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Abstract 

A theoretical study of the electronic and optical properties of zincblende AsGaB xx 1  and AsInB xx 1   

semiconductor alloys is presented, using the full potential linearized augmented plane wave method. In this approach, the 
generalized gradient approximation was used for the exchange–correlation potential. Ground state properties such as 
lattice parameter and band structure are calculated as a function of the mole fraction.  

We have also analyzed the optical properties (refractive index, dielectric function, real and imaginary), the 4x4 
Kane’s interaction matrix is calculated in order to ease simulations of optoelectronic devices. The results have been 
discussed in terms of previously existing experimental and theoretical data, and comparisons with similar compounds 
have been made.  
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1-INTRODUCTION 

With the advent of state-of-the-art techniques for growing semiconductor alloys on common substrates such as 
GaAs, silicon, and germanium, semiconductor compounds, which previously were very difficult to synthesize, are now 
routinely achieved. Techniques such as metal-organic chemical vapor deposition, molecular-beam epitaxy, and pulsed 
laser ablation have provided the opportunity to synthesize and study a large number of nitride, phosphide, and antimonide 
semiconductor alloys. Among the important group-III-V alloys with lattice match to GaAs, the III-V-boride compounds 
begin to attract interest [1-5]. The conduction band minimum is located along the ∆ line at 0.8X [6]. The direct band gap is 
found to be in the 3.0–4.0 eV energy range by various semi-empirical or first-principles methods combined within the local 
density approximation (LDA) or the generalized gradient approximation (GGA) [7, 8]. Electronic excitation energies were 
calculated in the GW approximation to include the effects of exchange and correlation on the quasiparticle energies. It 
yields a direct band gap value of 4.0 eV and an indirect band gap value of 1.93 eV at the X point [9]. Despite many 
theoretical and experimental studies on binary boride materials, except for the BAs system for which physical material 
properties are largely obscure, only little is known for ternary and quaternary boron incorporating III-V solid solutions.  

It recently appeared that the growth of the BxGa1−xAs alloy may be useful for obtaining the BGaInAs quaternary 
alloy or could be used as a tensile strained epilayer in the frame of strain compensation for InGaAsN−based 
heterostructures for emission at 1.3−1.5 mm. Despite this opportunity, little is known about the incorporation of boron into 
the group III sublattice which seems complex. Both the thermodynamical stability of the binary Bas compound and that of 
the alloy are questionable. A large gap of miscibility is also excepted as atomic boron is smaller than Ga. Demanding 
studies of fundamental properties, the incorporation of boron may open pathways for band-gap engineering in III-V alloys. 
Specifically, long-wavelength materials for solar cell absorber, coherent light emitter, and detector devices may enrich the 
realm of III-V optoelectronic applications. 

Of particular recent interest are alloys of a wide gap semiconductor (e.g., nitrides) with a ‘‘conventional’’ Group-
III–V semiconductor because of their promise in optical applications. Two diverging scenarios were considered: (i) using a 
significant amount ~10%–30% Of the wide gap component to shift the alloy band-gap to the blue (e.g., adding ~20% GaN 
to InN) for light-emitting diode or laser applications, and (ii) using a small amount of the wide gap semiconductor to shift 
the alloy band-gap to the red (e.g., adding 1%–3% GaN to GaAs) for photovoltaic applications. The latter effect occurs 
naturally if the band-gap bowing parameter b is larger than the difference of the band gaps of the constituents (e.g., ZnS-
ZnTe; GaAs-GaN). In this case addition of small amounts of the wide gap components acts to initially lower the band gap 
of the small gap component. For example, one can achieve the technologically desired 1-eV gap if one adds nitrogen to 
GaAs or to InGaAs. When boron is substituted into GaAs, it can go to either a gallium site or an arsenic site. Normally 
boron prefers isovalent substitution on the gallium site, 1–3 which is the case we study here. In the other case when boron 
goes to the arsenic site ~a boron ‘‘antisite’’ defect, the boron acts as an acceptor and this antisite defect has been the 
subject of numerous studies [10–12] Growth conditions determine whether boron goes to the gallium site as an isovalent 
substitution or to the arsenic site as an acceptor. For example, BAs antisite defects. 

