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ABSTRACT 

Here is studied a classic problem of the motion of a projectile thrown at an angle to the horizon. The air drag force is taken 
into account as the quadratic resistance law. An analytic approach is used for the investigation. Equations of the projectile 
motion are solved analytically. All the basic functional dependencies of the problem are described by elementary functions. 
There is no need for to study the problem numerically. The found analytical solutions are highly accurate over a wide 
range of parameters. The motion of a baseball and a badminton shuttlecock are presented as examples. 
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1. INTRODUCTION 

The problem of the motion of a projectile thrown at an angle to the horizon in midair has a long history. It is one of the 
great classical problems. The number of works devoted to this task is immense.  It is a constituent of many introductory 
courses of physics. With zero air drag force, the analytic solution is well known. The trajectory of the projectile is a 
parabola. In real tasks, such as throwing a ball, the impact of the medium is taken into account. Usually quadratic drag low 
is used. In this case the mathematical complexity of the task strongly grows.  The problem probably does not have an 
exact analytic solution.  Therefore the attempts are being continued to construct approximate analytical solutions  for this 
problem. In the given paper an analytic approach is used for the investigation of the projectile motion in a medium with 
quadratic resistance. The proposed analytical solution differs from other solutions by simplicity of formulae, ease of use 
and high accuracy. The proposed formulas make it possible to study the motion of a projectile in a medium with the 
resistance in the way  it is done for the case without drag. These formulae are available even for first-year 
undergraduates. 

       The problem of the motion of a projectile in midair arouses interest of authors as before [1–8]. For the construction of 
the  analytical solutions various methods are used – both the traditional approaches [1], and the modern methods [2, 5]. 
All proposed approximate analytical solutions are rather complicated and inconvenient for educational purposes. In 
addition, many approximate solutions use special functions, for example, the Lambert W function. This is why  the 
description of the projectile motion by means of a simple approximate analytical formulae under the quadratic air 
resistance is of great  methodological and educational importance. The purpose of the present work is to give a simple 
formulas for the construction of the trajectory of the projectile motion with quadratic air resistance. The conditions of 
applicability of the quadratic resistance law are deemed to be fulfilled, i.e. Reynolds number Re lies within 1×10

3 
 < Re < 

2×10
5
. 

2. EQUATIONS OF PROJECTILE MOTION 

We now state the formulation of the problem and the equations of the motion according to [8]. Suppose that the force of  
gravity affects the  projectile together with the force of air resistance  R (Fig.1). Air resistance force is proportional to the 
square of the velocity of the projectile and is directed opposite the velocity vector. For the convenience of further 

calculations,  the drag force  will be written as 
2R mgkV  .  Here   m  is the mass of the projectile, g is the acceleration 

due to gravity,  k  is the proportionality factor.  Vector equation of the motion of the projectile  has the form 

mw = mg + R, 

where w – acceleration vector of the projectile. Differential equations of the motion,  commonly used in ballistics, are as 
follows [9] 
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Here V  is the velocity of the projectile,  θ   is the angle between the tangent to the trajectory of the projectile  and  the  

horizontal,  x, y are the Cartesian coordinates of the projectile,   
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 a  is the air density,  cd  is the drag factor for a sphere,  S  is the cross-section area of the object, and  Vterm  is  the 

terminal velocity. The first two equations of the system (1) represent the projections of the vector equation of motion on the 
tangent and principal normal to the trajectory, the other two are kinematic relations connecting the projections of the 
velocity vector projectile  on the axis  x, y  with derivatives of the coordinates. 

 

Figure 1:   Basic motion parameters. 

The well-known solution  of system (1) consists of an explicit analytical  dependence  of  the  velocity  on  the  slope  angle  
of the trajectory and three quadratures  
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Here  V0   and   θ0   are the initial values of the velocity and of the slope of the  trajectory respectively,  t0  is the initial value 

of the time, x0, y0 are the initial values of the coordinates of the projectile    (usually accepted  0 0 0 0t x y       The 

derivation of the formulae (2) is shown in the well-known monograph [10]. The integrals on the right-hand sides of 
formulas (3) cannot be expressed in terms of elementary functions. Hence, to determine the variables t, x and y we must 

either integrate system (1)  numerically or evaluate the definite integrals  (3).  

