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Abstract 
We applied two different approaches to investigate the deformation structures of the two nuclei 32S and 36Ar. In the first 
approach, we considered these nuclei as being deformed and have axes of symmetry. Accordingly, we calculated their 
moments of inertia by using the concept of the single-particle Schrödinger fluid as functions of the deformation parameter 
 In this case, we calculated also the electric quadrupole moments of the two nuclei by applying Nilsson model as .ߚ
functions of ߚ. In the second approach, we used a strongly deformed nonaxial single-particle potential, depending on ߚ 
and the nonaxiality parameter ߛ, to obtain the single-particle energies and wave functions. Accordingly, we calculated the 
quadrupole moments of 32S and 36Ar by filling the single-particle states corresponding to the ground- and the first excited 
states of these nuclei. The moments of inertia of 32S and 36Ar are then calculated by applying the nuclear superfluidity 
model. The obtained results are in good agreement with the corresponding experimental data. 
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1. Introduction 
Many of the light nuclei are spherical. This is due to the success of the shell model, which is based on states in a field of 
spherical symmetry. According to the basic ideas of quantum mechanics the concept of rotation in a spherically symmetric 
system is meaningless. However, in an elongated nucleus the concept of rotation is meaningful, and the nucleus can 
rotate about an axis perpendicular to the axis of symmetry. The basic ideas concerning non spherical nuclei have been 
most completely described by A. Bohr [1]. A non-spherical nucleus is characterized by the moment of inertia about the 
axis perpendicular to the symmetry axis of the nucleus, its magnetic dipole moment and its electric quadrupole moment. 
The elongation of the nucleus is related to the interaction between the surface and the nucleons outside closed shells. 

    In treating the internal motion in a deformed nucleus, it is assumed that the individual nucleons move independently in a 
certain fixed non-spherical field of the nucleus. The Hamiltonian of the internal motion can then be represented, as in the 
ordinary model, in the form of a sum of one-particle Hamiltonians. One of the most successful models for generating 
realistic intrinsic single particle states of deformed nuclei is that first proposed by Nilsson [2]. According to Nilsson’s model, 
the nucleons inside the nucleus are moving independently in an averaging field in the form of anisotropic oscillator, with 
߱௫ = ߱௬ ≠ ߱௭, added to it a spin-orbit term and a term proportional to the square of the orbital angular momentum of the 
nucleon. The nucleon energy eigenvalues and eigenfunctions are then obtained by solving the time-independent 
Schrödinger wave equation in spherical polar coordinates and applying the method of diagonalizing the matrices. This 
model was limited to nuclei with axially symmetric quadrupole deformations, where the deformation is measured by the 
deformation parameter ߚ. Positive values of ߚ correspond to prolate deformation and negative values to oblate 
deformation. The success of the description of many nuclei by means of deformed potential can be taken as an indication 
that by distorting a spherical potential in this manner we automatically obtain the right combination of spherical 
eigenfunctions which make the corresponding Slater determinant a better approximation to the real nuclear wave function. 
From this point of view, the deformed potential is a definite prescription for a convenient mixing of various configurations of 
the spherical potential. Considerable evidence has accumulated for the rotational structure of nuclei. The absolute values 
of the rotational energies or equivalently the moments of inertia require a knowledge of the fine details of the intrinsic 
nuclear structure. Consequently, the investigation of the nuclear moments of inertia is a sensitive check for the validity of 
the nuclear structure theories [3]. 

    The study of the velocity fields for the rotational motion of the axially symmetric deformed nuclei led to the formulation of 
the so-called Schrödinger fluid [4,5]. Since the Schrödinger-fluid theory is an independent particle model, the cranking 
model approximation for the velocity fields and the moments of inertia play the dominant role in this theory. For axially 
symmetric deformed nuclei, the best description of the moment of inertia can be carried out by applying the concept of the 
single-particle Schrödinger fluid [6-8]. For these nuclei one can apply Nilsson's model [2] to calculate the nuclear 
quadrupole moments.  

