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Abstract 

 This work touches two important cases for the motion of a pendulum called Sub and Ultra-harmonic cases. The 
small parameter method is used to obtain the approximate analytic periodic solutions of the equation of motion when the 
pivot point of the pendulum moves in an elliptic path. Moreover, the fourth order Runge-Kutta method is used to 
investigate the numerical solutions of the considered model. The comparison between both the analytical solution and the 
numerical ones shows high consistency between them.  
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1  Introduction 

 The motion of a pendulum whether it has a rigid arm or elastic one has shed the interest of many researchers 
during the last century. The study of this motion has been widely spread in the last three decades due to its great 
applications in different fields like, clinical studies [1-2], physics [3-4], military [5] and engineering applications [6]. 

Numerous perturbation methods [7] were used to obtain the solutions of such models. The approximate analytical 
solution of a pendulum with rigid arm was investigated in [8] using the small parameter methods, while the small 
oscillations besides rotational motions of a parametric pendulum under a vertical harmonic force are studied in [9]. On the 
other hand, the harmonic balance method was used in [10] to utilize the solution of an excited spring pendulum. This 
motion was studied in [11] when the pivot point of a spring pendulum moves in a circular path using the multiple scales 
(MS) technique. The chaotic responses of agitated spring pendulum are studied. The attained solutions are obtained up to 
the third order of approximations. The Sub-harmonic and homoclinic bifurcations in a parametrically forced pendulum 
system using Melnikov [12] and averaging methods [7] are achieved in [13]. 

Many researchers have investigated the chaotic motion of multi-DOF for the nonlinear dynamical systems from 
the point of view of the resonance conditions. For example, the resonances for the Sub-harmonic case of 2DOF dynamical 
system in the presence of 3:1 internal resonance have been studied in [14]. Another system was investigated in [14] in the 
presence of 1:2 internal resonances. Moreover, in the presence of 1:3 internal resonances a dynamical system with cubic 
nonlinearity was treated in [16]. On the other hand, the parametrically excited spring [17], quadratic nonlinear oscillators 
[18], and also nonlinear behavior of spring pendulum [19] have been investigated. Some of the perturbation methods like 
MS technique in [20], averaging method in [21] and harmonic balance method [22] were used to study the dynamical 
motion of a spring pendulum. 

The main aim of this paper is to obtain the approximate periodic solutions for two different cases of nonlinear 

oscillations. It is worthwhile to mention that every case of oscillations depends on the value of the angular velocity  , 
whether it is an integer or not. For each case, the method of small parameter is used to construct the required 
approximate periodic solutions. On the other hand, the fourth order Runge-Kutta method is used to achieve the numerical 
solutions of the equation of motion to assert the accuracy of the analytical method. The comparison between the analytical 
and the numerical solution reveals a good agreement between them.  

2  Description of the problem 

 Let us consider the motion of a particle of unit mass attached to one end of a massless rod of length  , while 

the other end of the rod is attached to a point moves on an elliptic path with a constant angular velocity  . Applying 

Lagrange’s equation of motion, the governing equation of motion takes the form [8] 
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where   is a small parameter,   is the ratio between a  and b  while a  and b  are the major and minor axes 

of the ellipse, e  is the eccentricity of the ellipse, n  is the natural angular velocity, g  is the magnitude of gravitational 

acceleration,   is the time dimensionless quantity,   is the angle between the arm of the pendulum and the vertical axis 
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and represents the generalized coordinate. 

In order to simulate the dynamic behavior of the considered model for the resonance case, we assume that   is 

either differs from an integer n  "sub-harmonic case" or equal n  "ultra-harmonic case".  

3  The Sub-Harmonic Solution 
2

1
=n  

 In this section we consider one of the important cases for the pendulum motion called sub-harmonic case. To 

deal with this case, we shall assume the mistuning )( 22 n  is of the order of smallness of  [23], that is;  

 ,= 22  n  (2) 

 where   is a finite magnitude. 

Our concern will be confined to obtain the solution if )
2

1
=(n  which is the commonest practical. Substituting 

from (2) into (1) with )
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In order to obtain a uniformly valid expansion for all times of the solution of (3), we assume that there exist a 

uniformly valid asymptotic representation of );(   in the form  
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 Substituting from (4) into (3) and equating coefficients of like powers of   in both sides, we obtain 
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It should be noticed that equations (5)-(9) can be solved successively in addition to the secular terms are 

eliminated when 
2


  . Consequently, we have  
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 Substituting from (10)-(13) into (4), to yield  
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It is remarked that, the above approximate periodic solution (15) describes the behavior of the pendulum motion 

according to the series (4) and is given as a function of mm ;sin   is a positive integer. It clear that, the series of mtsin  

is so rapidly convergent that is; one can determine only some few terms as in (15) which tell the convergence appear 
obviously.  