2- CALCULATIONS 

Scalar relativistic calculations have been performed using the wien2k code [13,14]. For the exchange correlation potential, 
we have used the local density approximation (LDA) with a parameterization of Ceperly-Adler data [15]. The new Full 
Potential Augmented Plane Wave method of the density functional theory is applied [16,17]. Several improvements to 
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solve the energy dependence of the basis set were tried but the first really successful one was the linearization scheme 
introduced by Andersen [18] leading to the linearized augmented plane wave (LAPW) method. In LAPW, the energy 
dependence of each radial wave function inside the atomic sphere is linearized by taking a linear combination of a solution 

u at a fixed linearization energy and its energy derivative  computed at the same energy. 
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Where r’=r-rα is the position inside sphere α with polar coordinates r’ and r, k is a wave vector in the irreducible Brillouin 

zone, K is a reciprocal lattice vector and 
lu

is the numerical solution to the radial Schrodinger equation at the energy ε. 

The coefficients 
K

La
  are chosen such that the atomic functions for all L components match (in value) the PW with K at 

the Muffin tin sphere boundary. The KS orbitals are expressed as a linear combinations of APWs K (r) . In 1991 Singh 

[19] introduced the concept of local orbitals (LOs) which allow an efficient treatment of the semi-core states. An LO is 

constructed by the LAPW radial functions u and u  at one energy ε1 in the valence band region and a third radial function 

at ε2. 
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Recently, an alternative approach was proposed by Sjöstedt et al [20], namely the APLW+ lo (local orbital) method. Here 
the augmentation is similar to the original APW scheme but each radial wavefunction is computed at a fixed linearization 
energy to avoid the non-linear eigenvalue problem. The missing variational freedom of the radial wavefunctions can be 
recovered by adding another type of local orbitals (termed in lower case to distinguish them from LO) containing u and 

u term: 
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It was demonstrated that this new scheme converges faster than LAPW. The APW +lo scheme has been implemented in 
the wien2k code version [21]. 

However, in the calculations reported here, we chose the muffin tin radii for B, As, Ga and In to be 2.0, 1.9, 2.2 and 1.8 
a.u. respectively. The expansion of the spherical region is developed up to lmax=10. Furthermore, we have used the energy 
cutoff of R .K =8 and the maximal reciprocal vector equal to 10. The integrals over the Brillouin zone are performed 
using the Monkorst-pack special k-points approach [22]. Since calculations of the optical properties require a moredense 
k-matrix, we have used 1000 k-points in the irreducible Brillouin zone for integration in reciprocal space.  

Optical properties of a solid are usually described in terms of the complex dielectric function 1 2( ) ( ) i ( )        . 

The dielectric function is determined mainly by the transition between the valence and conduction bands according to 
perturbation theory, the imaginary part of the dielectric function in the long wavelength limit has been obtained directly 
from the electronic structure calculation, using the joint density of states (DOS) and the optical matrix elements. It is 
expressed as  
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Where m is the mass and e the electrical charge of the electron, 
l,n means the summation between all the 

conduction bands (l) and valence bands (n); and Pnl expresses the momentum matrix element between l and n. It is given 
by 

 

nl k

m
P nk H,(k) lk    

 

Where H(k) is the Hamiltonian, and nk , lk  are the k-space wavefunctions. Using the FP-LAPW parameters, we can 

directly calculate Pnl. 

The real part of the dielectric function can be derived from the imaginary part by the Kramers-Kronig relationship. The 
knowledge of both the real and the imaginary parts of the dielectric allows the calculation of important optical functions. In 

this paper, we also present and analyze the refractive index n( )  given by 
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At low frequency (ω=0), we get the following relation: 

1
2n(0) (0)   

To correct the LDA error in the band gaps a constant potential was applied to the conduction band states (using the 
scissors operator which rigidly shifts the conduction band states) in order to match the calculated band gaps with the 
experimental data. 

3. RESULTS 

3.1 Electronic properties 

In this section, we present LDA calculations on AsGaB xx 1   and AsInB xx 1   alloys using the virtual crystal 

approximation (VCA).  Fig. 1(a), (b), (c) and (d) represents the  the electronic band structures  along symmetry lines, The 
calculated band energy gaps at high symmetry points are given in table 1, the bandgaps of both alloys   are found to be in 
close agreement with other theoretical calculations. 