    For a nucleus which has not an axis of symmetry (usually called an asymmetric rotor), one can use a single-particle 
Hamiltonian for a nucleon moving in a nonaxial deformed potential and then solves the Schrödinger equation in this case 
to obtain the single-particle energy eigenvalues and eigenfunctions [9]. It is then possible to fill the ground state (or the 
excited state) of the considered nucleus by the resulting single-particle wave functions. As a consequence, the quadrupole 
moment can be obtained by calculating the expectation value of the well-known quadrupole-moment operator with respect 
to the ground (or the excited) state of the nucleus. The best description of the nuclear moments of inertia for a nucleus 
which has not an axis of symmetry can be obtained by applying the nuclear superfluidity model of Belyaev [10].    
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    The moments of inertia and the quadrupole moments of some deformed nuclei in the ݀ݏ-shell have been investigated in 
frame work of different models. By applying Nilsson model, Bishop [11] calculated the moment of inertia and the 
quadrupole moment of the nucleus 27Al. Also, Doma [6] applied the nuclear superfluidity model to calculate the moments 
of inertia of the nuclei 24Mg and 26Mg. Furthermore, Doma [12] applied the single-particle Schrödinger fluid to calculate the 
moments of inertia of the even-even nuclei in the ݀ݏ-shell.  

    In the present paper, we investigated the deformation structure of the nuclei 32S and 36Ar. Accordingly, we calculated 
two characteristics for these nuclei by using different models which depend on the shape of the nucleus. In the case where 
the nucleus is assumed to be deformed and has an axis of symmetry, we applied the concept of the single-particle 
Schrödinger fluid for the calculation of the moments of inertia. Accordingly, the cranking-model moment of inertia and the 
rigid-body moment of inertia of the two nuclei 32S and 36Ar are calculated as functions of the deformation parameter ߚ and 
the non-deformed oscillator parameter ℏ߱଴

଴. Furthermore, we calculated also the electric quadrupole moments of 32S and 
36Ar by applying Nilsson model as function of ߚ. We finally considered a single-particle deformed potential consisting of an 
anisotropic oscillator potential added to it a spin-orbit term and a term proportional to the square of the orbital-angular 
momentum of the nucleon to calculate the single-particle energy eigenvalues and eigenfunctions for a nucleon in a 
deformed non axial nucleus. As a consequence, the quadrupole moments of 32S and 36Ar are calculated by using the 
single-particle deformed wave functions. The moments of inertia of 32S and 3Ar are then calculated by applying the 
superfluidity nuclear model, as functions of ߚ, the non-axiality parameter ߛ and the non-deformed oscillator parameter 
ℏ߱଴

଴.  

2. Calculations Based on the Assumption that the Nucleus Is Deformed and Has an 
Axis of Symmetry 
2.1 The Single-Particle Schrödinger Fluid 
The detailed formulation of the concept of the single-particle Schrödinger fluid from the time dependent Schrödinger 
equation, by suitably chosen single-particle wave function, is given by Kane and Griffin [4,5]. The method of the 
application of this concept to the calculation of the nuclear moments of inertia is given by Doma [6-8]. The following 
expressions for the cranking-model and the rigid body-model moments of inertia can be easily obtained on the basis of the 
concept of the single-particle Schrödinger fluid [4,5] 
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where ݍ is the anisotropy of the configuration, which is defined by  

 

ݍ                                                                      =
∑ ൫௡೤ାଵ൯೚೎೎

∑ (௡೥ାଵ)೚೎೎
,                                                                                               (2. 3) 

and ܧ is the total energy    

ܧ                                                 = ∑ ൣℏ߱௫൫݊௫ + ݊௬ + 1൯ + ℏ߱௭(݊௭ + 1)൧.௢௖௖                                                                       (2. 4) 

 

