε+
  =   

1

2
,
1

2
   ;     −  =   ε−

  =   
1

2
, −

1

2
   

Sz =
ħ

2
σz =

ħ

2
 

1 0
0 −1

   ;    Sz
  +  =  ħ

2
 +      ;    Sz

  −  =  −
ħ

2
 −       ;  σz =  

1 0
0 −1

  

1 Coulomb’s Gauge 

The following gauge is chosen   : divA   0 = 0  (Coulomb’s gauge). We have    ∇    ⋀ A    0 = B   0   ;     B   0 = B   0z  
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A   0 =  

A0x

A0y

A0z

     ;     ∇    ∧  A    0 =

 

 

∂

∂x
∂

∂y
∂

∂z

  ∧   

A0x

A0y

A0z

 =

 

 

∂A0z

∂y
−

∂A0y

∂z
∂A0x

∂z
−

∂A0z

∂x
∂A0y

∂x
−

∂A0x

∂y

  

divA   0 = ∇    ∧ A   0 = 0 ⟹  
∂A0x

∂x
+

∂A0y

∂y
+

∂A0z

∂z
= 0 ⟹ A0z = A0y = cste = 0 

A0x  does not depend on  x  ;     −
∂A0x

∂y
= B   0 ⟹ A0x = −B0y  

Where:    A   0 =    

  A0x  = B0

A0y  = 0

A0z   = 0
      ⟹    A   0 = −B0yx   

The gauge enables us to choose  A   0 = −B0y x    since   A   0 is not unique: 

 A   ′0 = A   0 + ∇   g r   where g r  is a scalar function, ∇    ∧ A   ′0 = ∇    ∧ A   0  car ∇    ∇    g r  = 0  

2 Eigenvalues and eigenvectors of the Hamiltonian H. 

In the representation    r   , we have  p  ⟶ −iħ∇   , where : 

H =
1

2m∗
 p  +

e

c
 A   0 

2

+
1

2
g0μB B   0 ∙ σ    

H = H1 + H2  où  H1 =
1

2m∗
 p  +

e

c
 A   0 

2

;   H2 =
1

2
g0μBB   0 ∙ σ    

We have: 

H1 =
1

2m∗  px
2 + py

2 + pz
2 +

1

2m∗
∙

e2

c2
A   0

2 +
1

2m∗
∙

e

c
 p  ∙ A   0 +

1

2m∗
∙

e

c
 p  ∙ A   0 

H1 =
1

2m∗  px
2 + py

2 + pz
2 +

e2B0
2

2m∗c2
y2  +

e

2m∗c
 2px ∙ A0x    

H1 =
1

2m∗  px
2 + py

2 + pz
2 +

e2B0
2

2m∗c2
y2 −

eB0

m∗c
 ypx    

H1 =
1

2m∗
 px

2 −
2eB0

c
 ypx +  

eB0

c
 y 

2

 +
1

2m∗  py
2 + pz

2     

H1 =
1

2m∗
 px −

eB0

c
 y 

2

+
1

2m∗  py
2 + pz

2     

H1 =
1

2m∗
  px −

eB0

c
 y 

2

+ py
2 +

1

2m∗
pz

2    ;      H1 = H1⊥ + H1∥ 

   H1⊥ =
1

2m∗
  px −

eB0

c
 y 

2

+ py
2     ;     H1∥ =

1

2m∗
pz

2                           (1) 

We consider φ (x,y,z) solution of the equation H1φ = E1φ : 

φ x, y, z = ei kx x + kz z f y                                                                                  (2) 

 
1

2m∗
 px −

eB0

c
 y 

2

+
1

2m∗  py
2 + pz

2     ei kx x + kz z f y = E1ei kx x + kz z f(y) 

In the representation   r    , we have : 
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px ⟶ −iħ
∂

∂x
   ;    py ⟶ −iħ

∂

∂y
   ;    pz ⟶ −iħ

∂

∂z
 

We calculate: 

