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Abstract 

A description of string model of gauge theory are related to minimal surfaces. notations of minimal surface and related 
mean and Gauss curvature discussed. The Weierstrass representation for a surface conformally which immersed in R 
used to represent Nambu-Goto action, action of Nambu-Goto is calculated using Weierstrass representation which can be 
used to calculate the Partition Function and potential, then a non-perturbative solution for action is aimed and fulfilled and 
a consequences of that are investigated and its mathematical and physical properties are discussed. 

1. Introduction 

The study of the geometric aspects and differential geometry treatment for properties of the surface of the world sheet in 
the pseudo-Riemannian and Mankowski spaces is very important to solve many mathematical problems. The Nambu-
Goto string action is the most simple model, however, major diffculties arise in its treatment mainly due to its nonlinearity 
,i.e its square root formula. First of all, we focus our study on the three-dimensional model, the geometry of immersed 

surfaces in R
3
 is reviewed considering Enneper-Weierstrass representation of minimal surfaces. A different approaches 

has been introduced [11] [7],we show three dimensional Nambu-Goto string and show its equivalent in the minimal surface 
theory. At this point, a formula of linearized Numbu Goto action depending on Weierstrass parametrization can be 
established. 

We restrict ourself to three dimensional case, it is most simple in hope to generalized many dimensional in future, in the 

beginning we revise some notations and concepts in the geometry of immersed surfaces in R
3
 which shall be used later, 

and the will introduce Enneper-Weierstrass representation of minimal surfaces then we recall three dimensional Nambu-
Goto string and see how it is equivalent to minimal surface theory. from these point it is ready to go further treatment to get 
a formula of linear of Numbu-Goto action depending on parametrization of Weierstrass. In this paper we introduce a new 

formula for Nambu Goto Action based on Weierstrass representation which introduced in surface of R
3
 where can given 

by a linear equation solved according to boundary conditions, Extending this work give us abilities to express the Partition 
function of system of bosonic string to get potential function. In first section of this paper a brief notation about surface is 
introduced and in second section a Weierstrass representation and plateau problem is presented and definitions revisited, 
then in section four a Nambu Goto action and the Dirichlet’s boundary conditions corresponding to fixed ends in the spatial 
directions (the static quark and anti-quark) finally the formula based on Weierstrass representation is calculated. 

2 A brief notations about surface theory. 

Let be ∑ an oriented two-dimensional connected Riemannian manifold X : ∑═>R
3
 isometric of ∑ into R

3
, at 

any point of ∑ a basis for tangent plane is provided by 𝜕𝛼𝑋𝑖 . The induced metric is giving by: 

 

𝑔𝛼𝛽 = 𝜕𝛼𝑋𝜕𝛽𝑋 (1) 

The first fundamental form I of X is Riemannian metric on S defined as. 

 

 

Let N denotes a unit normal field to S that is to say 𝑁: 𝑆 ⟶ 𝑆2    ⊂  𝑅3 and N(p) is orthogonal to  𝑑𝑝𝑋  𝑇𝑝𝑆   for 

each 𝑝 ∈ 𝑆, 𝑆2 denotes the unit sphere centered at the origin in R
2
. The second fundamental denoted by II is 

the field of bilinear symmetric forms defined as follows : 

 

 

I𝑝 𝜔1𝜔2 =        𝑑𝑝𝑋  𝜔1 ,   𝑑𝑝𝑋  𝜔2            𝑓𝑜𝑟 𝑝 ∈ 𝑆   

  𝜔1 , 𝜔2 ∈ 𝑇𝑝𝑆                                   (2) 
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The shape operator B of the immersion X in the field symmetric endomorphism defined by  

II𝑝 𝜔1𝜔2 = I𝑝 𝜔1𝜔2                                          (4) 

The mean curvature H of the immersion X and its Gaussian curvature K are defined as follows [12] : 

𝑯 =
1

2
𝑡𝑟(𝑩)   𝑲 = 𝑑𝑒𝑡(𝑩)                                           (5) 

 

Proposition .1 Let 𝑿: 𝑺 ⟶ 𝑹𝟑 be an immersed connected orientable surface in the Euclidean 
space, then its Gauss map : 

𝑵: 𝑺 ⟶ 𝑹𝟑 is almost conformal if and only if X is minimal or X(S) is a subset of a round sphere. 

