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Abstract   
The stability analysis of a geometrically thin, gas-pressure dominated accretion disk around a neutron star is presented. In 
purely radial perturbation case, thin disk is stable to thermal modes. The stability is analyzed at a small temperature, that 
is temperature approaching zero and at definite temperature. The contribution of both fully and partially degenerate 
electrons pressure for the stability of the disk in its outer region is investigated. We have found that the disk is stable in this 
region, where the gas pressure is more dominant than radiation pressure.  
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Introduction 

An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a central 
body. The central body is typically a younger star, a protostar, a white dwarf, a neutron star, or a black hole. The accretion 
disk is likely to be formed when the compact star is a member of a close binary system and matter transformed from a 
giant- type star on to its compact companion at high angular momentum. Following the pioneering works by Pringle and 
Rees (1972) [1], Shakura and Sunyaev (1973) [2], and Novikov and Thorne (1973) [3], a number of theoretical studies on 
the accretion disk has been made to account for observation of the X-ray sources. The importance of accretion is further 
manifested by the realization that probably a majority of all stars are members of binary systems which, at some stage of 
their evolution, undergo mass transfer. The study of interacting binary systems has revealed the importance of angular 
momentum in accretion. In many cases the transferred material cannot land on the accreting star until it has rid itself of 
most of its angular momentum. This leads to the formation of accretion disks, which turn out to be efficient machines for 
extracting gravitational potential energy and converting it in to radiation. There are two main reasons why many binaries 
transfer matter at some stage of their evolutionary life times [4]: 

1. one of the stars in a binary separation shrinks, to the point where the gravitational pull of the companion can remove the 
outer layers of its envelope (Roche lobe overow); 

2. one of the stars may, at some evolutionary phase, eject much of its mass in the form of a stellar wind, some of this 
material will be captured gravitationally by the companion (stellar wind accretion). 

The stability of geometrically thin accretion disk has been studied extensively and it has been found that the disk is 
thermally and viscously unstable if it is optically thick and radiation pressure dominated (Pringle, Rees and Pacholczyk, 
1973; Lightman and Eardley, 1976) [5]. There is also a possible mode of pulsational over stability. In this case, one looks 
for instability in which oscillation on the orbital time scale grow in amplitude because of the effects of viscosity (Lin and 
Paploizou, 1996) [6]. Kato (1978) [7] considered the evolution of all three components of the fluid velocity. He found that 
the disk exits pulsation instability besides the viscous instability and thermal instability. Chan and Tamm (1995) [8] pointed 
out the galactic black hole candidates may be due to pulsational overstability. Some early analysis about the stability of 
gas pressure dominated disc have incoperated azimuthal perturbation (livo and shaviv 1977, 1981; van horn; wesemal, 
and wingert 1980) [9]. However, the radial perturbation was neglected in all those studies. Mckee (1991) [10] has 
investigated the contribution of gas pressure to the stability of a standard disk. He found that the disk is stable when β ≤ 
0.6 (where β is the ratio of radiation pressure to total pressure). This implies gas pressure dominated disk is more stable. 

Electron Degeneracy Pressure 

In order to estimate the electron pressure, we have to take account of the Pauli Exclusion Principle, which postulates that 
no two electrons can occupy the same quantum state, that is, have the same momentum and the same spin. Since an 
electron can have two spin states (up and down), this means that each element of phase space (location and momentum 
space) can be occupied by two electrons at most. The pressure generated by electrons that are forced in to higher 
momentum states as their density increases is called electron degeneracy pressure [11]. A state of complete degeneracy 
is obtained when all the available momentum states are occupied up to a maximum momentum value. Such an ideal 
situation can only be achieved at absolute zero temperature. 

The force provided by this pressure sets a limit on the extent to which matter can be squeezed together without it 
collapsing into a neutron star. 

