Energy Spectrum of Relativistic Electrons Channeled Through Single-Wall Carbon Nanotubes M. H. Ali Physics department, Faculty of Science, Suez-Canal University, Ismailia 41522, Egypt. E-mail address: marhussien@yahoo.com #### **ABSTRACT** The energy eigenvalues of the channeled electrons through single wall carbon nanotubes (n,m) was calculated. According to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals, the actual periodic potential of a row of atoms is replaced by a potential averaged over a direction parallel to the row, called continuum potential. The calculations was executed by using the atomic interaction potential as given by Moliere potential. The maximum number of bound states and the energy eigenvalues is calculated for positrons of 100 MeV energy incident in a direction parallel to the nanotube axis, by using WKB method. The calculations showed that the effect of temperature by using Debye approximation of thermal vibration amplitude on the channeling potential is very small and gave the same eigenvalues and the same number of bound states as that for the static nanotubes. #### **Keywords** Channeling; Carbon nanotubes; Relativistic electron beams; Bound states. # **Academic Discipline** Theoretical physics #### Subject Classification Quantum Mechanics physics #### Type (method) WKB approximation method #### 1. Introduction A great variety of physical processes can occur when an energetic beam of charged particles is incident upon a solid target. All of these processes have cross sections, which depend on the impact parameters involved in collisions with individual target atoms. If the target material is monocrystalline, the distribution of the impact parameters and the yield of physical processes was found to be very strongly dependent on the relative orientation of the beam direction and the target. This effect is called the "channeling" effect. Much of the basic theory of the channeling process can be found in the treatment published by Lindhard in 1965 [1]. Channeling effect has found several important applications [2]. In our previous work, special consideration is devoted to the channeling of positively charged particles in disordered lattices of cubic crystals including the characteristics of channeling radiation that emits spontaneously due to transitions between eigenstates of the channeled positrons [3] in addition to calculations of the transmission and dechanneling coefficients in disordered lattices, [4-7]. The channeling effect in single-wall carbon nanotubes SWCNT's has found many important advantages compared to single crystals [8, 9], for example: - SWCNT's have much wider channels than ordinary crystals, implying weaker dechanneling so that, longer channeling distances may be achieved. - The wider channeling angle in SWCNT's (up to (~ 0.1 rad) are accepted for ion channeling in SWCNT's than in ordinary crystals, leads to the possibility of ion channeling at low energies (~ 1 KeV), which recently found great interest in the field of molecular dynamic simulations. - The channeling potential wells of nanotubes are sufficiently deep and broad to allow an efficient capture of positive particle beam in channeling states. Moreover, for nanotube ropes, the low electron and atomic density inside the channel make their channeling more stable than in ordinary crystals. In addition to several possible uses of Ion channeling through carbon nanotube as a diagnostic tool analyzing the structure of nanotubes, there is a wide range of potential applications of the channeling through SWCNT's in other areas, for example [8,9]: - Creation and transportation of highly focused nano-beams. - Ion implantation in manufacturing nano-elecronics devices. **5015** | Page August 2017 DOI: 10.24297/jap.v13i7.6281 www.cirworld.com Extraction, steering and collimation of ion beams at high energy