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Abstract

In this article, we apply the extended tanh-function method to find the exact traveling wave solutions of the nonlinear
Biswas-Milovic equation (BME), which describes the propagation of solitons through optical fibers for trans-continental and
trans-oceanic distances. This equation is a generalized version of the nonlinear Schrédinger equation with dual-power law
nonlinearity. With the aid of computer algebraic system Maple, both constant and time-dependent coefficients of BME are
discussed. Comparison between our new results and the well-known results is given. The given method in this article is
straightforward, concise and can be applied to other nonlinear partial differential equations (PDEs) in mathematical
physics.
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1. Introduction

The investigation of exact traveling wave solutions to nonlinear PDEs plays an important role in the study of nonlinear
physical phenomena. Nonlinear wave phenomena appears in various scientific and engineering fields, such as fluid
mechanics, plasma physics, optical fibers, biology, solid state physics, chemical kinematics, chemical physics and
geochemistry. Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and convection are very important
in nonlinear wave equations. In recent decades, many effective methods have been established to obtain exact solutions
of nonlinear PDEs, such as the inverse scattering transform [1], the Hirota method [2], the truncated Painlevé expansion
method [3], the Backlund transform method [1,4,5], the exp-function method [6-8], the simplest equation method [9,10], the
Weierstrass elliptic function method [11], the Jacobi elliptic function method [12-16], the tanh-function method [17-21],

sine-cosine method [22-24], the (%)-expansion method [25-30], the modified simple equation method [31-36], the

Kudryashov method [37-39],the multiple exp-function algorithm method [40,41], the transformed rational function method
[42], the Frobenius decomposition technique [43], the local fractional variation iteration method [44], the local fractional

series expansion method [45], the (% , Gi)-expansion method [46-51] and so on.

The objective of this article is to use the extended tanh-function method to construct the exact traveling wave solutions of
the Biswas-Milovic equation (BME) with dual-power law nonlinearity [52] in the following two forms:

0] The (1+1)-dimensional Biswas-Milovic equation (BME) with constant coefficients
- m m 2n 4n m
i(a") +a(a"), +b(laf" +kla[")a" =0, m,n=1 L1

where ( =(Q (X 't ) is a complex function, the variable X is interpreted as the normalized propagation distance, t -
retarded time, @ is the coefficient of group-velocity dispersion (GVD) and b, k are the coefficients of the nonlinear

terms, such that @, b, K are all constants.

(i) The (1+1)-dimensional Biswas-Milovic equation (BME) with time-dependent coefficient
i (qm )t +a(t)(qm )XX +b(t)(|q|2” +k (t)|q|4” )qm =0, m,n=>1 (1.2)

Here a(t) represents the coefficient of GVD while b (t )and k (t) are the coefficients of nonlinear terms, such that

a(t ), b (t ), k (t) are all functions of the time t .

If m =1, then Egs. (1.1) and (1.2) can be reduced to the nonlinear Schrédinger equation, with dual-power law
nonlinearity [53]. Mirzazadeh et al [52] have discussed Egs. (1.1) and (1.2) using the (%) -expansion method and found
few of the exact solutions.

This paper is organized as follows: In Sec. 2, the description of the extended tanh-function method is given. In Sec. 3, we
use the extended tanh-function method described in Sec. 2, to find exact traveling wave solutions of Egs. (1.1) and (1.2).
In Sec. 4, some conclusions are obtained.

2. Description of the extended tanh-function method

Suppose that we have the following nonlinear PDE:
F@,u,,u,,u,.u,,,..)=0, (2.1)
where F is a polynomial in U (X ,t) and its partial derivatives, in which the highest order derivatives and the nonlinear

terms are involved. In the following, we give the main steps of this method [17-21]:

Step 1. Using the wave transformation
ux,t)=u(g), &=x-A, 2.2)

where A is a constant, to reduce Eq. (2.1) to the following nonlinear ordinary differential equation ODE:
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Pu,u,u"..)=0, (2.3)

where P is a polynomial in U (&) and its total derivatives while'=d /d & .

Step 2. Assume that Eq.(2.3) has the formal solution
N - .
u(@)=a,+y [aY '(O+aY (&), (2.4)
i=1

where @,, @, , &_; are constants to be determined, such that a, # Oor a # 0, whileY (f) is given by

Y (&) =tanh(xs), (2.5)
where [ is a constants to be determined later. The independent variable (2.5) leads to the following derivatives:

d d

—=ul-Y ) —,

E w( ) v

=u-(1-Y - —+(1-Y ’ 2.6

iz~ ( ) r ( ) v (2.6)

£=y3(1—v 2l @ 2-2)-4 _ey(-y 2 : + (LY 2)? d”

d&s dy o\ dy 3 |’
And so on.