 

Definition 1 An immersed orientable surface in R3 is called minimal if its mean curvature is 
identically zero i.e H = 0. 

 

3 Generalized Weierstrass representation. 

If the surface is expressed basically as a graph x;  y;  (𝑥;  𝑦),    (x;  y)  ∈ Ω  of some function (𝑥;  𝑦) : ⟶ 𝑹𝟑 , 
then the minimality means the function h satisfies in Ω the minimal surface equation; 

 

                          (1 + hy
2)hxx − 2 hx  hy hxy +  (1 + hx

2)hyy =  0 (6) 

then may be rewritten in follows: 

𝑑𝑖𝑣(
∇

 1+ ∇ 2
)                                                   (7)  

 

     

This is a nonlinear elliptic partial differential equation, a natural problem is to solve the Dirichelet problem for 
the minimal surface equation [11], the problem has a solution for any boundary data if and only if domain is 
convex. 

 

3.1 Weierstrass representation. 

 

Let 𝑿: 𝑺 ⟶ 𝑹𝟑 be an immersed surface in Euclidean space S is thus endowed with the induced metric  𝒅𝑺𝟐. 

Recall the classical result that around each point of S we can find conformal coordinates which metric 𝑆(𝑢, 𝜈) 

 

 

Proposition 2  

Let 𝑿: 𝑺 ⟶ 𝑹𝟑 be an immersed connected surface oriented by a unit normal N and let (𝑢, 𝜈) be local conformal 
coordinates on S, then there coordinates: 

 

△ 𝑿 = 2𝑯𝜆2  N (9) 

 

II𝑝 𝜔1𝜔2 = 𝑑𝑝𝑁  𝜔1 ,   𝑑𝑝𝑋  𝜔2           𝑓𝑜𝑟 𝑝 ∈ 𝑆                                                   

  𝜔1 , 𝜔2 ∈ 𝑇𝑝𝑆                                        (3) 

 

𝒅𝑺𝟐 = 𝜆2(𝑑𝑢2 + 𝑑𝜈2) (8) 
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In particular, the surface is minimal if and only if its coordinates functions x1;  x2;  x3 are harmonic in any 
conformal coordinates. 

 

Proposition 3  

Let  𝑿: (𝑢, 𝜈) ⟶ 𝑹𝟑 define a minimal immersion with (𝑢, 𝜈) conformal coordinates, then the function 

𝛷𝑖(𝑧) =
𝜕𝑥𝑖

𝜕𝑢
− 𝑖

𝜕𝑥𝑖

𝜕𝜈
 

 𝛷𝑖
2 = 0                             

3

𝑖

          (10) 

 

 

given 𝛷1(𝑧), 𝛷2(𝑧), 𝛷3(𝑧) analytical satisfy the precious condition in a simply connected domain 𝑫 ⊂  𝑪 then  

 

𝑿 𝑧 = 𝑅𝑒  (𝛷1(𝑧), 𝛷2(𝑧), 𝛷3(𝑧) )
𝑧

𝑧𝑜
 dz (11) 

 

where  𝑧𝑜 ∈  𝑫  is any fixed point defines a conformal minimal immersion satisfying eq.[11] 

 

 

Definition 2 

 

𝑔 =
𝛷3 

𝛷1 − 𝑖𝛷2

,    𝜂 = 𝛷1 − 𝑖𝛷2

 

where g is a meromorphic function and holomorphic function, which form 

 𝛷1 =
1

2
(1 − 𝑔2)𝜂 

𝛷2 =
1

2
(1 + 𝑔2)𝜂                                                                       

(14)
 

𝛷3= 𝑔𝜂 

 

Theorem 1 (The Weierstrass representation)  

Let  𝑿: 𝑺 ⟶ 𝑹𝟑 be a minimal immersion of an orientable surface, let 𝑔 = 𝜎⨂𝑵 be the composition of the 

stereographic projection from the point (0; 0; 1) of thesphere to extended complex plane 𝐶⋃ ∞, with Gauss 
map N of X. 

then g is meromorphic and there exist a holomorphic form on S such that. 

