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ABSTRACT 

Basing on Landau–de Gennes theory, this study investigated the chiral configurations of nematic liquid crystals confined to 
cylindrical capillaries with homeotropic anchoring on the cylinder walls. When the elastic anisotropy (L2/L1) is large 

enough, a new structure results from the convergence of two opposite escape directions of the heterochiral twist and 
escape radial (TER) configurations. The new defect presents when L2/L1≥7 and disappears when L2/L1<7. The new 
structure possesses a heterochiral hyperbolic defect at the center and two homochiral radial defects on both sides. The 
two radial defects show different chiralities.  
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1 INTRODUCTION  

The equilibrium configuration of a confined nematic liquid crystal (NLC) introduces a rich phenomenology of defects. 
Among widely used geometries, nematics in cylindrical capillaries exhibit a particularly rich diversity of structures that 
primarily depend on molecular orientation at the walls of the confining capillaries [1]. The structures in cylindrical cavities 
with homeotropic anchoring have three possible types: (a) planar polar (PP), (b) planar radial (PR), and (c) escaped radial 
(ER) [2–4]. Many experiments [5–10] show that in cylinders with radii R=0.5–200μm, ER configuration is realized, while in 
cylinders with radii R=0.05– 0.4μm, either ER or PP configuration can occur, and in cylinders with radii R≤0.1μm, PR can 
occur [4, 6, 8, 11–12]. There are two 1/2 line defects in PP configuration, and a +1 line defect in PR configuration. In ER 
configuration, the two degenerate escape directions that lead to two possible types of defects are radial defect and 
hyperbolic defect [13–15].  

The elastic properties of nematic liquid crystals (LCs) are crucial for LC display applications [16, 17], and they 
continue to give rise to unanticipated fundamental phenomena [18–28]. Recent studies have found that cylinders with 
broken chiral symmetry exhibit a lyotropic chromonic LC (LCLC), which has a small twist elastic constant (K22) [29–31]. A 
twist and escape radial (TER) configuration was found in cylindrical cavities with homeotropic anchoring. The chirality of 
the configurations can be either right or left handed. The two different escape directions with opposite senses of 
handedness in the configuration also lead to two possible types of defects: radial and hyperbolic. Moreover, the defects 
with the same handedness are unstable [19].  

In this study, we investigated a new structure resulting from the convergence of two opposite escape directions of 
heterochiral TER configurations with a large-enough elastic anisotropy. Our study is based on Landau–de Gennes theory 
and a 2D finite-difference iterative method. The outline of the paper is as follows. In section 2, we introduce the 
phenomenological model employed and describe the geometry of the problem and our parameterization. The results are 
presented in Section 3, and the conclusions are summarized in Section 4.  

2 MODELING 

2.1 Free energy 

Our theoretical argument is based on Landau–de Gennes theory [32], wherein the orientational order of LC is described 
by a second-rank symmetric and traceless tensor [33]: 
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where
ie

r
, for i=1, 2, 3, are the orthogonal unit vectors representing the eigenvectors of Q, and 

i  are the corresponding 

eigenvalues. Q vanishes in the isotropic phase, possessing two degenerate eigenvalues in the uniaxial ordering and can 

be represented by  
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where n
r

is the nematic director pointing along the local uniaxial ordering direction, and S is the uniaxial scalar parameter 
expressing the nematic director’s fluctuation magnitude. 

The LC is in a biaxial state when all eigenvalues of Q are distinct. The degree of biaxiality is expressed by the 

parameter 
2  defined as [34] 
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This equation presents a convenient parameter for illustrating spatial inhomogeneities of Q and ranges in the interval [0, 

1]. All uniaxial states with two degenerate eigenvalues correspond to
2 0  , whereas states with maximal biaxiality 

correspond to
2 1  . As tr(Q

3
)=3detQ, states with

2 1   are those with detQ=0, implying that at least one eigenvalue 

of Q vanishes. 

The Landau–de Gennes free energy density of NLC is given by bulk elasticf f f  ,where 
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is the bulk energy that describes a homogeneous phase. In Eq. (4), B and C are positive constants, and A is assumed to 
vary with temperature T in the form of A = A0 (T − T*), where A0 is a positive constant and T* is the nematic supercooling 
temperature. Eq. (4) provides the bulk equilibrium value of the uniaxial scalar order parameter in Eq. (2) 

  
1 2

2

eq= 1 1 24 4S B AC B C  , which depends on the temperature. 