The variations of two direct band gaps and two indirect band gaps are presented as a function of the boron composition 

for AsGaB xx 1  and AsInB xx 1 . It must be pointed out that the various curves represent the Γ1c _ Γ15v and Γ1c _ Γ15v 

direct gaps and the Lc _ Γ15v and ∆c _ Γ15v indirect gaps variations with respect to the top of the Γ15v valence band. 

(5) 



I S S N  2 3 4 7 - 3 4 8 7  

V o l u m e  1 3  N u m b e r  7  

                                                       J o u r n a l  o f  A d v a n c e s  i n  P h y s i c s  

5044 | P a g e                                                                                    
A u g u s t  2 0 1 7                                                          w w w . c i r w o r l d . c o m 

 

 

0 20 40 60 80 100

-10

-5

0

5

 

 

E
n

e
rg

y
 (

e
V

)

K points

Band structure BAs

 

                Figure 1(a): Band structure Bas    Figure 1(b): Band structure GaAs 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Figure 1(c): Band structure B0.5Ga0.5As  
         

We may first consider the electronic properties of both pure compounds. For pure GaAs, the smallest band gap is the 
direct band Γ1c _ Γ15v. It is interesting to compare our calculated gaps with experimental data.  

Table 1.  Band energies (eV) 
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b 
Reference [25] 

Experiment Other calculations Present work  

1.46
b 

1.8 eV  (FP-LMTO)
a 

1.2 (GGA96) BAs 

1.51
b 

1.75(FP-LMTO)
a
 0.51(GGA96) GaAs 

0.542
b 

1.73(FP-LMTO)
a
 -0.31(GGA96) InAs 

0.93
b 

1.5 (FP-LMTO)
a 

0.3(GGA) B0.5Ga0.5As 

1.46
b 

1.74(FP-LMTO)
a
 0.9 B0.5In0.5As 

0 20 40 60 80 100
-10

-5

0

5

10

 

 

E
n

e
rg

y
 (

e
V

)
K-points

Band structure GaAs

 

0 20 40 60 80 100
-10

-5

0

5

10

 

 

E
n

e
rg

y
 (

e
V

)

K-points

Band strcuture B
0.5

Ga
0.5

As

 

0 20 40 60 80 100
-10

-5

0

5

10

 

 

E
n

er
g

y 
(e

V
)

K-points

Bandstructure B
x
In

1-x
AS

 
Figure 1(d): Band structure B0.5In0.5As 
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Since quasi-particle excitations are not taken into account in density functional theory (DFT), the energy gap calculated 
from DFT, often called the Kohn-Sham gap, tends to be smaller than the experimental one. In some cases, even the 
wrong ground state is predicted, as, e.g., in Ge, where the energy gap is around 0.7 eV, whereas the LDA Kohn-Sham 
gap is slightly negative at ambient pressure [23]. The GGA corrections yield only minor improvement. Quasiparticle 
calculations essentially overcome the underestimate of the band gap as obtained using the LDA, and yield band structures 
in much better agreement with experiment; they are, however, time consuming and do not, as yet, produce self-consistent 
total-energy values. The GW calculations for GaN for instance also did not include the d states as valence states, but 
treated them as part of the pseudopotential core. However, Fig. 1(a) indicates that BAs with zinc blende structure has an 
indirect band gap between the top of the valence band and the bottom of the conduction band at the Γ point. The energy 
levels for the lower part of the valence band vary slowly and are attributed to the semi core-like B 3s states. The upper 
valence bands are mainly due to the As 2p orbitals and are much flatter as compared with the conduction bands, resulting 
in heavier effective masses for the valence band holes. This large disparity in the effective masses for the electron and the 
hole is one of the main reasons for the difficulty in fabricating BAs as highly conductive p-type materials. 