 

𝑿 𝑝 − 𝑿 𝑝𝑜 =  (
1

2
(1 − 𝑔2),

𝑝

𝑝𝑜

1

2
(1 + 𝑔2), 𝑔) 𝜂                                                          (15) 

 

for 𝑝, 𝑝𝑜 ∈  𝑺   the integration being taken on any path from 𝑝 𝑡𝑜 𝑝𝑜  ∈  𝑺  moreover the zeros of  𝜂 coincide with 

the pole of g and have twice order. All the geometric quantities associated to a minimal surface can be expressed 
by Weierstrass data (𝑔; 𝜂 ).  If z is a local conformal coordinate, the Metric and Gaussian curvature are expressed 

as follows 
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                      𝒅𝑺𝟐 =
1

4
 𝑓(𝑧) 2(1 +  𝑔(𝑧) 2) 𝑑𝑧 2                                                                                          (16) 

 

Another generalization of the Weierstrass formulae to generic surfaces in 𝑅3 have been proposed 

independently by Konopelchenko in 1993. It starts with the linear system (two-dimensional Dirac equation) 

 

                                                                                  𝜓𝑧 = 𝑝𝜑                                       

                                                                                  𝜓𝑧 = 𝑝𝜑                                               (17) 

 

this is called Kenmotsu formulae where 𝜓 𝑎𝑛𝑑 𝜑  are complex-valued functions of z; z  ∈ C  and p(z; z ) is a real-

valued function. 

Then one defines the three real-valued functions 𝑋1(z;  z ), 𝑋2(z;  z ), and 𝑋3(z;  z ), . 

 

  

 𝑋1 + i 𝑋2 = i  
Γ

(𝜓 2𝑑𝑧′ − 𝜑 2𝑑𝑧 ′)                                       (18) 

                                                                                  𝑋1 − i 𝑋2 = i  
Γ

(𝜓2𝑑𝑧′ − 𝜑2𝑑𝑧 ′) 

                                                                                            𝑋3  = i  
Γ

(𝜓 𝜑𝑑𝑧′ − 𝜓𝜑    𝑑𝑧 ′)                                                          

 

where is an arbitrary curve in C. In virtue of  eq.17 the r.h.s. in eq.18 do not depend on the choice of . If one 

now treats 𝑋1(z;  z ) as the coordinates in 𝑅3 then the formulae of  eq.17 and eq.18 define a conformal 

immersion of surface into 𝑅3 with the induced metric of the form 

 

𝑑𝑠2 = 𝑢2𝑑𝑧𝑧  

                                                                                  𝑢 =  𝜓 2 +  𝜑 2                                                                                     (19) 

with the Gauss curvature 

𝐾 = −
4

𝑢2 [𝑙𝑜𝑔(𝑢)]𝑧𝑧                                                                                        (20) 

𝐻 = 2
𝑝

𝑢
                                                                                           (21) 

 

At p =  0 one gets minimal surfaces and the formulae eq.18 are reduced to the old Weierstrass formulae, 

generalized Weierstrass formulae the functions 𝜑 and 𝜓 obey linear equations, the Kenmotsu formulae has a 
nonlinear constraint is hard to treat. In particular, that the Willmore functional has or the Helfrich-Polyakov 
action 

𝑊 =  𝐻2𝑑𝑠                                                                                      (22) 

a very simple form 

𝑊 =  𝑝2𝑑𝑥 𝑑𝑦                         ;  z = x + iy                                                          (23)   

 

the generalized Weierstrass representation (18) has been proved to be an effective tool to study surfaces in R
3
 

and their integrable deformations. 

 

3.2 The Plateau Problem. 

 

Let  be a jordan curve in 𝑅3, i.e a continuous curve which is homomorphic to the circle S. The plateau find 
the surface of last area spanning, for solving this problem, we introduce some notations. 
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𝑩 = (𝑢, 𝜈)   ∈ 𝑅2, 𝑑𝑢2 + 𝑑𝜈2 ≤ 1   (25) 

will denote the closed unit disk in the Euclidean plane. 

Let  𝑪(𝝎) = 𝑿: 𝑩 ⟶ 𝑹𝟑, X is piecewise S is a monotone parameterization of 𝝎, we define the area functional 

𝐴: 𝑪(𝝎) ⟶ 𝑹 by the following integral. 