In equations (2.3) and (2.4) ݊௫ , ݊௬ and ݊௭ are the state quantum numbers of the oscillator. The summations in (2.3) and 
(2.4) are carried over all the occupied single-particle states. The method of filling these states is illustrated in [8]. Also, in 
(2.1) and (2.2) ߪ is a measure of the deformation of the potential and is defined by  

 

ߪ                                                                       = ఠ೤ିఠ೥

ఠ೤ାఠ೥
 .                                                                                                  (2. 5) 

 

For the frequencies ߱௫, ߱௬ and ߱௭, Doma et al. [6-8] used Nilsson's frequencies [2], defined by  
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    For the non-deformed frequency ߱଴
଴ we used the one which is given in terms of the mass number ܣ, the number of 

neutrons N and the number of protons ܼ by [13] 
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The well-known deformation parameter ߚ is related to the parameter ߜ in equations (2.6), (2.7) and (2.8) by the following 
relation [2] 

ߚ                                                                                      = ଶ
ଷ
ටସగ

ହ
 (2.10)                                                                                 .ߜ

    

    We note that the cranking-model and the rigid body-model moments of inertia are equal only when the harmonic 
oscillator is at the equilibrium deformation. 

2.2 The Electric Quadrupole Moment 
Assuming a charge distribution in accordance with the Thomas-Fermi statistical model applied to the oscillator potential 
one obtains, for the case of the axially symmetric nuclei, the intrinsic quadrupole moment, to the second-order in the 
deformation parameter [1] ߜ  

 

                                                                            ܳ଴ = 0.8ܼܴ݁ଶߜ ቀ1 + ଶఋ
ଷ
ቁ,                                                                       (2.11) 

 

where ܼ is the number of protons and ܴ is to be taken equal to the radius of charge of the nucleus. The relation between 
the measured quadrupole moment, denoted by ܳௌ, and Q₀ is given by 

 

                                                                                   ܳௌ =
ଷ௄మିூ(ூାଵ)
(ூାଵ)(ଶூାଷ)

ܳ଴ ,                                                                         (2.12) 

 

where ܫ is the total spin-quantum number of the specified nuclear state and ܭ is its component along the body-fixed ݖ −
 Calculating the charge radius of the nucleus, the measured quadrupole moment for a nucleus with an axis of .ݏ݅ݔܽ
symmetry is then obtained as function of the deformation parameter ߜ. 

3. Calculations Based on the Assumption that the Nucleus Is Deformed and Has Not 
an Axis of Symmetry 
In the case where the nucleus is assumed to be deformed and has not, in principle, an axis of symmetry we proceed as 
illustrated in the next sections. 

3.1 The Single-Particle Potential and the Method of Solution  
Consider a nucleon which is moving in a deformed nuclear field whose Hamiltonian operator is given by [9]  
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where ௟ܻ,Λ(ߠ, ߮) are the spherical harmonic functions, ߚ is the deformation parameter and ߛ is the non-axiality parameter. 
The constants ܥ and ܦ in equation (3.1) are given by [2] 

 

ܥ                                                      = −2߯ℏ߱଴
଴, ܦ =  ℏ߱଴଴,                                                                                          (3.2)߯ߤ−
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where ߯ takes values in the interval 0.05 ≤ ߯ ≤ 0.08 and ߤ depends on the number of quanta of excitation ܰ as given by 
Nilsson [2]. 

    The Hamiltonian ܪ, equation (3.1), can be rewritten in the form: 

 

ܪ                                                                  = (଴)ܪ (ଵ)ܪ+  (3.3)                                                                                     ,(ଶ)ܪ+

where  
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(ଶ)ܪ                                                 = − √ଶ
ଶ
݉߱଴

ଶݎଶߛ݊݅ݏߚ൛ ଶܻ,ଶ(ߠ, ߮) + ଶܻ,ିଶ(ߠ, ߮)ൟ.                                                              (3.6) 