4  Simulation of the results 

 This section is devoted to discuss the analytical and the numerical results for the max value of the attained 
solution   for the considered problem for both the analytical results and the numerical ones. It is worthwhile to mentioned 

that the numerical results are obtained using the fourth order Runge-Kutta method [6]. Now, let us consider the maximum 
value of both the analytical and the numerical solutions included in tables 1,2,3 and 4 through the following cases.  

Case 1: 0.008)=0.05,=(   

Table (1): Data for case when 0.008)=0.05,=(    

     max  analytical   max  numerical  

0.0  1.323055   1.32306  

0.2   1.323435   1.32344 

0.4   1.323835   1.323841  

0.6   1.324258   1.324263  

0.8   1.324702   1.324706  

1.0  1.325168   1.325171  
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Figure  1: Illustrates the variation of )(rad  via )(st  when 0.008=0.05,=  . 

   

       

  Figure  2: Illustrates the variation of )(rad  via )(st  when 0.08=0.05,=  . 
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Case 2: 0.08)=0.05,=(   

Table (2): Data for case when 0.08)=0.05,=(   

     max  analytical   max  numerical  

0.0  1.31676   1.316762  

0.2   1.317136   1.317141 

0.4   1.317535   1.317538  

0.6   1.317955   1.317957  

0.8   1.318396   1.318398  

1.0  1.318858   1.318859  

 

Case 3: 0.008)=0.25,=(    

Table (3): Data for case when 0.008)=0.25,=(    

     max  analytical   max  numerical  

0.0  1.1266184   1.277605  

0.2   1.268173   1.280105 

0.4   1.270702   1.28331  

0.6   1.273774   1.2867  

0.8   1.277392   1.2902  

1.0  1.281557   1.293748  

 

   

Figure  3: Illustrates the variation of )(rad  via )(st  when 0=0.008,=0.25,=   and 1= . 
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Figure  4: Illustrates the variation of )(rad  via )(st  when 0=0.08,=0.25,=   and 1=  

  Case 4: 0.08)=0.25,=(   

 Table (4): Data for case when 0.08)=0.25,=(    

     max  analytical   max  numerical  

0.0  1.239246    1.248933   

0.2   1.241167    1.251498 

0.4   1.243599    1.254612   

0.6   1.246541   1.257907   

0.8   1.249998    1.261305   

1.0  1.253972    1.264734   

 

 The previous tables 1-4 describe the variation of   from zero to one with step 0.2 . It is clear that the amplitude 

of the wave increases slowly when   increases. Moreover when   and   increase, the amplitude of the waves 

decreases due to that   is a small parameter. 

Figures 1 and 2 represent the analytical and numerical solutions when 0.05=  and   takes its value from 0  

to 1  for different values of 0.008=  and 0.08=  respectively, while Figures 3 and 4 are calculated when 
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0.008=0.25,=   and 0.08=0.25,=   respectively for different values of 0=  and 1= . 

An inspection of these figure we can conclude that the number of oscillations remains unchanged when   

increases as seen from Figures 1 and 2. On the other side the amplitude of the waves increases to some extent when   

increases see Figures 3 and 4. 

The comparison between the analytical and the numerical solutions in each figure shows that, the deviation 
between them is very slightly and can be neglected, that is; the numerical solutions are in quite agreement with the 
analytical ones.  

5  The Ultra-Harmonic Solution 2=n  

 The aim of this section is to study the ultra-harmonic case of oscillations of the considered model. For this 

purpose we consider 2=n . The substitution from (2) into (1) yields  
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As in the previous section, we seek the solution of (16) as in the form of series (4). Substituting from (4) into (16), 
then equating coefficients of like powers of   in both sides, we obtain  
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 These equations can be solved successively, to obtain  
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 Substituting from (22)-(25) into (4), we get  
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 This equation represents the desired solution for the ultra-harmonic case and is given as a function of   and 

1,2,3,...=;sin mm . It is remarked that it is similar to that one of the sub-harmonic case. 