3. OBTAINING AN ANALYTICAL SOLUTION OF THE PROBLEM  

The task analysis shows, that equations (3) are not exactly integrable owing  to the complicated nature of function  (2) 



I S S N  2 3 4 7 - 3 4 8 7  
V o l u m e  1 3  N u m b e r  6  

  J o u r n a l  o f  A d v a n c e s  i n  P h y s i c s  

4921 | P a g e                                        
J u n e  2 0 1 7                                                             w w w . c i r w o r l d . c o m  

  2

sin
ln

cos 2 4

θ θ π
f θ tg

θ

 
   

   

. 

The odd function  f   is defined in the interval  
2


  <   < 

2


. Therefore, it can be assumed that a successful 

approximation of this function will make it possible to calculate analytically the definite integrals (3) with the required 

accuracy.  In Ref. [1], the function ( )f 
 
on the interval  00,  is approximated  by the function 

  2

1 1tan tanaf a b    . 

The function   af 
  

well approximates the function   f 
 
only on the specified interval     00, . The function 

 f   is symmetric to the point  0  . Therefore, in the present paper we approximate the function   f 
 
on the 

whole interval  
2


  <   < 

2


  with a function  1f   of the following form 
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The coefficients  1a
 
and  1b   сan be chosen in such a way as to smoothly connect the functions  f   and  1f 

 
to 

each other with the help of conditions 

                                                        1 0 0f f  ,     1 0 0f f   .                                                   (4) 

 

From the conditions (4) we find 
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Such a function  1f 
 
well approximates the function  f  throughout the whole interval of its definition for any values  

0 . As an example, we give graphs of functions  f  ,  1f 
 
in the interval  80 80     .  Coefficients  1a  , 1b   

are calculated at a value 0 60   . 
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Figure 2:   Approximation of the function  f  . 

The solid curve in Figure 2 is a graph of the function  f  , the dot curve is a graph of the function  1f   . The graphs 

practically coincide. Hence, the function  1f  can be used instead of the function  f 
 
in calculating the integrals  

(3).
          

 

      Now the quadratures (3) are integrated in elementary functions. Since the function  1f 
 
has a different form on the 

gaps θ ≥ 0, 
 
θ ≤ 0

 
, the integrals (3) also have a different form at these intervals. For the ascending branch of the trajectory 

θ ≥ 0,  for the descending branch of the trajectory θ ≤ 0.
 
In calculating the integrals we take 0 0 0 0t x y   . We 

integrate the first of the integrals (3). For the coordinate  x  we obtain:
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Here we introduce the following notation: 
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Thus, the dependence  x 
 
has the following form: 

                                       
     1 1 0x x x                                         in case of         0  , 

                                       
         1 1 0 2 2x x x x x               in case of            .                                (5) 

We integrate the second of the integrals (3).  For the coordinate  y  we obtain: 
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  in case of     0  , 
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Here we introduce the following notation: 
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Thus, the dependence 
 
 y 

 
has the following form: 

                                    
     1 1 0y y y                                            in case of         0  , 

                                    
         1 1 0 2 2y y y y y                 in case of            .                                (6) 

For the variable  t  we get: 
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Thus, the dependence   t 
 
has the following form: 

                                                 1 1 0t t t                                             in case of 0  , 

                                          
         1 1 0 2 2  t t t t t       

             

in case of    .                                   (7) 

Consequently, the basic functional dependencies of the problem      , ,x y t  
 
are written in terms of elementary 

functions. 

The main characteristics of the projectile's motion are the following ( Fig. 1): 

           H  – the maximum height of ascent of the projectile ,   

           Т  – motion time,   

           L  – flight range ,   

           хa  – the abscissa of the trajectory apex,  

           ta  – the time of ascent, 

           θ1 – impact angle with respect to the horizontal .   

Using formulas (5) - (7), we find: 

                                    
   1 1 00 ,ax x x        1 1 00 , H y y         1 1 00 .at t t                                   (8) 

Then formulas (5) - (7) can be rewritten as: 

                                       
     1 1 0x x x                                  in case of    0  , 

                                       
     2 2ax x x x                            in case of       .  

                                            1 1 0y y y                                  in case of    0  , 
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     2 2y H y y                           in case of       .  

                                            1 1 0t t t                                      in case of    0  , 

                                       
     2 2at t t t    

                           

in case of       .                