 

𝐴(𝑥) =  
𝐵
 𝑋𝑢 ∧ 𝑋𝜈  𝑑𝑢 𝑑𝜈                                                                                   (26) 

 

Where  𝑋𝑢 ∧ 𝑋𝜈  
2 =  𝑋𝑢  2 𝑋𝜈  

2 −  𝑋𝑢 , 𝑋𝜈  
2 Let 

𝐴Γ = 𝑖𝑛𝑓 𝐴(𝑿) 

𝑿 ∈ (𝚪) 

therefore our problem is to find a 𝑿 ∈ (𝚪)such that 𝐴Γ =  𝐴(𝑿), note that Jordan curve bounding a finite 

surface 𝐴Γ < ∞ It is requisite to control the parametrization to get minimizing area,i.e curves in riemannian 
manifold, this done by minimizing the energy integral, the case of surfaces corresponding energy is so called 
Dirichlet integral. 

 

𝐴(𝑥) =  
𝐵

( 𝑋𝑢  2 +  𝑋𝜈  
2)𝑑𝑢 𝑑𝜈 (28) 

this holds if and only if  

 𝑋𝑢  =  𝑋𝜈     

 𝑋𝑢 ,  𝑋𝜈 = 0  

(29) 

  

everywhere in B and  𝑋𝑢  > 0 such a map is conformal and induces a metric on B of the form  

𝒅𝑺𝟐 = 𝜆2(𝑑𝑢2 + 𝑑𝜈2) (30) 

where  𝜆 =  𝑋𝑢  =  𝑋𝜈  . the parameters (𝑢, 𝜈) are thus conformal coordinates for the surface.  

3.2.1 The first variation formula. 

 

An immersion 𝑋: 𝑆 ⟶ 𝑅3   in a minimal if and only if for every variation 𝑋𝑡  𝑜𝑓 𝑋 with compact support the 

derivative of th area A(x)  vanishes at t =  0 . 

𝑑2𝐴

𝑑𝑡 2 (0) > 0                                                                                         (31) 

 

3.2.2 The stability of the minimal surface. 

 

the stability of the minimal surface is related to the second variation formula of the area. A compact domain 
𝑫 ⊂ 𝑺 on minimal immersion 𝑋: 𝑆 ⟶ 𝑅3 is said stable for every nontrivial normal boundary preserving variation 

Xt on D. 

 
𝐷

( ∇Φ 2 + 2𝑘 Φ2)𝑑𝐴 > 0                                                                          (32) 

4. Nambu-Goto Action. 

the action is the length swept out by the point, the action of the string now is defined to be the surface area of this world 
sheet, the action of the Nambu-Goto model is proportional to the area of the string world-sheet which we restrict our 
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attention to the d + 1 dimension case, which is particularly simple, [3],[4] as there is only one transverse degree of 
freedom (X): 

 

𝑆 𝑋 = 𝜎  𝑑𝜈  𝑑𝑢  1 + (𝜕𝜏𝑋)2 + (𝜕𝜁𝑋)2𝑅

0
 

𝐿

0
                                                               (34) 

 

Where σ is the string tension which appears as a parameter of the effective model [3]. the effective string world-sheet 

associated with a two-point Polyakov loop correlation function obeys periodic b.c. in the compactified direction and 
Dirichlet b.c. along the interquark axis direction: 

 

𝑋𝑖(𝜏 + 𝐿, 𝜁) = 𝑋𝑖(𝜏, 𝜁)                                                                      (35) 

𝑋𝑖(𝜏, 0) = 𝑋𝑖(𝜏, 𝑅) = 0                                                                      (36) 

Substituting By Weierstrass representation. The Nambu-Goto action 

𝑆𝑁𝐺 =   ( 𝜓 2 +  𝜑 2)2  𝑑𝑧2
                                                                     (37) 

 

becomes  𝑑𝑧2 = 𝑖/2 𝑑𝑧 𝑑z  The generalized Weierstrass representation gives allowance to linearize NambuGoto action and 
extract linear formulae from square root as we seen, And give an opportunity for further research into bosonic strings 
model, can also more search on Willmore surface differentiable other middle of the surfaces which provide extremum to 

the Willmore functional Polyakov action [5], the solution of Nambu-Goto Action is associated Variational principle for the 
minimum mean curvature, by using conformal gauge (equivalently isothermal coordinate), the solution of harmonic 
oscillator of action is given by 

𝑋(z;  z   ) = 𝐱 − 𝐢/𝟒 𝑝 zz  + i/2 ∑
1

𝑛
 𝛼𝑛𝑧−𝑛 + i/2 ∑

1

𝑛
 𝛼𝑛𝑧 −𝑛  

there another constraints come from the reparameterization invariance of the action. They can be written in terms 