Discussion of the results 

 As before, we investigate here the comparison between the analytical and numerical solutions for some cases of 
different parameters of the considered dynamical system. So, we consider the maximum value of the attained solution  . 
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Case 5: 0.2)=0,=(   

  Table (5): Data for case when 0.2)=0,=(    

     max  analytical   max  numerical  

0.08   0.3328299   0.3328683  

0.12   0.3337218   0.3337601 

0.16   0.3346186   0.3346566  

0.20   0.3355202   0.335558  

 

 Case 6: 0.2)=0.6,=(   

Table (6): Data for case when 0.2)=0.6,=(    

      max  analytical   max  numerical  

0.08   2.084974   2.084319  

0.12   1.324771   1.324566 

0.16   1.007065   1.0069532 

0.20   0.8344201   0.8343426  

 

 

Figure  5: Describes the variation of )(rad  via )(st  when 0.08=0.2,=   and 0= . 
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Figure  6: Describes the variation of )(rad  via )(st  when 0.2=0.6,=0.2,=   and 0.08=  

 Case 7: 0.2)=1,=(   

Table (7): Data for case when 0.2)=1,=(    

      max  analytical   max  numerical  

0.08   2.382134   2.720321  

0.12   1.859742   1.860713 

0.16   1.428068   1.428307  

0.20   1.175988   1.176041  

 

Tables (5), (6) and (7) represent the values of max  for both the analytical and the numerical results. It is quite 

clear from table (5) that, the amplitude of the wave increases slowly when the constant   increases and 0= , On the 

other hand it decreases when   and   increases, as seen from the considered date in tables (6) and (7). 

Figures 5,6 and 7 illustrate the analytical solutions and the corresponding numerical one for the different values 

of the physical parameters of the considered model. It is not difficult to conclude that, when   changes from 0.08  to 

0.2 , the solutions fluctuate between increasing and decreasing to produce periodic waves as seen from Figures 6 and 7. 

It is clear that the amplitude of the waves decreases and the number of oscillations remains unchanged.  
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Figure  7: Describes the behavior of the solution )(rad  versus )(st  when 0.2=1,=0.2,=   and 

0.08= . 

   

Figure  8: Describes the behavior of the solution )(rad  versus )(st  when 

0.2=0.6,=0.05,=   and 0.08= . 
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Figure  9: Describes the behavior of the solution )(rad  against )(st  when 0.2=0.6,=0.15,=   

and 0.08= . 

   

Figure  10: Describes the behavior of the solution )(rad  against )(st  when 

0.2=0.6,=0.25,=   and 0.08= . 
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Case 8: 0.6)=0.05,=(   

Table (8): Data for case when 0.6)=0.05,=(    

      max  analytical   max  numerical  

0.08   1.617575   1.617424  

0.12   1.132432   1.132333 

0.16   0.9012577   0.9011834  

0.20   0.7661203   0.7660601 

 

Case 9: 0.6)=0.15,=(   

Table (9): Data for case when 0.6)=0.15,=(    

      max  analytical   max  numerical  

0.08   1.914201   1.913874  

0.12   1.1256532   1.256394 

0.16   0.9701444   0.9700551  

0.20   0.8108487   0.8107807 

 

Case 10: 0.6)=0.25,=(   

Table (10): Data for case when 0.6)=0.25,=(    

      max  analytical   max  numerical  

0.08   2.27129   2.269989  

0.12   1.397191   1.396857 

0.16   1.045635   1.045484  

0.20   0.8587878   0.8586939 

 

 Tables (8), (9) and (10) give the values of max  for both the analytical and the numerical results 

when   takes the values 0.05,0.25  and 0.25  respectively. For these cases, we notice that, when   

increases the amplitude of the wave decreases to some extent value. For the same values of  , the 

amplitude of the wave increases when   increases. 

Figure 8 is plotted when 0.6=0.05,=   at the different values of   from 0.08  to 0.2 . The 

amplitude of the waves decreases when   increases. On the other hand the number of oscillations remains 

unchanged which indicate the stability of the attained solutions. For different values of 0.250.05,0.15,=  

and with the stationary value of  , Figures 8, 9 and 10 for analytical and numerical solutions are plotted. It is 

evident that when   increases the amplitude of the waves increases. 

An inspection of the previous Figures (1-10) confirm that the analytical results coincide with the 
solutions obtained by solving the equation of motion (1) numerically, which assert accuracy of the achieved 
analytical solution. 

6  Conclusion 

 In this paper, we have considered the motion of supported point of a pendulum model with rigid arm on elliptic 
path. The small parameter method is used to obtain the analytical solutions for two important cases namely; the sub-
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harmonic case and the ultra-harmonic ones. The attained approximate solutions are obtained in terms of periodic 

functions 1,2,3,...=);(sin mm  On other hand the numerical solutions for both two cases are achieved using the 

fourth order Runge-Kutta method. The comparison between the analytical and the numerical results shows high 
consistency between them. 
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