The density of electrons is described by Fermi-Dirac statistics since an electron has half- integral spin. For an electron with 
momentum p the density in the range (dp) can be described by [12]. 

                        ne p dp =
8π

h3 p2dp  exp α +
E

KB Tc
 + 1 

−1
...................................................... (1) 

From Pauli Exclusion Principle, two identical electrons can't occupy the same state, that is 

                                  P p dp =  exp  α +
E

KB Tc
 + 1 

−1
……………………………………… (2) 

which cannot be greater than 1. 

Non-relativistic Complete Degeneracy 

We consider a simple case, where T approaches to zero. When the density is high enough, all the electron states with 
energy less than a maximum energy are filled. Applying the Heisenberg and Pauli principle to a completely degenerate 
isotropic electron gas yields the momentum distribution; the number of electrons with momenta in the interval of (p, p +
dp) per unit volume: 

                                                    ne p =
2

∆V
=

2

h3 4πp2dp……………………………………. (3) 

Where po  is the maximum momentum and p ≤ po . The maximal momentum po  can be obtained by integration of ne(𝑝): 

                                                                     po =  
3h3ne

8π
 

1

3
…………………………………….. (4) 

Using the pressure integral for the electron degenerate pressure: 
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                                                                  P =
1

3
 vpne p dp

po

0
………………………………. (5) 

where is 𝑃 Pressure, 𝑣 particles velocity and 𝑝 is the momentum. 

The electron degenerate pressure becomes 

                                                                      Pe =
8π

15m h3po
5
 …………………………………… (6) 

                                        Pe =
h2

20m mp
5

3 
 

3

π
 

2
3 
 
ρc

μe
 

5
3 

= 9.77 × 106  
ρc

μe
 

5
3 
………………… (7) 

where 𝑚 is mass of electron,  μe  is the ratio of electron number to proton number and ρc  is central density of accretion 

disk. 

For the radial structure of the accretion disk and first assuming that the equation of state of an ideal gas: 

                                                                   Pg =
ρcK B Tc

mp μ
 ……..…………………………………. (8) 

Where Tc  is the central temperature, 𝜇 is the mean molecular weight, and mp  is the mass of proton. 

The equation of accretion disk pressure with the effect of electron degenerate pressure can be written using equations (7) 
and (8) as 

                                                P =
ρc K B Tc

mp μ
+ 9.77 × 106  

ρc

μe
 

5
3 
………………………………. (9) 

For an axisymmetric magnetized disk around a neutron star having a dipole moment aligned with its rotation axis in steady 
state, the half-thickness of the accretion disk can be calculated as: 

                               H =  GM 
−1

2  
ρcK B Tc

mp μ
+ 9.77 × 106  

ρc
2

μe
5 

1
3 

 

1
2 

r
3

2  …………………. (10) 

where 𝑟 radius of accretion disc. 

Temperature in the Outer Region of the Disk 

The central temperature in the outer part of the accretion disk can be calculated using a formula: 

Tc =  2.7 × 107K  N + 1 −
1

20 I 
−1

5  αSS
−1

5  2μ 
1

4  
3rg

ro
 

3
4 

 

                                    ×  
M

M⊙
 
−1

2 

 M 
14 

3
10 

 
r

ro
 
−3

10 
f

3
10  ……………………………….. (11) 

Moreover,     I =
 2N N! 

2

 2N+1 !
 ,   I =

3

2
I(N + 1) ,   rg =

2GM

C2
 ,   f = 1 −  

ro

r
 

1
2 
  

In which c is the speed of light,  ro = rA   is Alfvens radius and N = 3, for electron scattering. 

Constants Values 

αss  0.01 

μ 0.62 

M
M⊙

  1.4 

 ro = rA  1 × 106m 

μe  1 

M⊙ 1.99 × 1030kg 

KB  1.38 × 10−23m2kgs−2k−1 

h 6.63 × 10−34m2kgs−1 

me  9.11 × 10−31kg 

mp = mH  1.63 × 10−23kg 

Table: Some basic constants with their corresponding values. 

