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ABSTRACT 

General dispersion equation has been obtained for three-dimensional electromagnetic planetary waves, from which 

follows, as particular case Khantadze results in one-dimension case. It was shown that partial magnetic field line freezing-

in as in one-dimension case lead to the excitation of both “fast” and “slow” planetary waves, in two-liquid approximation 

(i.e. at ion drag by neutral particles) they are represent oscillations of magnetized electrons and partially magnetized ions 

in E region of the ionosphere. In F region of the ionosphere using one-liquid approximation only “fast” planetary wave will 

be generated representing oscillation of medium as a whole. Hence, it was shown that three-dimension magnetogradient 

planetary waves are exist in all components of the ionosphere, and as exact solutions, with well-known slow short-wave 

MHD waves, are simple mathematical consequence of the MHD equations for the ionosphere.  
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INTRODUCTION 

For the first time generalization of slow Rossby-type planetary waves taking into account latitudinal gradient of the 

geomagnetic field in the early seventies was given by Tolstoy [1] and independently by Khantadze [2]. Emphasizing their 

hydrodynamic nature, these waves Tolstoy called slow hydromagnetic gradient waves. In the subsequent papers [3,5-7] 

Khantadze for the first time shown that fast planetary waves of the electromagnetic nature should be exist in the Earth 

upper atmosphere, in both E and F regions of the ionosphere. These waves in [8,9] were called magnetogradient waves of 

Khantadze. In the above-stated papers [2-7] classification of magnetogradient planetary waves (fast and slow), 

hydrodynamic end electromagnetic nature of these waves and the anisotropic nature of their propagation caused by 

curvature of lines of force of the geomagnetic field along the Earth parallels was for the first time given. Assessment of 

parameters of the considered waves, and also linear and nonlinear theories of magnetogradient waves, is given in [10-14]. 

Experimentally these waves were recorded in [8,15, 16]. In the listed above papers generally one-dimensional and two-

dimensional magnetogradient waves propagation were considered. Meanwhile numerous observations confirm that the 

speed of propagation of large-scale wave perturbations having the electromagnetic nature except horizontal, always has 

vertical component, i.e. these waves are significantly three-dimensional [8,15,16]. 

As is well-known [17-20], without compressibility and temperature stratification (excepting a planetary boundary 

layer of the troposphere) Coriolis force [ 2 ]C  F V Ω  becomes the main defining force in the equations of movement of 

the free atmosphere. The gyroscopic Coriolis force gives to the atmosphere additional stratification. In particular, angular 

velocity of the Earth rotation  , which is function of latitude of the place  , ingenerates the atmospheres speed 

gradients, and its latitudinal gradient   - inhomogeneity in the medium. 
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As a result in internal waves in short-wave approximation
3( 10  km), for which latitudinal variations ( ) it is 

possible to neglect, inertial waves are exited in the atmosphere; and in long-wave approximation 
3 4( ~10 10   km) when 

it is impossible to neglect latitudinal gradient of angular speed of Earth rotation ( ) , planetary Rossby waves are 

generated. For planetary-scale waves instead of Euler’s equation it is necessary to use Helmholtz’s equation for the 

velocity vortex naturally containing both size   and gradient of angular speed of rotation of Earth   . 

Indeed, in the considered approximation the three-dimension Helmholtz equation for a velocity vortex rot V  has 

the following form [17-19]: 

                                                          [ ] (2 ) ( )2
rot

rot rot
t


     



V
V V Ω V V Ω                               (1) 

from which visually follows that the first term in the right sight of equation (1) really generates in the atmosphere short-

wave inertial waves [19], the second - Rossby planetary waves [17,18]. In absence of rotation of Earth wave movements 

disappear, and nonlinear Helmholtz equation for function of current will describe only convective movement of the 

atmosphere. 