The angle of incidence of the projectile 
1   

is determined from the condition  1 0y   .
   

Then we have 

                                              
   2 1 2 ,aL x x x        2 1 2 .aT t t t   

                                                   (9)
 

We note that formulas (5) - (7) also define the dependences  y y x ,  y y t ,  x x t  in a parametric way. 

 

4. THE RESULTS OF THE CALCULATIONS. FIELD  OF APPLICATION OF THE 
OBTAINED SOLUTIONS  

Proposed formulae have a wide region of application. We introduce the notation 
2

0p kV . The dimensionless parameter 

p  has the following physical meaning – it is the ratio of air resistance to the weight of the projectile at the beginning of the 

movement. As calculations show, trajectory of the projectile  y y x
 
and the main characteristics of the motion  L, H, 

T, хa , ta  have accuracy to within  1%  for values of the launch angle and for the parameter  p  within ranges 

0°<  θ0  < 90°,   0  <  p  ≤ 60. 

 

Figure 3 presents the results of plotting the projectile trajectories with the aid of formulas (5) – (6) over a wide range of the 
change of the initial angle  θ0  with the following values of the parameters 

 

                                 V0 = 80  m/s ,    k = 0.000625  s
2
/m

2
 ,  g = 9.81  m/s

2
,  p = 4.   

 

The used value of  the parameter  k  is the typical value of the baseball drag coefficient. 

 

 

 

Figure 3:   The graphs of the trajectory  y= y(x) at launching angles   θ0 = 20°, 45°, 80°. 

Analytical solutions are shown in  Fig. 3 by dotted lines. The thick solid lines in Fig. 3 are obtained by numerical integration 
of  system (1) with the aid of the 4-th order Runge-Kutta method. As it can be seen from Fig. 3, the analytical solutions 
(dotted lines) and a numerical solutions are the same. 

      Figure 4 represents the results of plotting the projectile trajectories with the aid of  formulas (5) – (6) over a wide range 
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of the change of the initial velocity V0 . In this case the values of the parameter  p  vary from 1 to 9. 

 

 

Figure 4:   The graphs of the trajectory  y= y(x) under the initial conditions  θ0 = 40°, V0 = 40 m/s, 80 
m/s, 120 m/s. 

As an example of a specific calculation using formulas (5) – (7), we give the trajectory and the values of the basic 
parameters of the motion   L, H, T,  xa , ta , θ1  for shuttlecock in badminton. Of all  the trajectories of  sport projectiles,  the 

trajectory of the shuttlecock has the greatest asymmetry. This is explained by the relatively large value of the drag 
coefficient k and, accordingly, by the large values of the parameter  p.  Initial conditions of calculation are 

 

k = 0.022  s 
2
/m 

2  
;
     

V0 = 50 m/s ;  θ0 = 40° ;  p = 55. 

Table 1.  Basic parameters of the shuttlecock movement 

 

  

 

Figure 5: The trajectory of the shuttlecock. 

 

The second column of Table 1 contains range values calculated analytically with formulae (8) – (9). The third column of 
Table 1 contains range values from the integration of the equations of system  (1). The fourth column presents the error of 
the calculation of the parameter in the percentage. The error does not exceed  2 %. 

      Thus, a successful approximation of the function  f   made it possible to calculate the integrals (3) in elementary 

functions and to obtain a highly accurate analytical solution of the problem of the motion of the projectile in the air.       

 

5. CONCLUSIONS 

Parameter   Analytical  

value 

Numerical  

value  

Error ( %) 

         L , (m) 

        H , (m) 

        T , (s) 

        xa , (m) 

        ta , (s) 

        θ1 

11.33 

  5.09 

  1.97 

  7.89 

  0.72 

 -79.3° 

 

11.34 

  5.06 

  1.93 

  7.84 

  0.71 

  -78° 

 

-0.1 

 0.4 

 2.0 

 0.6 

 0.4 

 1.7 
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The proposed approach based on the use of analytic formulae makes it possible to simplify significantly a qualitative 
analysis of the motion of a projectile with the air drag taken into account. All basic variables of the motion are described by 
analytical formulae containing elementary functions.  Moreover, numerical values of the sought variables are determined 
with high accuracy.  It can be implemented even on a standard calculator. Thus, proposed formulae  make it possible to 
study projectile motion with quadratic drag force even for first-year undergraduates.   
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