particle accelerators. A SWCNT's can be thought of as resulting from rolling a strip of graphene into a cylinder. Graphene is a single planar sheet of sp²- bonded carbon atoms forming a hexagonal lattice with the bond length of $~\ell \Box ~0.141~\mathrm{nm}$ between carbon atoms, giving the surface density of atoms $\sigma_{at} = 4/(3^{3/2}\ell)$. A roll-up vector, which generates the circumference of a SWCNT, can be defined in the graphene strip by $\mathbf{C}_h = n\mathbf{a}_1 + m\mathbf{a}_2$, where \mathbf{a}_1 and \mathbf{a}_2 are the basis vectors (with the angle $\pi/3$ between them, and $|\mathbf{a}_1| = |\mathbf{a}_2| = \ell\sqrt{3}$), forming a rhomboidal unit cell of graphene [10]. The pair of integers completely determines the atomic structure of any SWCNT and specifically, its $d=(\ell\sqrt{3}\,/\,\pi)\sqrt{n^2+nm+m^2}$, helicity or chiral angle $\theta=\arctan[\sqrt{3}m\,/\,(m+2n)]$, as well as its longitudinal periodicity. SWCNT's with m = 0 ($\theta = 0^{\circ}$) are called *zigzag*, those with m = n ($\theta = 30^{\circ}$) armchair, while all other with 0 < m < n are called *chiral* nanotubes. The system under investigation is a channeling of relativistic electrons through an (n,m) single-wall carbon nanotube (SWCNT). The nanotube axis is in z-direction and the origin lies at the transverse entrance plane. The motion of electrons in this channeling regime is governed by a transverse potential and we can find the bound states and the maximum number of bound states for the given incident energy. The initial electron velocity taken to be parallel to z-axis. We assume that the nanotube is sufficiently short for the positron energy loss to be neglected. In this work we consider the channeling of 100 MeV electrons through single-wall carbon nanotubes (10, 10), (11, 9) and (18, 0). ## 2. Channeling potential in carbon nanotubes According to the continuum model approximation given by Lindhard [1] for the case of an axial channeling in single crystals, the actual periodic potential of a row of atoms is replaced by a potential averaged over a direction parallel to the row, called continuum potential. The continuum potential of single atomic row can be written as: $$V(r) = \frac{1}{d_R} \int_{-\infty}^{\infty} V(\sqrt{r^2 + z^2}) dz$$ (1) , where V is the atomic interaction potential, r is the distance from the row, z is the coordinate along the row and d_R is the average distance of neighboring atoms along the row. If a fast charged particle enters a nanotube at small angle to the tube axis (i.e., in channeling regime), the motion of the particle is governed by a continuum potential as given by Eq. (1). In this work, the calculations is executed by using the atomic interaction potential as given by Moliere potential [11] as: $$V_{M}(\mathbf{x}) = \frac{z_{1}z_{2}e^{2}}{x} \sum_{i=1}^{3} \alpha_{i} \exp(-\beta_{i} \mathbf{x})$$ (2) , with $\{\alpha_i\} = \{0.35, 0.55, 0.1\}, \{\beta_i\} = \{0.3/a, 1.2/a, 6/a\}$ where $a = (9\pi^2/128z_2)^{1/3}a_0$, is the Thomas-Fermi screening radius; $a_0 = 0.529 \,\mathrm{A}^\circ$ is the Bohr radius, z_1 and z_2 are the charge numbers of projectile and target atoms, respectively, e is the elementary charge and x is the separation between them. , with $$\{p_i\} = \{0.18175, 0.50986, 0.28022, 0.02817\}$$, $${q_i} = {3.1998/a, 0.94229/a, 0.40296/a, 0.20162/a}$$ Using the above expressions given by Eq. (2) in Eq. (1), we can obtain the axial potential corresponding to Moliere potential as: $$U_{M}(r) = \frac{2z_{1}z_{2}e^{2}}{d_{R}} \sum_{i=1}^{3} \alpha_{i} K_{0}(\beta_{i}r),$$ (3) , where K_0 is the modified Bessel function of the second kind and order zero. The channeling potential of a nanotube $U(\mathbf{p})$, where \mathbf{p} is a vector normal to the tube axis, is the sum of the axial potentials given by Eq. (3) of the rows positioned at \mathbf{r}_i over