MAGNETOHYDRODYNAMICS EQUATIONS OF THE IONOSPHERE OF 
INCOMPRESSIBLE ELECTROCONDUCTIVE LIQUID AND FORMULATION OF THE 
PROBLEM 

In this paper magnetogradient waves of Khantadze are generalized on three-dimensional case. In the upper atmosphere, 

since height of 130 km and above, the magnetic pressure of the geomagnetic field prevails over pressure of neutrals and 

ionospheric plasma. Therefore in the upper atmosphere in the wave processes proceeding in an ionosphere along with 

parameters ( )  and ( ) , an essential role has be played the size of the geomagnetic field ( , )r   and its 

gradients ( , )r  , where r – distance from the center of a geomagnetic dipole of Earth to the observation point,   is 

the geomagnetic latitude. As result from the general equations of magnetic hydrodynamics of the ionosphere neglecting 

compressibility and temperature stratification of the atmosphere, it is possible to receive the closed system of equations 

for V  and H  generalizing Helmholtz equation (1) and the equation of induction taking into account Hall’s effect [1,20]: 

1
[ ] [ 2 ] [ ]

4

rot
rot rot rot rot rot

t 


     



V
V V V Ω H H , 

1
[ ] [ ]

4
rot rot rot

t
 




   



H
V H H H , 

0div V ,  0div H , 

where  0V V v  and   are speed of ionospheric wind 0V , v  - perturbation of velocity and medium density, 

 0H H h , 0H  - vector of the geomagnetic field, h  - the perturbation of magnetic field caused by the medium motion, 

/c eN   - Hall’s parameter, e  - electron charge, N  - electron concentration, c  - speed of light, [ ] / 4rot  AF H H  - 

electromagnetic Ampere force. Let's show that the considered closed system of equations of magnetic hydrodynamics of 

the ionosphere naturally contains the new exact solution as the three-dimensional magnetogradient planetary waves 

caused by the geomagnetic field of Earth 0H . 

Taking into account that for the planetary-scale waves effects of compressibility and temperature stratification 

play a minor role [6,17,18], we will seek the solution of this set of equations in the form of three-dimensional internal waves 

for a half-space [20]: 

v ,  
2 2

~ exp exp[ ( )] exp exp[ ( ) )]
2 2

x y z

S S

g g
A z i k x k y k z t A z i i t

c c

 
   

    
          
   
   

h k r , 

where 2 /k    - arbitrary wave number,   - the frequency which should be definition, 0z z z   , 0 80z   km, 

( 1) /g RdT dz     , Sc  - sound speed,   - polytrope index, R  - gas constant, g  - acceleration of gravity, ( )T z  - 
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temperature profile in the main state. In the incompressibility approximation ( )Sc   and arbitrary temperature 

stratification ( / 0)d T dz   amplitude of an internal wave becomes a constant and need of initial and boundary conditions 

disappears. Then the equations for the velocity vortex and induction in standard coordinate system ( sindx r d  , 

dy r d  , dr dz ,  x  - axis is directed form the West to the East, y - axis from the South on the North, z - axis 

vertically up, 
090   ,    - longitude) [17, 18] can be written in the form: 

                                                         [ ] [ 2 ] [ 2 ]
rot

rot rot rot rot
t


     


H

v
v v v Ω u Ω ,                                                   (2) 

                                                       [ ] [ 2 ] [ 2 ]
rot

rot rot rot rot
t




     


i H

u
u u v Ω u Ω ,                                                  (3) 

                                                                             0div v ,  0div u .                                                                          (4) 

where u  is the vector potential of the vorticity determined by equation /rot e Mcu h , / nN N   - iconicity of the 

ionosphere, N  and nN  - concentration of plasma and neutrals, respectively, M  - mass of an ion. Vectors of angular 

speed of rotation of Earth Ω  and geomagnetic field 0H  in standard coordinate system have components: 0x  , 

0 siny   , 0 cosz   , 0 0xH  , 0 siny EH H   , 0 2 cosz EH H   , 
090     - magnetic co-latitude, 

0  - module of the angular speed of rotation of Earth, EH  - value of the geomagnetic field on the magnetic equator 

(further is accepted that geographical  ,  , r  and geomagnetic  ,  , r  coordinates coincide, i.e. is accepted that 

the geomagnetic dipole coincides with an axis of rotation of Earth). In the equation (3) 2 /e Mci 0Ω H  - the modified 

cyclotron frequency of ions,  
2 22 / 4 ( / ) /eck eN c c e mc H 0 0Ω H H  - the modified cyclotron frequency of electrons, 

/e epc k , 
2 1/2(4 / )ep e N m   - plasma frequency of electrons, m  - mass of an electron. As the charge of ions is 

positive and 0H  negatively, i 02Ω H / 0e Mc  , the charge of electrons is negative, 0( / ) 0e eH mc   . 