1

2m∗
 px −

eB0

c
 y 

2

ei kx x + kz z f y =
1

2m∗
 px −

eB0

c
 y  −iħ

∂

∂x
−

eB0

c
 y ei kx x + kz z f y 

=
1

2m∗
 −iħ

∂

∂x
−

eB0

c
 y  ħkx −

eB0

c
 y ei kx x + kz z f y 

=
1

2m∗
 ħkx −

eB0

c
 y 

2

ei kx x + kz z f y  

1

2m∗
 py

2 ei kx x + kz z f y = −
1

2m∗
ħ2 ei kx x + kz z ∂2f(y)

∂y2
= −

1

2m∗
ħ2 ei kx x + kz z f ′′(y) 

1

2m∗
 pz

2 ei kx x + kz z f y =
1

2m∗
ħ2kz

2 ei kx x + kz z f y                                                               (3) 

Where : 

1

2m∗   ħkx −
eB0

c
 y 

2

f y − ħ2 f ′′ y + ħ2kz
2 f(y) = E1f y                                                (4) 

⟹
1

2m∗  −ħ2 f ′′ y +  ħkx −
eB0

c
 y 

2

f y  =  E1 −
ħ2kz

2

2m∗  f(y) 

⟹
1

2m∗   −iħ
∂

∂y
 

2

f y +  y − y0 
2  

eB0

c
  

2

f y  =  E1 −
ħ2kz

2

2m∗  f y                              (5) 

We pose: 

y0 =
ħckx

eB0
   ;    ω0 =

eB0

m∗c
   ;    ε′ = E1 −

ħ2kz
2

2m∗
 

⟹  
1

2m∗  py
2   +  y − y0 

2  
eB0

c
  

2

  f(y) = ε′ f(y) 

⟹    
py

2

2m∗
  +

1

2
m∗ω0

2 y − y0 
2  f y = ε′ f y                                            (6) 

Thus, f(y) respects the harmonic oscillator’s equation [10,11] of the energy ε′ = E1 −
ħ

2
kz

2

2m∗  

We know that  ε′ is quantified: ε′ = ħω0  n +
1

2
  where n = 0; 1; 2; 3; …. , 

Where : 

E1 = ε′ +
ħ2kz

2

2m∗
    ;     E1 = ħω0  n +

1

2
 +

ħ2kz
2

2m∗
                                            (7) 

E1 is eigenenergy of the Hamiltonien H. 

We search for the eigenvalues and the eigenvectors associated with H2 

H2 =
1

2
g0μBB   0 ∙ σ   =

1

2
g0μBB0 ∙ σz  

We know that  σz =  
1 0
0 −1

    in the base    +  ,   −    space Es   the spin’s states of the electron. 

H2
  +  =

1

2
g0μBB0 ∙ σz

  +  =
1

2
g0μBB0

  +  = E2+
  +   

⟹ E2+ =
1

2
g0μBB0  

eigenvector
            +    
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H2
  −  =

1

2
g0μBB0 ∙ σz

  −  = −
1

2
g0μBB0

  −  = E2−
  −   

⟹ E2− = −
1

2
g0μBB0  

eigenvect or
            –    

 Where the total energy of the system is: 

E+ = E1+E2+ = ħω0  n +
1

2
 +

ħ2kz
2

2m∗
+

1

2
g0μBB0                                      (8) 

     E− = E1+E2− = ħω0  n +
1

2
 +

ħ2kz
2

2m∗
−

1

2
g0μBB0                                      (9)     

These are the energy levels of Landau by taking into consideration the spin of the electron in a magnetic field B   0 = B0z . 