𝜕𝑋. 𝜕𝑋 = 𝜕 𝑋. 𝜕 𝑋 

In terms of these fields one may write the Enneper-Weierstrass map, the solution space associated with the Nambu-Goto 
equation of motions can be described as the solution space of the equation 

𝜕𝜕 𝑋 = 0 

with Dirichlet’s boundary conditions, subjected to constrain 39, then the linearizion of Nambu-Goto action by Weierstrass 
representation give us a new tool to investigate the action, partition function and squared width of flux tube by new tool 
Along with taking into consideration fluctuations resulting from quantum effect and self - interaction of string Apart from the 

difficulty of using perturbative treatments 

 

𝑋3 =
4

𝜋
 

𝑐 𝑆𝑖𝑛(
𝜋  𝜈

𝑏
(2𝑛 − 1))

(2𝑛 − 1)𝑆𝑖𝑛(
𝜋  𝑎

𝑏
(2𝑛 − 1))

∞

𝑛=1

[𝑆𝑖𝑛(
𝜋 (𝑎 − 𝑢)

𝑏
(2𝑛 − 1)) + 𝑆𝑖𝑛(

𝜋 𝑎

𝑏
(2𝑛 − 1))] 

(41) 

𝑋2 =
4

𝜋
 

𝑐 𝑆𝑖𝑛(
𝜋  𝜈

𝑏
(2𝑛 − 1))

(2𝑛 − 1)𝑆𝑖𝑛(
𝜋  𝑎

𝑏
(2𝑛 − 1))

∞

𝑛=1

[(𝑐 + 𝑅)𝑆𝑖𝑛(
𝜋 (𝑎 − 𝑢)

𝑏
(2𝑛 − 1)) + 𝑐𝑆𝑖𝑛(

𝜋 𝑎

𝑏
(2𝑛 − 1))] 

(42) 

𝑖 𝜓 
2

=
1

2
(
𝜕(𝑖 𝑋2 + 𝑋3)

𝜕𝑢
− 𝑖

𝜕(𝑖 𝑋2 + 𝑋3)

𝜕𝜈
), 

−𝑖 𝜑 2 =
1

2
(
𝜕(𝑖 𝑋2 + 𝑋3)

𝜕𝑢
+ 𝑖

𝜕(𝑖 𝑋2 + 𝑋3)

𝜕𝜈
), 
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𝑖 𝜑2 =
1

2
(
𝜕( 𝑋3 − 𝑖𝑋2)

𝜕𝑢
− 𝑖

𝜕( 𝑋3 − 𝑖𝑋2)

𝜕𝜈
), 

−𝑖 𝜓2 = 
1

2
(
𝜕( 𝑋3−𝑖𝑋2)

𝜕𝑢
+ 𝑖

𝜕( 𝑋3−𝑖𝑋2)

𝜕𝜈
)                                                         (43) 

where a,b are constants determined from boundary conditions eq.35,eq.36. 

𝑆𝑁𝐺 =     𝜓 2 +  𝜑 2 2  𝑑𝑧2
 

=  −
𝑖 32 𝑎

𝑏
(c + R)   𝑒

2𝑛−1

𝑏
𝜋  𝑢𝑑𝑢 𝑑𝜈

𝑎

0

𝑏

0
                                                          (44)  

 

Then Nambu-Goto” action for which is simply the area of the two dimensional worldsheet they trace out in space is acquired as a 
solution of clynderical coordinates which subjected to Dirichlet’s boundary conditions, this action can be employed in Partition 
function to get potential function. 

 

5. Conclusion 

Non-linearly realized at the field level, provoking ordering problems that seem only to be fixed for the critical dimension. 
These approach that we present here is depending on minimal surface representation via Weierstrass, in the sense that 
the procedure go through a complete equivalent of the Nambu-Goto string prior to quantization. Nevertheless, invariance 
all along the way. The key ingredient to the construction will be the Enneper-Weierstrass representation of minimal 
surfaces. As we show, following otherwise completely standard geometrical constructions, of the three-dimensional closed 
Nambu-Goto string can be locally identified with the space of complex analytic functions . In the reduction process the 
conformal structure is completely fixed by choosing a geometrical parameterization of the surface in terms of its Gauss 
map. a standard linear fractional transformations acting on the Riemann sphere, and realized linearly on the physical 
fields. 
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