The solution of the considered set of equations is looked for in the form of three-dimensional internal waves 

exp[ ( ) ]i i t k r . Then expression of Ampere force [ ] / 4rot  AF H H  in linear approximation equals 

[ ] / 4 nrot MN AF h H . Entering vector potential u  as /rot e Mcu h , from here /Mcrot eh u , and taking a 

rotor from h , we will receive / /rot Mcrot rot e Mc e    h u u . Substituting magnetic field perturbation in this 

expression, we will obtain 
2 /rot Mck eh u . Then Ampere’s force AF  we have  

2
21
[ ] [ 2 ]

4 ( / ) 4n n

Mc ck
k

MN N N e eN 

 
      

  
A H0 0

F u H u H u Ω , 

i.e. 
22 / 4ck eNH 0

Ω H  .  

As vector u  has dimension of speed, 2 iΩ  and 2 HΩ  have dimension of frequency 
1(s )

, this set of equations 

formally describes interaction of two incompressible liquids under the influence of three gyroscopic forces: Coriolis 

[ 2 ] CF V Ω  and electromagnetic gyroscopic forces, [ 2 ] i iF V Ω  and [ 2 ] H HF u Ω . The force iF  is caused 

by vorticity of electric field, and HF  - modified form of Ampere force AF . Dimensionless parameter   is entered for 

convenience: in E region of the ionosphere where Hall’s effect plays an essential role, it is equal to unit ( 1)   and it is 

necessary to use three-liquid approximation for the ionosphere; and in F region of the ionosphere in which Hall effect is 

absent, parameter  tends to zero and the ionosphere should be considered as single-fluid medium.  

Thus, as well as in the case of the Coriolis gyroscopic force CF , under the influence of the geomagnetic field the 

ionosphere gets additional stratification of the electromagnetic nature, and new wave branches of large-scale very low-

frequency (VLF) of electromagnetic waves which are caused by presence of gyroscopic electromagnetic forces  are 
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excited in the top atmosphere  iF  and HF . In E region of the ionosphere force iF  is comparable with the Coriolis Force 

CF . Other gyroscopic force HF  both in E and F regions of the ionosphere exceeds CF  [7, 11]. 

Linearizing the above-stated set of equations (2)-(4) in long-wave approximation 
3 4( ~10 10  km) we will 

receive system of the equations which are investigated further [7, 11, 20]: 

                                                                     ( )2 ( )2
rot

t


    


H

v
v Ω u Ω ,                                                               (5) 

                                                                  ( ) 2 ( ) 2
rot

t



    


i H

u
v Ω u Ω ,                                                             (6) 

                                                                              0div v ,    0div u .                                                                        (7) 

Vector of the geomagnetic field 0H  satisfies Maxwell’s equations: 0rot 0H  and 0.div 0H  From here it is possible 

to enter the following two latitudinal gradients 1 0 0/ /z yH y H z        and 2 0 0/ /y zH y H z        . Further, as 

well as in the theory of long waves (
3 4~10 10  km) Rossby, 1  and 2  are considered as constant and the set of 

equations (2)-(4) becomes equations with constant coefficients. 

DISPERSIAN EQUATIONS AND ESTIMATION OF THE WAVE PARAMETERS FOR THE 
SET OF EQUATIONS (5)-(7) 

Considering that the solution of system (5)-(7) as it was noted above, we look for in the form of internal three-dimensional 

plane waves v , ~ exp[ ( )]x y zi t i k x k y k z   u , neglecting for simplicity action of the Coriolis force, from (5)-(7) we 

will receive: 

                            [ ] ( )2     Hk v u Ω , [ ] ( )2 ( )2      i Hk u v Ω u Ω , ( ) 0 k v , ( ) 0 k u ,                       (8) 

where ( ) / /y zu y u z      u ,  ( ) v / v /y zy z      v . 