the circumference of the nanotube (Fig. 1), i.e. [12]. Fig.1. Cross section of the nanotube channel is a circle of radius r, the rows of the carbon atoms are positioned at \mathbf{r}_i over the circumference of the nanotube, $\mathbf{\rho}$ the distance from the nanotube center [12]. $$U(\mathbf{p}) = \sum_{i=1}^{N} U(|\mathbf{p} - \mathbf{r}_i|)$$ (4) , where $N=(2/q)(n^2+nm+m^2)$ is the number of atomic rows [8], with, $q=\gcd(2m+n,2n+m)$ denotes the greatest common divisor of its arguments. In the numerical calculation of Eq. (4), we note that, the N rows consists of two sequences of rows overlap with a doubled linear atomic density $2/d_R$. The effect of thermal vibrations on channeling potential in carbon nanotube can be estimated by modification in the axial potential. In this work an expression for the axial potential at large distance from the nanotube wall was used which based on the Moliere atomic interaction due to one raw modified by the effect of thermal vibration is given by [12]: $$U_{MT}(r) = \frac{2z_1 z_2 e^2}{d_R} \sum_{i=1}^{3} \alpha_i K_0(-\beta_i r) e^{(u_1^2/2\alpha_i^2)} , \qquad (5)$$, where u_1 is the thermal vibrational amplitude of the carbon atoms as a function of temperature the Debye approximation by using Debye approximation [2], as shown in Fig. 2. Fig.2.Thermal vibration amplitude u_1 for carbon atoms as a function of temperature using the Debye approximation [2]. # 3. Calculation of the energy eigenvalues We find that an expression of the form $$U(\rho) = a_1 + b_1 e^{-c_1 \rho} \tag{6}$$ is a reasonable approximation for the channeling potential calculated in Ref. [14] and in this work by using Moliere potentials using Eqs. (3), and (4). The parameters a_1 , b_1 and c_1 are given in Table 1 for carbon nanotubes under consideration and ρ is measured from the center of the tube in a plane normal to the tube axis. We use the WKB method [14], to obtain the energy eigenvalues of the channeled positrons constrained to move between classical turning points ρ_1 and ρ_2 in a potential given by Eq. (6). The classical turning points are those points at which $U(\rho) = E$ that is $$E = a_1 + b_1 e^{-c_1 \rho}$$,or $\rho_1 = -(1/c_1) \ln[(a_1 - E)/b_1]$ and $\rho_2 = (1/c_1) \ln[(a_1 - E)/b_1]$ For a particle constrained to move between classical turning points ρ_1 and ρ_2 in a potential well the energy eigenvalues can be obtained from the condition [15] $$\int_{\rho_1}^{\rho_2} pd \, \rho = (n + \frac{1}{2})\pi \hbar \,, \qquad n = 0, 1, 2, \dots$$ (7) , where $p = \left[2m_0\gamma\left(\left(a_1+b_1e^{-c_1\rho}\right)-E\right)\right]^{1/2}$, is the classical linear momentum, m_0 is the positron rest mass and γ is the relativistic correction. Then, from Eq. (7), we can get the energy eigenvalues and the maximum number of bound states respectively as: $E_n = -a_1 + \left(\frac{1}{2m_0\gamma}\right) \left(\frac{c_1\pi\hbar}{2\ln 2}\right)^2 (n+\frac{1}{2})^2$ $$n_{\text{max}} = \left(\frac{2\ln 2}{c_1 \pi \hbar}\right) \left[2m_0 \gamma (a_1 - E_{\text{max}})\right]^{1/2} - 0.5$$ (9) , where E_{max} , is the potential at the turning points, that is $E_{\scriptscriptstyle{ m max}}=a_{\scriptscriptstyle{1}}+b_{\scriptscriptstyle{1}}e^{-c_{\scriptscriptstyle{1}}s}$, s=R-a , is the screening length with R=d/2 being the nano tube radius. # 4. Computational results and discussion Channeling potential $U_{th}(\rho)$ of electrons channeled in (11,9),(10,10),and(18,0) single wall carbon nanotube at thermal vibration amplitude $u_1 = 0.0053 \ nm$ (i.,e., at ~790 K) by using Debye approximation as a function of a distance ρ from the center of the tube in a plane normal to the tube axis is shown in Fig. (3, 4, and5) respectively. Fig.3. Channeling potential of 100 MeV electrons channeled in (11, 9) single wall carbon nanotube as a function of a distance p from the center of the tube in a