3.2 Optical properties 

The study of the optical constants and their variation with frequency is very interesting for the uses of films in optical 
applications. These applications require accurate knowledge of the optical constants over a wide wavelength range. 
Extinction coefficient and refractive index. The reflectivity (R) of materials of refractive index (n) and extinction coefficient 
(k) is given by: 

kn

kn
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An equation derived independently for the determination of the optical energy gap as: 

m
gEh

h

c
h )()(  


              (9) 

Where m =1/2 for allowed direct transition, m =3/2 for direct ‘‘forbidden’’ transition, m =2 for allowed indirect transition and 
m =3 for indirect ‘‘forbidden’’ transition. C is a constant nearly independent on photon energy and known as the disorder 
parameter. Eg is closely related to energy band gap.  

We now turn to the analysis of the optical spectra. The dielectric functions of  AsGaB xx 1  and  AsInB xx 1   in the 

zinc blende structure are resolved into two components εxy(ω), average of the spectra for the polarization along the x and 
y-directions and εZ, the polarization parallel to the z-direction. The calculated dielectric constants are shown in table 2. 

Figure 2 (a), (b), (c) and (d) shows the variation of the imaginary part of the electronic dielectric function for AsGaB xx 1   

and    AsInB xx 1 , for radiation up to 12 eV. The calculated results are rigidly shifted upwards by 1.40 eV. 
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Figure 2(a): Imaginary part ε2 BAs Figure 2(b) Imaginary part ε2 GaAs 
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The main feature is a broad peak with a maximum around 8 eV, 7.5 and 10 eV for BAs, GaAs and InAs respectively, and 
the maximum amplitude is at 4, 2 and 6.2; a shoulder is also visible at around 3.2 eV, 4, and 4.8 respectively. The peak as 
well as the shoulder are excellently reproduced in the calculations, as are the general form of some experimental spectra. 
There are also two other groups of peaks, in (11.2 eV- 14.3 eV) photon energy range, they are mainly due to transitions in 
the vicinity of M. this is usually associated with E1 transition. 

Next, we consider the dispersive part of the dielectric function, ε1, see figure 3(a), (b), (c) and (d). The calculated spectra 
have been obtained by Kramers-Kronig transformation of the shifted ε2 spectra. The main features are a shoulder at lower 
energies, a rather steep decrease for both alloys, between 3 and 8 eV, after which ε1 becomes negative, a minimum and a 

slow increase toward zero at higher energies, the decrease is however more rapid as x increases in the AsGaB xx 1  

rather than the AsInB xx 1  alloy. The calculated dielectric constants compared with the experimental data and some 

other work are shown in table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 3(a): Real part ε1 BAs                             Figure 3(b): Real part ε1 GaAs                                   
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Figure 2(c): Imaginary part ε2 InAs Figure 2(d): Imaginary part ε2 B0.5Ga0.5As 
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Table 2: The calculated dielectric constants 
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  We now shortly discuss the spectra obtainable from the dielectric function. As seen in figure 4 (which is not shown here), 
the refractive index was computed using both real and imaginary parts of the dielectric function. It shows that the refractive 
index exhibits a significant dispersion in the short wavelength region below λ= 290nm (3.15 eV) where absorption is 
strong. It decreases with the increase of the energy of the incident light, becoming nearly flat in the higher region. It is 
observed also that n reached a peak value at 2.55 eV and this peak occurred more or less at the same energy in the real 
part of the dielectric constant energy dependence curves. 

We have fitted our calculated refractive index using the empirical formula of Peng and Piprek [27], given by the following 
relation: 
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Where the values of the direct energy gaps (Eg) are obtained from our optical spectra, and E is the photon energy.  
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CONCLUSION 

The electronic and optical properties of  AsGaB xx 1  and AsInB xx 1 semiconductor alloys have been investigated 

using the wien2k package, full-potential linearized augmented plane wave (FP-LAPW) approach within the density 
functional theory (DFT) in the local spin density approximation (LSDA) including the generalized gradient approximation 
(GGA) was used. The use of GGA for the exchange-correlation potential permitted us to obtain good structural 
parameters. The calculated band-gap was also in good agreement with the other theoretical calculations. The real and 
imaginary parts of the dielectric functions were calculated for polarization in the x,y plane and along the z-axis, the optical 
properties are excellently reproduced using the density functional theory, if we allow for a rigid shift of the band structure , 
the so-called scissors operator.  
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