Obvious equalities follow from the equations (8): 

                                                 v v
y

y z
z

k

k
 ,      

2 2

v v
y z

x y
x y

k k

k k


  ,     

2 2

v v
y z

x z
x z

k k

k k


  ;                                            (9) 

similar expressions we yield for vector u . Taking into account (9) the dispersion equation for three-dimensional waves of 

Khantadze can be easily obtain from the equation (8): 

                                                                                    0R

H




 


  .                                                                              (10) 

From here in E region of the ionosphere (where 1  ), taking into account R    [3,5] we will find the following two 

branches of oscillations: 

а) for fast magnetogradient planetary wave (high-frequency branch): 

                                                   

2 2

2
0 0

1 3sin 1 3sin

4

x E
H HE x

k cH
k

R eN Rk

 
  



 
   ;                                           (11) 

where 
2 2/ 4 ( / ) /HE E e Eck H e N e c eH mc    is the eigenfrequency of the magnetized electrons (helicons), 0R  - 

Earth’s radius. 

b) for a slow low-frequency Rossby-type planetary wave we have: 

                                                                   

2

2
0

1 3sin
x

Ro i E

k

R k


 


     .                                                            (12) 
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where /i E EeH M c   - eigenfrequency of VLF ion-cyclotron waves;  HE  and i E  - their values on the equator.  

In F region of the ionosphere ( 0)   we will have only one branch of the fast magnetogradient planetary waves 

propagating both in positive and negative directions: 

                                                                      

2

2
0

1 3sin x
n AE

k

R k


  


    ,                                                             (13)              

where / 4AE E AEk H M N k V     - eigenfrequency of slow Alfven wave ( AEV ) on the equator. In expressions 

(11)-(13), except Earth radius 0R , which naturally determines the spatial scale and long-periodicity of electromagnetic 

planetary waves, only two parameters enter: N  and   . Concentration N  in the ionosphere varies with altitude only from 

4 510 10 cm
3
, and the ionicity   in the daytime conditions has the following values [9,21]:  

z , km 100 120 150 200 250 300 350 400 

  810  710  610  510  410  310  310  210  

 

For night conditions at all altitudes    decreases by an order of magnitude. Using these ionospheric parameters below we 

calculate eigenfrequency of considered waves. As vorticities of electrons 2 HΩ  and ions 2 iΩ  in the geomagnetic field 

0H  are directed from the South to the North and from the North on the South (i.e. electrons rotate in the geomagnetic 

field anticlockwise direction, and ions in the clockwise direction), frequency (11), as well as in inertial waves [19], only 

positive value, and frequency (12) – negative has.   

Frequency square 
0

2
n H R      does not depends on the vorticity and, as well as in Alfven waves, frequency 

(13) naturally gives two frequencies n . Also follows from formula (12) that unlike three-dimensional Rossby wave 

2/Ro xk k  , 
2

0 0 0/ 2 sin /z xy k R k        [18], propagating mainly to the western direction, slow 

magnetogradient waves always have east phase speed. Obviously it is caused by the fact that vectors Ω  and 0H  are 

directed opposite to each other: Ω  – from the South on the North, 0H  – from the North on the South. At 0zk  

expressions (11)-(13) coincide with results [6]. In view of the fact that gyroscopic forces iF  and HF  do not make work, the 

kinetic energy concluded in magnetogradient waves remains completely. 

From the expressions (11)-(13) follow that the phase speed of fast planetary waves (formula (11)) does not 

depend on the wave number, do not experience dispersion and they propagate one-dimensional, however slow Rossby 

type waves in E region and fast waves in F region of the ionosphere are strongly dispersive. The considered waves have 

all-planetary character and they can be exited at all latitudes of Earth. As in planetary waves horizontal wavenumbers 

satisfy the conditions ,x y zk k k , the formulas (11)-(13) received above can be simplified:  

                                                                       

2

0

1 3sin

4

E
H x

c H
k

e N R


 




  ,                                                              (14) 

                                                                    

2

2
0

1 3sin
x

Ro iE

z

k

R k


   


    ,                                                           (15) 

                                                                     

2

0

1 3sin
x

n AE
z

k
V

R k


 


    .                                                              (16) 