plane normal to the tube axis. Fig.4. Channeling potential of 100 MeV electrons channeled in (10, 10) single wall carbon nanotube as a function of a distance p from the center of the tube in a plane normal to the tube axis. Fig.5. Channeling potential of positrons channeled in an (18, 0) single wall carbon nanotube as a function of a distance p from the center of the tube in a plane normal to the tube axis by using Moliere atomic potential. Some eigenvalues of 100 MeV positrons incident in the direction parallel to the nanotube axis are shown by horizontal lines. The curve represents the present work by using Moliere atomic potential curve fitted to a function of the form eq. (6) with the effect of thermal vibration Eq. (5) and the channeling potential as given in Ref. [14]. August 2017 **5019** | Page The numerical results showed that the effect of thermal vibrational amplitude on the channeling potential is very small and gave the same results as that for the channeling potential of static nanotube for all possible values of thermal vibrations. The calculations of the channeling potential $U(\rho)$ as given by Eq. (4), in single wall carbon nanotube for positrons channeled in armchair, chiral, and zigzag nanotubes is illustrated by the solid curve for (10,10), (11,9) and (18,0) in Figs. (5, 6, and 7), respectively by using Moliere universal potentials. The bound states, as given by Eq. (8), corresponding to channeling of 100 MeV positrons incident in the direction parallel to the nanotube axis is also shown in each figure and is illustrated by the horizontal lines. Fig.5. Channeling potential of electrons channeled in an (11, 9) single wall carbon nanotube as a function of a distance p from the center of the tube in a plane normal to the tube axis by using Moliere atomic potential. Some eigenvalues of 100 MeV electrons incident in the direction parallel to the nanotube axis are shown by horizontal lines. Fig.6. Channeling potential of positrons channeled in an (10, 10) single wall carbon nanotube as a function of a distance ρ from the center of the tube in a plane normal to the tube axis by using Moliere atomic potential. Some eigenvalues of 100 MeV electrons incident in the direction parallel to the nanotube axis are shown by horizontal lines. Fig.6. Channeling potential of positrons channeled in an (18,0) single wall carbon nanotube as a function of a distance ρ from the center of the tube in a plane normal to the tube axis, (a) Moliere atomic potential, (b) Universal atomic potential. Some eigenvalues of 100 MeV positrons incident in the direction parallel to the nanotube axis are shown by horizontal lines. Values of the fitting parameters a₁, b₁ and c₁ in Eq. (5) needed to fit the nanotube channeling potential calculated by using Moliere potential model for the given (n,m) nanotubes, n_{max} is the maximum number of bound states for channeled electron with incident energy 100 MeV incident in a direction n_{max} as calculated from Eq. (9) are given in Table 1. **Table 1.** Values of the parameters a_1 , b_1 and c_1 in Eq. (7) needed to fit the nanotube channeling potential calculated by using Moliere potential model for the given (n,m) nanotubes, n_{max} is the maximum number of bound states for channeled positron with incident energy 100 MeV incident in a direction parallel to the nanotube axis. | (n,m) | Radius (nm) | a ₁ (eV) | <i>b</i> ₁ (eV) | c ₁ (nm ⁻¹) | n _{max} | |---------|-------------|---------------------|-----------------|------------------------------------|------------------| | (10,10) | 0.673225 | -1.08992 | -0.00149 | 16.85538 | 17 | | (11,9) | 0.674347 | -0.294 | -0.026 | 11.796 | 20 | | (18,0) | 0.699636 | 0.13408 | -0.02136 | 11.20471 | 18 | The minimum potential $U_{min}(\rho)$ (at the nanotube axis) and the maximum potential $U_{max}(\rho)$ (at the screening length from the