3 The eigenstate of 𝐇𝟏 

The eigenfunction is:  φ x, y, z = ei kx x + kz z f(y) 

ε′ = ħω0  n +
1

2
  is the eigenenergy with the eigenfunction f y ⟹ f y = Cn e−

α2

2
y2

Hn(yα)  

with α2 =
m∗ω0

ħ
 ;  Hn  is the Hermit polynomial;  Cn =  

α

π
 

1
4

  2n ∙ n! −
1
2   is the standardization constant  

⟹ f(y) =  
m∗ω0

π2ħ
 

1
8

  2n ∙ n! −
1
2e−

m∗ω0
2ħ

y2

Hn(yα) 

Hn yα =  −1 neα2y2
 

dn  

 d αy  
n exp −α2y2       

⟹  φ x, y, z =  
m∗ω0

π2ħ
 

1
8

  2n ∙ n! −
1
2 ei kx x + kz z  e−

m∗ω0
2ħ

y2

Hn yα                             (10) 

φ x, y, z  is the eigenfunction associated with H1 

Sz  has the eigenvector   +   et   –   as it is the case with σz . 

We associate the energy E+ to the eigenstate   φ x, y, z ⨂ +  =  φ x, y, z  +    noted    ψ+
   

  ψ+
  =  

m∗ω0

π2ħ
 

1
8

  2n ∙ n! −
1
2 ei kx x + kz z  e−

m∗ω0
2ħ

y2

Hn (yα)  +                                                                 (11) 

We associate the energy  E− to the eigenstate   φ x, y, z ⨂ −  =  φ x, y, z  −    noted   ψ−
   

  ψ−
  =  

m∗ω0

π2ħ
 

1
8

  2n ∙ n! −
1
2 ei kx x + kz z  e−

m∗ω0
2ħ

y2

Hn yα   −                                                                  (12)  

Thus,    ψ+
   and   ψ−

   are the eigenvectors of the Hamiltonian H of the respective eigenenergies E+  and  E−  , such as : 

E+ = E1+E2+ = ħω0  n +
1

2
 +

ħ2kz
2

2m∗
+

1

2
g0μBB0                                                                     (13) 

E− = E1+E2− = ħω0  n +
1

2
 +

ħ2kz
2

2m∗
−

1

2
g0μBB0                                                                     (14) 
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 We note that in the presence of a magnetic field  B   0, the gap energy [12] undergoes an increase in this variation : 

∆Eg =
1

2
 

1

mc
+

1

mv
 
eℏB0 

c
         unit (C. G. S)                                            (15) 

1

mc

+
1

mv

=
1

μ
;    where μ is the reduced mass of the particle (electron − hole)  

We see that  ∆Eg  is proportional to  
1

μ
  and to B0  ; and we write :  

∆Eg =
eℏ  

c
∙

1

2μ
B0                                                                                  (16) 

Results  

By using the following data in the system (S.I): 

   4m0 ≤ μ ≤ 14m0 

We vary the reduced mass [13] by fixing the magnetic field B = B0 in intensity as follows:   

𝐟𝐨𝐫  𝐁 = 𝟏𝟎 𝐓   ;    𝐁 = 𝟒𝟓 𝐓    ;    𝐁 = 𝟐𝟎𝟎𝟎 𝐓 

We obtain the following results: 

 Figure 1: Landau’s Levels associated with the conduction band and the valence 

band of a direct gap semiconductor. 
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(a) 

(b) 
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By using the following data in the system (S.I): 

   0 T ≤ B ≤ 2000 T 

m0 = 9.1 ∙ 10−31; ħ = 1.05457 ∙ 10−34; e = 1.6 ∙ 10−19 ; 

We vary the magnetic field B in intensity by fixing the reduced mass as follows:   

𝐟𝐨𝐫  𝛍 = 𝟒 ∙ 𝐦𝟎     ;      𝛍 = 𝟏𝟒 ∙ 𝐦𝟎  

We make the simulation of the variation ∆Eg  gap of the massive vanadium dioxide, our results are as follows: 

 

 

 

(c) 

Figure 2: (a), (b) and (c) variation of the VO₂ gap according to the 

reduced mass μ for a magnetic field B = 10 T, B = 45 T, B = 2000 T. 
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(d) 

(h) 