Vertical group speed of waves , /gr z zc k    taking into account a sign Ro  and n  define the direction of transfer of 

wave energy. In a case , 0gr zc   energy of waves is transferred from the lower layers of the ionosphere in upper; and in a 
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case , 0gr zc   - on the contrary, from the upper layers of the ionosphere to the lower one. Now, at least, two permanently 

thermal sources of waves in the upper atmosphere are well-known: one of them is at the height of 80 km, where because 

of strong turbulence of the environment there is an attenuation of the acoustic-gravity waves, tidal and planetary waves 

going from below, and the second – a high-latitude thermal source at the heights of 350-400 km, where kinetic energy of 

high energetic magnetosphere particles going from above turns into heat [20]. Characteristic vertical linear scale of 

planetary waves - an order of a scale of heights, which in the troposphere is about 8 km, and 30 km in E region and 50 km 

in F region of the ionosphere. Characteristic horizontal linear scales of planetary waves along parallel and along meridian 

are an order of 
3 410 10 km. Therefore the ionosphere for such large-scale wave processes is represented in the form of 

a thin film and analytical consideration of waves can be carried out according to the known theory of "small water" [17,18]. 

For planetary waves owing to these conditions ,x y zk k k  full wave vector k  will have the direction, close to a vertical. 

Let's note that such inclination of the line of constant phase of planetary waves very often is registered at observation in 

the atmosphere [18]. 

It is also necessary to note that the considered fast magnetogradient waves, as shown in [9], transfer ionospheric 

perturbations on global distances along parallels and meridians. Numerical values of phase speed of fast magnetogradient 

Hc  - waves, calculated using experimental data are provided in [8] where it is shown that parameters Hc - Khantadze's 

waves in E region of the ionosphere lie in the interval: 
3 4~ (10 10 )  km, 

1 4~ (10 10 )H
  s

1
 and ~ (0.1 0.7)Hc   

km
1s  and (0.5 7)  km

1s  for day and night conditions, respectively. For magnetic field perturbations we have ~ (2-100) 

nT (nanotesla), when ionospheric parameters change within 10-100%. Calculation of parameters for a slow hydromagnetic 

wave 
0Rc  carried out by us, have values: 

3 4~ (10 10 )  km, 
4 6~ (10 10 )Ro    1s , and 

2~ (10 10 )Roc   m
1s . For 

magnetic field perturbation we have (1-20) nT when ionospheric parameters change within 30-80%. In F region of the 

ionosphere for fast magnetogradient nc -wave we received: 
3 4~ (10 10 )  km, 

3~ (3 10 )n
 s

1
,  

~ (10 50)nc  km
1s . Magnetic perturbations change from several units to several hundred nT when ionospheric 

parameters change from 0,5 to 30%. Numerical values of parameters nc  - waves essentially depend on magnetic activity 

of the Sun. In view of that this paper has character of brief communication we refrain from further specification of the 

considered waves. In more detail numerical values of parameters of magnetogradient waves, their altitude profiles for 

different levels of activity of the Sun, time of day and seasons are carried out in [21]. 

CONCLUSION 

Summarizing, we can claim that unlike two-dimensional planetary waves which can extend only in the horizontal direction 

three-dimensional slow and fast magnetogradient planetary waves should mainly propagate in the vertical direction 

( , )z x yk k k , which well is confirmed by observations in the upper atmosphere [15, 20].   

ACKNOWLEDGMENTS 

This work has been supported by the International Science and Technology Center (ISTC) under Grant # G-2126 and 
Shota Rustaveli National Science Foundation under Grant # FR/3/9-190/14. 

REFERENCES 

1. Tolstoy, I. 1967. Hydromagnetic gradient waves in the ionosphere, J. Geophys. Res. vol. 72, 1435-1442. 

2. Khantadze, A.G. 1967. About definition of movement versus pressure and latitudinal effect of the geomagnetic field, 
Proceedings of the Geophysics Institute Georgian Academy of Sciences, 24-29 (in Russian). 

 3.    Khantadze, A.G. 1986. Hydromagnetic gradient waves in the dynamo-region of the ionosphere, Bulletin of the       

        Georgian Academy of Sciences, vol. 123, # 1, 69-71, (in Russian). 