The solutions of the Schrödinger equation corresponding to the Hamiltonian (3.4) are straightforward [9] with 
eigenfunctions denoted by |݈ܰΛΣ〉. Also, the solutions of the Schrödinger equation corresponding to the Hamiltonian 
(଴)ܪ +    .〈are straightforward [9] by applying the variational method and as a result we obtain the eigenfunctions หܰΩగ (ଵ)ܪ

    Finally, the Schrödinger equation representing the motion of a single nucleon in the non-axially deformed nuclear field, 
whose Hamiltonian operator is given by equation (3.1), can be solved by applying the stationary non-degenerate 
perturbation method, for the Hamiltonian ܪ(ଶ) as a perturbed term to ܪ(଴)  .〈with respect to the eigenfunctions หܰΩగ ,(ଵ)ܪ+
As a result, the single-particle energy eigenvalues and eigenfunctions, หΩగ〉, of a nucleon in a deformed nuclear field can 
be calculated for every level, with given value of the ݖ-component of the total angular momentum ߗ and parity ߨ as 
functions of the potential parameters ߯, and ߤ, the deformation parameter ߚ, and the non-axiality parameter ߛ. In the 
above mentioned functions, ܰ is the number of quanta of excitation,	݈ and Λ are the nucleon orbital angular momentum 
quantum number and its ݖ-component and Σ is the ݖ-component of the nucleon spin (= ± ଵ

ଶ
). 

3.2 The Nuclear Superfluidity Model and the Moment of Inertia  
The moment of inertia of a deformed nucleus which has not an axis of symmetry is then given by applying the nuclear 
superfluidity model [10], and as a result we obtain 

 

                                                        	ℑ௦.௙. = ℏଶ∑ 〈௜|௃ೣ |௞〉మ

ா೔ାாೖ
ቄ1 − (఍೔ିఒ)(఍ೖିఒ)ାΔమ

ா೔ாೖ
ቅ ,௜,௞                                                                   (3.7) 

 

where ߞ௜ are the eigenvalues of the self-consistent field, the eigenvalues of the Hamiltonian operator (3.1), ߣ is the 
chemical potential and the energy of elementary excitations of the nucleus, ܧ௜, is given by 

௜ܧ                                                                       = ට(ߞ௜ − ଶ(ߣ + Δଶ ,                                                                                    (3.8) 

 

with Δ being the energy gap. The summation in equation (3.7) is taken over all states of the self-consistent field. The 
chemical potential ߣ is given by [10] 

 

                                                                     ∑ ቐ1 − ఍೔ିఒ

ට(఍೔ିఒ)మାΔమ
ቑ = N௣,௡ ,௜                                                                            (3.9) 

where the summation, here, runs over all distinct neutron (or proton) energies and N୮,୬ is the number of protons or 
neutrons inside the nucleus. 

3.3 The Quadrupole Moment 
 
For the non-axial case, the intrinsic quadrupole moment, of a nucleus consisting of ܼ protons, is given by [1] 
                                                             ܳ଴ = ∑ ܳ௜௓

௜ୀଵ ,                                                                                                        (3.10)       
 
where the single-particle operator ܳ௜ is given by 
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                                                        ܳ௜ = ݁ටଵ଺గ
ହ ∫൫ΨΩπ

௜ ൯
ଶ
௜ଶݎ ଶܻ,଴(ߠ௜ , ߶௜)݀߬.                                                                        (3.11) 

 
Carrying out the integration in equation (3.11) with respect to the wave functions หΩగ〉 which is evaluated in terms of the 
functions |݈ܰΛΣ〉, one then obtains 
 

                                              ܳ௜ = ݁ටଵ଺గ
ହ
∑ ఉ௜ఈ,ఉܥఈ௜ܥ 〈 ఈ݈ܰఈ|ݎଶ| ఉ݈ܰఉ〉〈݈ఈΛఈห ଶܻ,଴ห݈ఉΛఉ〉.                                                         (3.12) 

 
Filling the single-particle wave functions หΩగ〉 for the given nucleus in its ground- and excited- state (ܫା), it is then possible 
to calculate the quadrupole moment by calculating the necessary matrix elements of equation (3.12) and evaluating the 
expansion coefficients of the functions หΩగ〉 in terms of the functions |݈ܰΛΣ〉 as obtained from the variational and the 
perturbation methods. 
 