The free-energy felastic, which penalizes gradients in the tensor order parameter field, is given in the form [35, 36] 
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where L1, L2 and L3 are elastic constants. Corresponding to Frank theory, we obtain the relationship between 
iL  and 

iiK  

[36], 
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Here, we assume 11 33 22K K K  , that is, 

    

22
1 2

11 22
2 2

3

,
2

,

0.

K
L

S

K K
L

S

L








                                                         (7) 



I S S N  2 3 4 7 - 3 4 8 7                                                   
 V o l u m e  1 3  N u m b e r  2  

 J o u r n a l  o f  A d v a n c e s  i n  P h y s i c s  

4707 | P a g e                                        

M a r c h ,  2 0 1 7                                                          w w w . c i r w o r l d . c o m  

In Eqs. (6) and (7), K11, K22 and K33 are splay, twist and bend elastic constants in Frank theory, respectively. It means 
that the system has elastic anisotropy, and the free-energy felastic can be rewritten as 

                       elastic 1 2

1 1
.

2 2
f L Q Q L Q Q        M                                    (8) 

2.2 Geometry of the problem 

Let us consider an NLC confined in capillaries with homeotropic boundary conditions. The LC directors are radial near the 
capillary wall and bend along the radius to be parallel to the cylindrical axis of the capillary; two degenerate directions of 
bend deformations are found, and the choice between the two deformations determines the escape direction. In essence, 
the system can minimize elastic free energy by producing a TER configuration when it has a small twist elastic constant 
K22 [19].  

To describe the configuration, standard polar cylindrical coordinates  , ,z   and the corresponding local frame 

 , , ze e e 

r r r
 are introduced, as shown in Figure 1a, where 

ze
r

 points along the symmetry axis, e

r
 is the radial unit 

vector emanating from the symmetry axis, and : ze e e  
r r r

. In the polar cylindrical coordinates, the nematic director is 

given by sin cos sin sin cos zn e e e       
r r r r

, where the polar angle γ is the angle between the z unit 

vector (
ze

r
) and the director n

r
, and the twist angle   is the angle between the ρ unit vector ( e

r
) and the     

projection ( n ) of the director. In the cylindrical coordinate system, Eq. (2) can be written in matrix form as  
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LC molecules are strongly anchored along the perpendicular directions of the cylinder walls. To research it 
advantageously, the LC texture is assumed to exhibit a cylindrical symmetry along the cylindrical axis, i.e., the nematic 
orientation is independent of ϕ. Accordingly, the texture can be discussed in terms of 2D nematics corresponding to each 
radial slice.  

We denote the free boundary conditions at the upper and lower lateral walls. The new configuration requires 

 0 0     at the center with free boundary conditions, as well as homeotropic strong anchoring on the cylinder 

walls given by   2R      and   0R    , which correspond to the −z or z escape direction, respectively. 

In our simulation, the initial value is given as follows: From the center of the cylinder to the wall, the polar angle changes 

from 0 to π/2, and the twist angle changes linearly from π/2 to 0. Figures 1(b)–1(d) show the initial profile of the director. 

Figures 1(c) and 1(d) are the perspective views of about the bottom half and the top half in Figure 1(b), representing left-
handed and right-handed chiralities, respectively. 

                             
(a) (b) 
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Fig 1: Geometry of the problem. (a) Cylindrical coordinate system ( , ,z  ) used to describe the 

configuration. (b) Director profile in a cross-section along an arbitrary radius of the system. (c) and (d) provide 
the cross-sectional view of (b). 

2.3 Scaling and dimensionless evolution equations 

We introduce the following dimensionless quantities: 

4

364

B
f f

C
% ， 0z z % ，

0  % , 0ij ijQ Q q% , 

where  **

0 : 4eqq S T B C  is the superheating order parameter at the nematic superheating temperature T**, and 

2

0 1 0 1: 4L Bq CL B    is the characteristic length for order-parameter changes. Given that Q is symmetric and 

traceless, that is Qρϕ=Qϕρ, Qρz=Qzρ, Qϕz=Qzϕ, Qρρ+Qϕϕ+Qzz=0, we leave five independent variables only, thus Eqs. (4) and 
(8) can be expressed by 
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where the reduced parameter 
224A AC B%  defines the temperature scale. Isotropic–nematic transition occurs at 

8 9%A . The values of L2/L1 represent the magnitude of the elastic anisotropy. Eq. (6) shows that a larger value of L2/L1 

corresponds to a smaller twist elastic constant K22. 