 4.    Kobaladze Z.L., and Khantadze A.G. 1989. Propagation of large-scale perturbations in the ionosphere, Bulletin of the      

        Georgian Academy of Sciences, vol. 134, 97-100 (in Russian). 

5.     Khantadze A.G. 1999. On the electromagnetic planetary waves in the Earth’s ionosphere, J. Georgian Geophys. Soc.        

        vol. 4B, 125-127 (in Russian). 

 6.    Khantadze A.G. 2001. About new branch of the self-oscillation of the conducting atmosphere. Doklady Earth Science,  

        vol. 376, # 2, 250-252. 



I S S N  2 3 4 7 - 3 4 8 7  
V o l u m e  1 3  N u m b e r  5  

J o u r n a l  o f  A d v a n c e s  i n  P h y s i c s  

4887 | P a g e                                        

M a y  2 0 1 7                                                              w w w . c i r w o r l d . c o m  

 7.    Khantadze A.G. 2005. Electromagnetic planetary waves in the Earth atmosphere, Geomagnetizm and Aeronomy,  

      vol. 42, # 3, 333-335.  

8.  Burmaka V.P., Kostrov L.S., and Chernogor L.F. 2003. Statistics of signals of HF Doppler radar probing the bottomside  

     ionosphere distributed by rocket launches and solar terminator, Radio Physics and Radio Astronomy, vol. 8, # 2 143-     

     162, (in Russian). 

9.  Chernogor L.F. 2003. Earth science, atmosphere and geocosmos in the paradigm system point of view,” Radio Physics  

      and Radio Astronomy, vol. 8, # 1, 59-106 (in Russian). 

10. Khantadze A.G., Aburjania G.D., and Lominadze J.G. 2006. New branches of self-ULF electromagnetic oscillations of  

      the ionospheric resonator,” Doklady Earth Science, vol. 406, # 2, 244-248. 

11. Aburjania G.D., Chargazia K.E., Jandieri G.V., Khantadze A.G., and Kharshiladze O.A. 2004. On the new modes of  

      planetary electromagnetic waves in the ionosphere,” Annales Geophysicae, vol. 22, 1-9. 

12. Aburjania G.D., Jandieri G.V., and Khantadze A.G. 2003. Self-organization of planetary-scale electromagnetic waves  

      in the ionosphere,  J. Atmos. Terr. Phys. vol. 65, 661-671.    

13. Aburjania G.D., Chargazia K.E., Jandieri G.V., Khantadze A.G., and Lominadze J.G. 2005. Generation and  

      propagation of the ULF planetary-scale electromagnetic wavy structures in the ionosphere,” Planet. Space Sci. vol. 53,  

      881-901. 

14.  Aburjania G.D., and Khantadze A.G. 2006. Mechanism of the planetary Rossby wave energy amplification and 

transformation in the ionosphere with an inhomogeneous zonal smooth shear wind, J. Geophys. Res. vol. 111, 1-17, 

AO11567, 2006. 

15. Sharadze Z.S. Atmospheric waves in the middle-latitude ionosphere. Doctor Dissertation Moscow, 255 p., 1991. 

16. Fagundes P.R., Pillat V.G., Bolzan M. J. A., et al. 2005. Observations of F layer electron density profiles modulated by  

      planetary wave type oscillations in the equatorial ionospheric anomaly region,” J. Geophys.Res. vol. 110, pp. 1302. 

17. Pedlosky J. Geophysicae Fluid Dynamics, Springer, Berlin, 1987. 

18. Gill A., Atmosphere-Ocean Dynamics, Academic Press, New York, 1986. 

19. Landau L.D., Lifshits E.M. Hydrodynamics. Nauka, Moscow, 1988 (Translated in English) 

20. Khantadze A.G. Some Problems of the Dynamic of Conducted Atmosphere. Tbilisi, Mecniereba, 1973. 

21. Khantadze A.G., Aburjania G.D., and Gvelesiani A.I. 2003. Physics of new branches of the planetary electromagnetic 

waves in the ionosphere, Geomagnetizm and Aeronomy. vol 43, 193-198. 

 