nanotube wall) is shown in Table 2 for different nanotubes by using both Moliere potentials. The values obtained by using the expression given by Eq. (6) which fit the above model are also given. **Table 2**. The minimum potential, $U_{min}(\rho)$ (at the nanotube axis) and the maximum potential, $U_{max}(\rho)$ (at the screening length from the nanotube wall) calculated by using Moliere potential for the given (n,m) nanotubes. | (10,10) | | (11,9) | | (18,0) | | |------------------------|------------------------|------------------------|-------------------------|------------------------------|------------------------| | U _{min} (ρ)eV | U _{max} (ρ)eV | U _{min} (ρ)eV | U _{max} (ρ) eV | <i>U_{min}</i> (ρ)eV | U _{max} (ρ)eV | | -1.09141 | -82.8721 | -0.3197 | -54.932 | -0.15544 | -40.7515 | The obtained results of the energy eigenvalues of relativistic electron channeled through single-wall carbon nanotubes could be used in the calculations of the energy of the emitted channeling radiation. The emitted photon energy in the forward direction is given by $\hbar\omega=2\gamma^2(\Delta E)$ where $\Delta E=E_{n+1}-E_n$ is the energy difference between the successive initial and final states of the channeled electron. #### **ACKNOWLEDGEMENTS** My great thanks and grateful appreciations to Prof. Dr. Prof. Dr. Magdy Yassin Ali El-Ashry, Professor of Theoretical Physics, Physics department, Faculty of Science, Suez Canal University, Ismailia. To him I feel much indebted to thank him for the experience he gave me, the patience, guidance and encouragements of this work. ## REFERENCES 1. J. Lindhard, Influence of crystal lattice on motion of energetic charged particle, Mat. Fys. Medd. Dan. Vid. Selsk. 34 (14) (1965). - 2. D. S. Gemmel, Channeling and related effects in the motion of charged particles through crystals, Rev. Mod. Phys. Vol. 46, (1974) 129. - 3. M. K. Abu-Assy, B. M. Kamal, and A. A. Mohamed, "The effect of anharmonic potential on the planar channeling radiation of positrons in the disordered fcc single crystals", Egypt. J. Sol, Vol. 27, No. 1 (2004) 9-24. - 4. M. K. Abu-Assy, M. Y. El-Ashry and A. A. Mohamed, "Dechanneling of positrons in disordered lattices Effect of anharmonic potential", Physica Scripta. Vol. 72 (2005) 68-74. - 5. M. K. Abu-Assy, "Quantum mechanical calculation of disordered length in fcc single crystals using channeling techniques, Physica Scripta. Vol. 73(2006) 349-353. - 6. M. K. Abu-Assy, "Effect of temperature on transmission of planar channeled positrons in cubic metals containing point defects", Nucl. Instr.and Meth. B 267 (2009) 2515 - 2520. - 7. M. K. Abu-Assy, E. Shalaan and A. H. Abdelaziz, "Effect of lattice thermal vibrations on dechanneling of positrons in disordered cubic metals", Arab J. Nucl. Sci. Appl. Vol. 43, No. 1 (2010) 182-194. - 8. X. Artru, S. P. Fomin, N. F. Shulga, K. A. Ispirian and N. K. Zhevago, Phys. Rep. 412 (2005) 89-189. - 9. Z. L. Miskovic, Radiation Effects & Defects in Solids, Vol.162, Nos. 3-4, March-April (2007) 185-205. - 10. M. S. Dresselhaus, G. Dresselhaus and Ph. Avouris (Editors), Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, New York, 2001). - 11. G. Moliere, Z. Naturforsch. A 2, 133 (1947). - 12. "M. K. Abu-Assy, M.Y.El-Ashry, A. R. Abdullah and M. H. Ali."Energy spectrum of relativistic positrons channeled through single-walled carbon nanotubes". Accepted for publication in Egypt. J. Solids. (2016)." - 13. B. R. Appleton, C. Erginsoy, M. W. Gibson, Phys. Rev. 161, (1967) 330. - 14. S. Petrovic, I. Telecki, D. Borka and N. Nesovic, Physics Letters A 372 (2008) 6003-6007. - L. I. Schiff, "Quantum Mechanics", New York, Mc Graw-Hill, (1968). This work is licensed under a Creative Commons Attribution 4.0 International License. DOI: 10.24297/jap.v13i7.6281 **5023** | Page August 2017 DOI: 10.24297/jap.v13i7.6281 www.cirworld.com