We compute the evolution of LC with dynamic theory for tensor order-parameter field Q (ρ, z, t). The local values of 

the scalar-order parameter S and the director n
r

 can be calculated from Q by using the highest eigenvalue and the 
associated eigenvector, respectively. According to [37], the evolution equation describing the dynamics of Q can be written 

as 
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where Γ = 6D*/[1−3tr(Q
2
)]

2
, D* is the rotational diffusion for the nematic. 

Numerical calculations are performed using the reduced variables. When the functional derivatives in Eq. (12) are 

evaluated and the derivatives are discretized with a finite difference, the partial differential equations for Q% can be 

obtained as follows: 
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with  0Bq  % . We adopt the 2D finite-difference method developed in our previous studies [38, 39] to obtain the 

numerical simulation results. Here, we let the system relax from the initial boundary conditions given in Section 2.2. In our 
numerical calculations, we adopted a proper time step to guarantee the stability of the numerical procedure. In addition, 
our equilibration runs were verified to be adequate for the system to reach equilibrium. 

3. RESULTS AND DISCUSSION 

In this section, we present our numerical results. According to the parameters given in [40], A0 = 0.195 × 10
6
 J/m

3
, B = 

7.155 × 10
6
 J/m

3
, C = 8.82 × 10

6
 J/m

3
, and  L1 = 10.125 × 10

−12 
J/m can be easily obtained. In our simulations, the scaled 

temperature is set to 2 3A % , which corresponds to 1 1 3s  % . The rotational diffusion D* is set to 0.35, which is 

the value used in [40]. The exact value of0 is 2.64 nm. In order to get rich defect structures, a small radius R is choosen 

in our simulation.  We set H=6000 and R=1500, where H and R represent the lengths along the z- and ρ-axes, 
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respectively. More precise in calculation, the z-axis is discretized into 242 small intervals with  0 2.5z b b   , and 

the ρ-axis is discretized into 121 small intervals with  0 1.25a a    . 

3.1. Discovery of the new structure 

We simulate the defect structures which were found to arise in experiment when the two opposite escape directions of the 
heterochiral TER configuration diverge and converge with L2/L1=18. As expected, It is shown that a hyperbolic defect and 
a radial defect ring appear in our simulation. Then we investigate the change of the two structures with elastic anisotropy 
(L2/L1). A radial defect is found with smaller elastic anisotropy L2/L1(This part will be published in else where). While when 
L2/L1 is large enough, a new structure forms. Figure. 2 gives the new structure in a cross-section along an arbitrary 
azimuth in detail with L2/L1=30.  
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Fig 2: New structure with L2/L1=30. (a) Director-field, (b) Twist angle α, (c) Biaxiality β
2
. 

Figure 2(a) shows the director profile in a cross-section along an arbitrary radius of the system. We found a hyperbolic 
defect at the center of the system and two radial defects on both sides. The yellow dot–dash line represents the center of 
the hyperbolic defect, and the blue dot–dash lines represent the center of the two radial defects. In the vicinity of the 
center plane layer, the LC directors are radial forming a PR structure. In Figure 2(b), the black arrows indicate escape 
directions. Combined with the director profile, the nucleuses on both sides have different chiralities. The top half is left-
handed, whereas the bottom half is right-handed. Figure 2(c) shows the biaxiality of the defect. At the center of the defect, 
the biaxiality has a maximum size. For the axis-symmetry of the structure, the radial defects present as biaxiality rings, 
and the hyperbolic defect presents as a biaxiality shell.  

To sum up, three defects were found in the new structure, one heterochiral hyperbolic defect containing a planar polar 
structure and two homochiral radial defects. The hyperbolic defect is formed when the two homochiral radial defects 
coupled. The homochiral radial defects on the top and bottom halves have different chiralities. For any half of the new 
defect, it is shown a radial defect in our numerical simulation; however, it is unstable in the experiment [19].  

3.2 Relationship between new structure and elastic anisotropy 

3.2.1 Effect of elastic anisotropy on spontaneous distortion 

Figure 3 shows the relationship between elastic anisotropy and spontaneous distortion by twist angle. The layered 
structure remains the same until approximately L2/L1≈7. When L2/L1<7, the layered structure disappears. When the elastic 
anisotropy L2/L1 is reduced, the distance between the two radial defects and the z-axis is shortens, whereas the part with 
α=0 compresses to the center plane layer.  
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Fig 3: Variation of twist angle when L2/L1 is 24 (a), 18 (b), 12 (c), 7 (d), and 6.5 (e), respectively. 