Substituting all the constants and writing the absolute central temperature in terms of the radius of the accretion disk, 𝑟 

gives: 
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                                Tc = 5.57 × 108.45r
−9

10  r
1

2 − 103 
3

10 
K…………………………… (12) 

The more simplified central density as a function of radius, r in the outer region of the accretion disk where gas-pressure is 
dominant is given by the equation 

      ρc =  5.3 
 N+1 

−17
40 

I 
7

10 
α

−7
10  2μ 

9
8  

3rg

ro
 

15
8 
 

                                                  ×   
M

M⊙
 
−5

4 

 M 
14 

11
20 

 
r

ro
 
−15

8 
f

11
20  …………………… (13) 

This is simplified to be 

                        ρc = 7.21 × 108.7r
−43

20  r
1

2 − 103 
11

20 
kg/m3…………………………. (14) 

Stability of the Accretion Disk 

Suppose we start the disk in stationary state at the mean accretion rate. If this state is perturbed by small temperature 

increase, 𝛼 goes up, and by the increased viscous stress the mass flux M  increase. This increases the disk temperature 

further, resulting in a runaway to a hot state. Since M  is larger than the average, the disk empties partly, reducing the 

surface density and the central temperature. A cooling front then transforms the disk to a cool state with an accretion rate 
below the mean. The disk in this model switches back and forth between hot and cool states.  

The contribution of electron degenerate pressure to the stability of accretion disk in the outer region of the disk is 
calculated from stability relation [19] 

                                                                      β =
Pg

Pg +Pe
 ………………………………………. (15) 

where  Pg  is gas pressure and  Pe  is electron degenerate pressure. 

For gas-pressure dominated regions the disk is stable if 

                                                                           β <
3

5
 …………………………….…………. (16) 

Where β  = 1−𝛽 

Stability in the Outer Region 

The stability of accretion disk in the outer region due to electron degeneracy and gas pressure is 

                                                                           β <
2

5
 ………………….…………………… (17) 

The gas pressure in the region is given by 

                                  Pg = 5.34 × 1022.15r−3.05  r
1

2 − 103 
17

20 
………………………….. (18) 

The Complete electron degenerate pressure is given by 

                                Pe = 2.63 × 1022.5r−3.58  r
1

2 − 103 
11

12 
…………………………….. (19) 

The Partial electron degenerate pressure is given by 

                              Pe = 3.29 × 103.95r−3.05  r
1

2 − 103 
1

20 
……………………………….. (20) 

Substituting equations (18) and (19) in to equation (17) helps to get the radius of accretion disk. That is 

   3.2 × 1022.15r−3.05  r
1

2 − 103 
17

20 
− 1.05 × 1022.5r−3.58  r

1
2 − 103 

11
12 

< 0 …….. (21) 

If the accretion disk is stable, then its radius in the outer region is approximately between 5.33 × 107m  and 1 × 108m . 
Calculating the value of 𝑟 from equation (21) yields 

                                          5.33 × 107m ≤ r ≤ 1 × 108m ………………………………….. (22) 

Similarly, substituting equations (18) and (20) in to equation (17) and find the value of 𝑟, we see similar relation as 

equation (22). 

The following figure shows that as a radius of an accretion disk around a neutron star increases both complete and partial 
electron degenerate pressure increases in the outer part of the accretion disk. 

Moreover, as the radius of the accretion disk increases, partial electron degenerate pressure increases more than the 
complete electron degenerate pressure. 
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Conclusion 

Investigating the contribution of both fully and partially degenerate electrons pressure for the stability of thin keplerian 
accretion disks around a neutron star in its outer region where both the gas and electron degenerate pressure are 
dominant, we have found that the disk is stable. Therefore, the disk is stable in the outer region though the electron 

degenerate pressure contributes to the total pressure. 
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