4. Results for the Case of the Axial Symmetry 
According to previous works [9], the parameters ߯, ߯ are allowed to take on the values ߚ and ߤ = 0.05,0.06, 0.07, and	0.08, ߤ = 0, 
for ܰ = 0,1	and	2; and ߤ = 0.35 for ܰ = takes values in the interval −0.50 ߚ ,3 ≤ ߚ ≤ 0.50 with a step 0.01. 
    In Tables-1 and 2 we present the variations of the values of the reciprocal moments of inertia of the nuclei 32S and 36Ar, by using the 
concept of the single-particle Schrödinger fluid for both of the cranking-and the rigid-body models, with respect to the deformation 
parameter ߚ for the cases β ≤ 0 and β > 0, respectively. The values of the non-deformed oscillator parameter ℏ߱଴

଴ are also given in 
Tables-1 and 2. Also, in Figures-1 and 2 we present the dependence of the reciprocal moments of inertia of 32S and 36Ar on the 
deformation parameter β.  
  

 
Fig.1 Reciprocal moments of inertia of the nucleus 32S. Solid line for cranking model and dashed line 

for rigid body model. 
 

 



I S S N  2 3 4 7 - 3 4 8 7                                                  
 V o l u m e  1 3  N u m b e r  2  

 J o u r n a l  o f  A d v a n c e s  i n  P h y s i c s  

4683 | P a g e  
F e b r u a r y ,  2 0 1 7                                                       w w w . c i r w o r l d . c o m  
 

 
Fig.2 Reciprocal moments of inertia of the nucleus 36Ar. Solid line for cranking model and dashed line 

for rigid body model. 

Table-1 Schrödinger fluid reciprocal moments of inertia of 32S and 36Ar as functions of ࢼ ,ࢼ ≤ ૙. 
Case 32S ℏ߱଴

଴ = 10.908 36Ar ℏ߱଴
଴  = 10.622    

ℏమ ߚ

ଶℑ಴ೝೌ೙ೖ
     ℏమ

ଶℑೃ೔೒
  ℏమ

ଶℑ಴ೝೌ೙ೖ
  ℏమ

ଶℑೃ೔೒
   

-.500 548.020300 193.265300 544.238000 164.409900  

-.490 538.614000 192.287800 535.632800                163.596600 

-.480 529.116500 191.338600 526.897800                162.807400 

-.470 519.527600 190.416700 518.031900 162.041100 

-.460 509.847100 189.521000 509.035600                161.296800 

-.450 500.075600 188.650300 499.908800                160.573600 

-.440 490.213300 187.803700 490.652600                159.870700 

-.430                 480.261500                186.980300 481.268200                159.187200 

-.420                                470.221200                186.179100 471.757000                158.522500 

-.410 460.093800 185.399300 462.120700                157.875800 

-.400                         449.881400                184.640300 452.361800                157.246600 

-.390                               439.585700                 183.901200 442.482500                156.634200 

-.380                                 429.208600       183.181400 432.485300                156.037900 

-.370                                418.752900                182.480200 422.373500                155.457400 

-.360                             408.220500                181.797100 412.150300                154.892200 

-.350                                397.614400                181.131500 401.818600                154.341500 

-.340                                386.937000                180.482700 391.382200                153.805100 

-.330                                376.191400                179.850400 380.844700                153.282600 

-.320                                365.380300                179.234000 370.210100                152.773600 

-.310                354.506700                178.633100 359.482000                152.277500 
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-.300                                 343.573400                178.047200 348.664400                151.794100 

-.290                           332.583700                177.476000 337.761400                151.323100 

-.280                             321.540300                176.919000 326.777300                150.864000 