Figure 3: (d) and (h) variation of the massive VO₂ gap according to the 

magnetic field B for the reduced mass μ =  4m0  and  μ =  14m0 
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Discussion : 

For B = 0T, the energy of the vanadium dioxide gap is Eg = 0.7 ev. During the application of the magnetic field of intensity 

B = 10T, we clearly notice a variation  ΔEg  from 0.00018 ev to 0.00006 ev  in the interval 4m0 ≤ μ ≤ 14m0,  which 

corresponds obviously to a decrease in ΔEg ,  but the gap widens and becomes E = ΔEg + Eg .  The absorption threshold is : 

λ1 = λc(nm) =
hc(ev ∙ nm)

Eg (ev)
 

For the vanadium dioxide VO₂ semiconductor:    

                              

λ1 = λc nm =
1242,4125(ev ∙ nm)

Eg ev 
= 1774,875 nm  

                 

 This threshold is located in the average infra-red. 

When  λ < λ1 , the absorption becomes fast since the broad absorption coefficient α is very big. But when the gap is 

widened of   ΔEg  , we have a new absorption threshold: 

λ2 = λc nm =
1242,4125(ev ∙ nm)

Eg + ΔEg
    

When the threshold of absorption becomes: λ < λ2 , we have a widening in the spectral band of the VO₂ absorption.  

For B = 45T , the gap variation becomes : 0.0008 ≤ ∆Eg(ev) ≤ 0.0002 in the interval of the reduced mass 4m0 ≤ μ ≤ 14m0. 

We note an important increase in the gap even if ∆Eg(ev) according to μ decreases when μ increases.         

The absorption threshold becomes: 

λ3 =
1242,4125(ev ∙ nm)

Eg + ΔEg
     

The absorption of the incidental photons is fast for λ < λ3. 

For B = 2000T , the variation of the gap becomes: 0.035 ≤ ∆Eg(ev) ≤ 0.010 in the interval of the reduced mass [13],            

4m0 ≤ μ ≤ 14m0. We see that ∆Eg(ev) decreases when μ increases, but the gap variation E = Eg + ΔEg  becomes 

important. The absorption threshold is in this case: 

λ4 =
1242,4125(ev ∙ nm)

Eg + ΔEg
    

 The absorption of the incidental photons is fast for λ < λ4  ;   λ =  λphoton . 

 

 

λc  (nm) μ = 4m0 B(T) 
Condition of 
absorption 

E(ev) = Eg + ΔEg  

λ1  1774,8750 0 λph < λ1 0,7 

λ2 1774,4187 10 λph < λ2 0,70015 

λ3 1772,8488 45 λph < λ3 0,7006 

λ4 1690,3571 2000 λph < λ4 0,732 

 

λc  (nm) μ = 14m0 B(T) 
Condition of 
absorption 

E(ev) = Eg + ΔEg  

λ1  1774,8750 0 λph < λ1 0.7 

λ2 1774,7228 10 λph < λ2 0,70004 

λ3 1774,3680 45 λph < λ3 0,70015 

λ4 1749,8767 2000 λph < λ4 0,7083 

 

Tables. Calculation of the absorption threshold and VO₂ gap during 

the application of the magnetic field B for 𝝁 = 𝟒𝒎𝟎 and 𝝁 = 𝟏𝟒𝒎𝟎. 
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Conclusion  

According to this study, we retain a good result by obtaining a broad absorption threshold for μ = 4m0 while comparing it 

with μ = 14m0. Indeed, we need a very intense field for μ = 14m0 so as to widen this gap. 

As a result, we have the increase in the absorption coefficient α in the average I.R. This can be of a good practical utility in 
the industry, particularly the scanners, the microwaves, telecommunication means, and the photovoltaics. 

Perspectives: to perform the same study for the thin layers of VO₂ where the potential of containment Vconf  is added in the 

Hamiltonian, in order to solve the Schrödinger’s equation and to study the variation of the absorption coefficient α of these 
layers [16] in the I.R, the U.V and the visible specters. 
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