3.2.2 Influence of elastic anisotropy on new structure 

Figures 4 and 5 show the director field profile and the calculated biaxiality β
2
 in a cross-section along an arbitrary azimuth 

for different values of L2/L1. When the elastic anisotropy is reduced, the distance between two radial defects (see the blue 
dot–dash lines in Figure 4) initially thickens and then thins, whereas the PR structure keeps thinning. When L2/L1<7, a 
structure transition happens with a +1/2 defect below the central plane layer. Figure 5 shows that the two radial defects 
move toward the symmetry axis z and the hyperbolic defect shrinks as the elastic anisotropy is reduced. When L2/L1<7, 

the hyperbolic defect is annihilated by merging with the radial defect of the upper half, leaving only the lower half of the 
homochiral defect ring. Hence, the new defect structure can exist in systems with L2/L1≥7. 
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Fig 4: Variation of director fields with reducing elastic anisotropy. 
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Fig 5: Variation of biaxiality β
2
 with reducing elastic anisotropy. 

3.3 Effect of free boundary on new structure 

In our simulation, free boundary conditions are prescribed at the upper and lower lateral walls. The next discussion is the 
impact of the boundary conditions on new defects. The length of z is extended on both sides, and the extended length is 

H=12000. Figure 6 shows the structure of the system with H=12000 and L2/L1=18. 
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Fig 6: New structure when H=12000. (a) Director-field, (b) Twist angle α, (c) Biaxiality β
2
. 

In the progress of our simulation, the z-axis is discretized into 484 small intervals, and the ρ-axis is discretized into 
121 small intervals, indicating that the size of each interval remains the same. Comparison of Figures 3(b), 4(b), 5(b) and 
Figures 6(c), 6(a), 6(b) shows no change in the size of the blue dashed frame and the spontaneous distortion. The defect 
position and its shape remain almost unchanged, indicating that the free boundary exerts no influence on the basic 
structure.    

3.4. Energy of new structure 

We calculate the energy of radial defect, hyperbolic defect, TER structure, and the new defect. As shown in Figure 7, with 
the increase of the elastic anisotropic, the energy of four kinds of structures increases. Moreover, the energy of TER is 
higher than that of the hyperbolic defect and lower than that of the radial defect. The results coincide well with that given 
by Frank theory in [19]. And this maybe the reason why the structure of radial defect changed and created a new structure 
while the hyperbolic one did not. In addition, the energy of the new structure is lower than that of the radial defect when 
L2/L1≥10 and higher than it when L2/L1<10; and it is higher than the energy of TER and hyperbolic structures with all 
values of L2/L1. It is given in [19] that radial defects and hyperbolic defects are metastable in the experiment, so we 
speculated that the new defect is also metastable, and its stability needs to be verified in experiment. 

8 10 12 14 16 18 20 22 24 26 28 30

-1.15E-015

-1.10E-015

-1.05E-015

-1.00E-015

-9.50E-016

-9.00E-016

-8.50E-016

-8.00E-016

-7.50E-016

e
n

e
rg

y
/J

L
2
/L

1

 hyperbolic

 radial

 new structure

  TER

 

Fig 7: The energy of four configurations. 
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4. CONCLUSION 

When the elastic anisotropy is large enough, a new structure is resulted from the convergence of two opposite escape 
directions of the heterochiral TER configurations. Three defects can be found in the new structure: one heterochiral 
hyperbolic defect containing a PR structure and two homochiral radial defects. The most interesting feature in the new 
structure is the hyperbolic defect that formed when the two homochiral radial defects coupled. Moreover, the homochiral 
radial defects on the top and bottom halves have different chiralities. In fact, each side of the new defect is unstable in the 
experiment. The new defect disappears when L2/L1<7. The effects of spontaneous distortion and boundary conditions 
were also studied. Spontaneous distortion is a prerequisite for the stability of new defects, whereas free boundary exerts 
no effect on it.  

In our Landau theory, L2/L1=7 corresponds to K11:K22:K33=1:0.22:1 in frank elastic theory. This larger elastic 
anisotropy is difficult for the thermotropic LC to achieve, which is more researched in capillary experiment than the LCLC. 
The stability of the new structure needs to be further explored in future experiments, with our work providing theoretical 
guidance for experiment. 
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