-.270                            310.446500                176.375900 315.715900                150.416700 

-.260                                 299.305000                175.846200 304.581400                149.980700 

-.250                          288.119000                175.329900 293.377900                149.555800 

-.240                          276.891300                174.826300 282.109600                149.141900 

-.230                          265.624600                174.335300 270.780300                148.738500 

-.220                              254.321800                173.856600 259.394000                148.345500 

-.210                             242.985500                173.389900 247.954300                147.962700 

-.200                                231.618100                172.934900 236.465100                147.589700 

-.190                                220.222300                172.491400 224.929600                147.226400 

-.180                               208.799800                172.059200 213.351700         146.872700 

-.170                                 197.353200                171.638000 201.734100                146.528300 

-.160                             185.884000                171.227600 190.079900                146.193000 

-.150                             174.394300               170.827900 178.392000              145.866800 

-.140                             162.885500                170.438600 166.672800                145.549300 

-.130                                151.358800                170.059400 154.924600                145.240500 

-.120                                139.815400                169.690400 143.149300                144.940200 

-.110                                 128.255900                169.331300 131.348700                144.648300 

-.100                             116.681200                168.981900 119.524000                144.364600 

-.090                                105.091300                168.642100 107.676500                144.089100 

-.080                                93.486510             168.311700 95.806760                143.821600 

-.070                                    81.866290                167.990600 83.915240                143.562000 

-.060                                    70.230280                167.678800 72.001590                143.310100 

-.050                                    58.577240                167.375900 60.065510                143.065900 

-.040         46.906120                167.082000 48.106110                142.829300 

-.030                                  35.215160                166.797000 36.121970                142.600300 

-.020                                     23.502260                166.520600 24.111300                142.378600 

-.010                                   11.764880                166.252900 12.071650                142.164300 

.000                                         0.000000 165.993700 0.000000                141.957300 
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Table-2 Schrödinger fluid reciprocal moments of inertia of 32S and 36Ar as functions of ࢼ ,ࢼ > 0. 
Case 32S   ℏ߱଴

଴ = 10.908 36Ar ℏ߱଴
଴  = 10.622 

ℏଶ ߚ

2ℑ஼௥௔௡௞
 

ℏଶ

2ℑோ௜௚
 

ℏଶ

2ℑ஼௥௔௡௞
 

ℏଶ

2ℑோ௜௚
 

.010 11.795180 165.743000 12.106490 141.757400 

.020                                   23.625170                165.500600 24.252580                141.564700 

 .030                   35.494220                 165.266600 36.442800                 141.379000 

.040                   47.407260                 165.040800 48.682530                 141.200300 

.050                   59.369950                 164.823100 60.977860                 141.028600 

.060        71.388450                 164.613500 73.335590                 140.863900 

.070                   83.469570                 164.412000 85.763710                 140.706000 

.080                   95.621090                 164.218400 98.270660                 140.554800 

.090                 107.851400                 164.032800 110.866100                 140.410600 

.100                 120.169700                 163.855100 123.560800                 140.273000 

.110               132.586300                 163.685300 136.366500                 140.142200 

.120                 145.112600                 163.523300 149.296300                 140.018100 

.130                 157.760600                 163.369100 162.364700                 139.900700 

.140                 170.544300                 163.222700 175.587500                 139.789900 

.150                 183.478300                 163.084000 188.982400                 139.685900 

.160                 196.578900                 162.953100 202.569000                 139.588400 

.170                 209.864500                 162.829900 216.368600                 139.497600 

.180                 223.354700                 162.714400 230.405000         139.413400 

.190                 237.071400                 162.606700 244.704700                 139.335900 

.200                 251.038700                 162.506600 259.297000                 139.265000 

.210                 265.283100                 162.414300 274.214100                 139.200800 

.220                 279.834300                 162.329600 289.492300                 139.143200 

.230                 294.725000                 162.252700 305.171900                139.092200 

.240                 309.991400                 162.183600 321.298400                 139.048000 

.250                 325.674200                 162.122300 337.922300                 139.010500 

.260                 341.818600        162.068600 355.100400                 138.979600 

.270                 358.475700                 162.022800 372.897600                 138.955600 

.280                 375.702200                 161.984800 391.386700                 138.938200 

.290                 393.563200                 161.954700 410.651300                 138.927700 

.300                 412.131100                 161.932400 430.786100                 138.924000 

.310                 431.489500               161.918000 451.900700                 138.927200 

.320                 451.733200                 161.911600 474.121300                 138.937300 

.330                 472.971500                 161.913200 497.594200                 138.954300 

.340                 495.330000                 161.922800 522.490700                 138.978300 

.350                 518.954300                 161.940500 549.011800                 139.009400 

.360                 544.014800                 161.966200 577.395400                 139.047500 

.370                 570.711900                 162.000000 607.925700                 139.092600 

.380                 599.281300                 162.042000 640.943400                 139.144900 
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.390                 630.004700                 162.092200 676.863400                 139.204300 

.400                 663.220800                 162.150600 716.193300                 139.270900 

.410                 699.339400                 162.217200 759.563200                 139.344700 

.420                 738.862500                 162.292000 807.763000                 139.425800 

.430                 782.411600                 162.375100 861.798700                 139.514100 

.440          830.765300                 162.466500 922.971600                 139.609700 

.450                 884.913100                 162.566000 992.994500                 139.712400 

.460                 946.131000                 162.673700 1074.168000                 139.822400 

.470               1016.096000                 162.789500 1169.661000                 139.939600 

.480               1097.054000                 162.913300 1283.958000                 140.063900 

.490               1192.087000                 163.045000 1423.624000                 140.195100 

.500      1305.541000       163.184400 1598.674000                 140.333200 

 
 
   In Table-3 we present the best values of the calculated reciprocal cranking-model moments of inertia for the two nuclei 
32S and 36Ar. The values of the corresponding deformation parameter ߚ and the experimental moments of inertia of the 
two nuclei are also given in this table. Concerning the values of the rigid-body moments, they are not presented in this 
table since they are not in good agreement with the corresponding experimental values, as shown from Tables-1 and 2, as 
expected.   

Table-3 Best values of the calculated reciprocal moments of inertia by using the cranking-model for 
32S and 36Ar 

Nucleus ߚ ℏమ

ଶℑ಴ೝೌ೙ೖ
  (KeV) ℏమ

ଶℑ೐ೣ೛
  (KeV) [14] 

32S -0.335 371.533 371.72 

 0.278 371.621  
36Ar -0.325 374.544 374.55 

 0.272 374.442  

 

    We considered the equilibrium moment of inertia, for the two nuclei, as the value where both of the cranking model and 
the rigid-body model moments of inertia are equal. In Table-4 we present the equilibrium reciprocal moments of inertia of 
the two nuclei together with the values of the deformation parameter ߚ and the corresponding experimental reciprocal 
moments of inertia of the two nuclei. 

Table-4 Equilibrium reciprocal moments of inertia of 32S and 36Ar 
Nucleus ߚ ℏమ

ଶℑ೐೜ೠ
 (KeV) ℏమ

ଶℑ೐ೣ೛
 (KeV) [14] 

32S -0.146 170.6241 371.72 

 0.135 163.3611  
36Ar -0.121 144.8934 374.55 

 0.114 140.0742  

 

As seen from Table-4, the values of the equilibrium reciprocal moments of inertia of 32S and 36Ar are not in good 
agreement with the corresponding data since they are closely related to the rigid-body values. 

    In Table-5 we present the values of the electric quadrupole moments of 32S and 36Ar for the axially-symmetric case 
together with the corresponding values of the total spin of the considered nuclear state and its parity, ܫగ, the deformation 
parameter ߚ, the root mean-square radius, ܴ, and the experimental data.   
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Table-5 Electric quadrupole moments of 32S and 36Ar for the axially-symmetric case 
Nucleus ܫగ ߚ ܴ (in ݂݉) ܳௌ (݂݁݉ଶ) ܳ௘௫௣ (݂݁݉ଶ) 

32S 2ା   0.278 4.92 -14.88 -14.9 
36Ar 2ା    -0.11 5.12 10.96 11.0 

 
5. Results for the Case where the Nucleus Has Not an Axis of Symmetry  
In Table-6 we present the deformation parameters and the parameters of the single-particle potential for the two nuclei 32S 
and 36Ar. 

Table-6 Model and potential parameters for the 32S and 36Ar nuclei 
Nucleus ߛ ߚ ߯ ℏ߱଴

଴ (MeV) ߣ (MeV) ∆ (MeV) 
32S 0.395 250 0.06 10.908 3.24 2.07 
36Ar -0.376 200 0.06 10.622 3.25 1.93 

  

In Table-7 we present the superfluidity reciprocal moments of inertia of 32S and 36Ar together with the corresponding 
moments and the deformation parameters. 

Table-7 Superfluidity reciprocal moments of inertia of 32S and 36Ar 
Nucleus ߛ ߚ ℏమ

ଶℑೄ.ಷ.
  (KeV)  ℏమ

ଶℑ೐ೣ೛
  (KeV) 

32S 0.395 250 371.782 371.72 
36Ar -0.376 200 374.665 374.55 

 

    Finally, in Table-8 we present the calculated values of the electric quadrupole moments of 32S and 36Ar by using the 
single-particle wave functions of the nonaxial potential. The values of the deformation parameters. the total spin and parity 
are also given.  

Table-8 The electric quadruple moments of 43S and 36Ar in the non-axial case 
nucleus ܫగ ߛ ߚ ܳ௖௔௟  (݂݁݉ଶ) ܳ௘௫௣ (݂݁݉ଶ) 

32S 2ା   0.45 250 -14.92 -14.9 
36Ar 2ା    -0.38 200 -10.9 11 

 
6. Conclusion  
It is seen from Tables-1 and 2 that the calculated values of the moments of inertia of the considered nuclei by using the cranking model 
of the concept of the single-particle Schrödinger fluid are in good agreement with the corresponding experimental values, a result 
which shows that the concept of this fluid is reliable and can be applied successfully to deformed nuclei in the ݏ − ݀ shell. It is seen, 
also, from Tables-1 and 2 that the two nuclei 32S and 36Ar have nearly equal values of the deformation parameter 0. 27	 < 	ߚ	 < 	0.28 
(or −0.33	 < ߚ <	−0.32). The disagreement between the value of the rigid-body reciprocal moment of inertia and the corresponding 
experimental data is due to the fact that the pairing correlation is not taken in concern in this model [3]. Furthermore, according to the 
results of the moments of inertia by using the concept of the single-particle Schrödinger fluid, the two nuclei 32S and 36Ar may have 
prolate deformation shape (positive value of ߚ) as well as oblate deformation shape (negative value of ߚ).  
 
    It is well-known that the quantity that characterizes the deviation from spherical symmetry of the electrical charge distribution in a 
nucleus is its quadrupole moment ܳ. If a nucleus is extended along the axis of symmetry, then ܳ is a positive quantity, but if the 
nucleus is flattened along the axis, it is negative. On the other hand, according to the results of the electric quadrupole moments of the 
two nuclei in the axially-symmetric case, the nucleus 32S has prolate deformation shape while the nucleus 36Ar has oblate deformation 
shape. In the case where the nucleus is assumed to be deformed and has not an axis of symmetry, the results obtained from the 
calculations of the superfluidity moments of inertia and the electric quadrupole moments of the two nuclei show also that the nucleus 
32S has prolate deformation shape while 36Ar has oblate deformation shape. Accordingly, the two models, although different in their 
structures, agree in the assumption that the 36Ar nucleus has an oblate deformation shape. 
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