Step 3. We determine the positive integer N in (2.4) by using the homogeneous balance between the highest-order
derivative and the highest nonlinear term in Eq. (2.3). More precisely we define the degree of U(¢) as D [u(£)]=N

which gives rise to the degree of other expressions as follows:

[ d
D_@}:N +q,

(2.7)

e

q S
D up[d uj =Np+s(q+N).

Therefore, we can get the value of N in (2.4). In some nonlinear equations the balance number N is not a positive
integer. In this case, we make the following transformations [54]:

(@ When N =% where % is a fraction in the lowest terms, we let

9
u(g)=vr(%), 2.8)
then substituting (2.8) into (2.3) to get a new equation in the new function V (f) with a positive integer balance number.

(b) When N is a negative number, we let

u(€)=v" (&), (2.9)

and substituting (2.9) into (2.3) to get a new equation in the new function V (g) with a positive integer balance number.

Step 4. We substitute (2.4) along with Eq. (2.6) into Eq. (2.3), collect all the terms with the same powers of Y (f) and set

them to zero, we obtain a system of algebraic equations, which can be solved by Maple to get the values of d,,d;,d_;

and A . Consequently, we obtain the exact traveling wave solutions of Eq. (2.1).
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3. Applications

In this section, we will apply the method described in Sec. 2 to find the exact traveling wave solutions of Biswas-Milovic
equation with dual-power law nonlinearity Egs. (1.1) and (1.2).

3.1. Exact traveling wave solutions of Eq. (1.1)

In this subsection, we consider the exact traveling wave solutions of Biswas-Milovic equation (1.1) with constant
coefficients. To this end, we assume that the solution of Eq. (1.1) can be written as:

q(x’t):u(f)ei(—klwrapr&), §:X —ﬂ,t, 3.1)

where U (&) is a real function of & while kl, ®, @ and A represent the frequency, wave number, phase constant and

the speed of the wave respectively. Substituting (3.1) into Eq. (1.1) and separating the real and imaginary parts, we obtain
A =-2mak,, (3.2)
and the following nonlinear ODE:
a(u™)—(me+am?k,?ju™ +bu®"" +bku ™" =0, 3.3)

1
By balancing between (u " )" with U*™™ in (3.3) we get MN +2=N (4n +m ) =N = T According to step
n

3, we use the transformation

u(g) =v (&), (3.4)

where V (5) is a new function of & . Substituting (3.4) into (3.3), we get the new ODE
2namvy "+am(m —2n)[ ')* —4n’m (@-+amk,’ v * +4n’bv > +4nbkv * = 0. 3.5)

Balancing WV " with V * in 3.5) we get N +N +2=4N = N =1. Consequently, Eq. (3.5) has the formal solution:
X1

V() =a,+ay (5)+ay (%), (3.6)

where @,, @, and @_; are constants to be determined later satisfying af —|-a.721 #0.

Now, substituting (3.6) along with Egs. (2.5) and (2.6) into (3.5), collecting the coefficients of powers of Y (f) and setting

them to zero, we obtain the following system of algebraic equations:

Y* o anPu®a; + 2amnu?a + Abkr*at = 0,

Y8 4brPa + 16bkiP apd + 4amnu?aar = 0,

Y2 . —damP P& ki — 2anPu?a; — 2aa nPula, — dommP & + 8aa_y mnu’ a
+24bk? a3a% + 12brP apa; + 16bka_1 P a; = 0,

Y. -8anP P ava ki — 8wmi? ayay — 4amnu®aoca, + 16bki? a3a, + 12 a3 a,
+48bka_ P apa + 12ba_1Pa = 0,

YO . damPriPa3ki —8anfrtaikea, + amPu’a + danmfulaia g + amfu’a?, — 4ommr as
—8wmmPaia 1 — 2amnu? a2 — 16amnu®a;a , — 2amnu® 2%, + Abki? a, + A4brP a3
+48bkP a3ara 1 + 24brP avara, + 24bkP @ a*, = 0,
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Y1 8anPrPackia, — 8omiPapa-, — damnu?apa-, + 16bkP a3a, + 12brP a%a,
+48bkay P apa®, + 12bayPa*, = 0,

Y2 . —danmP P ke a?, — 2anPul &, — 2aa nfu’ay — 4om? @, + 8aaymnu?a
+24bki? &%, + 12bP ay &2, + 16bkay i’ &, = 0,

Y3 4brP @, + 16bkiP aa, + damnu?asa-y = 0,

Y4 AbkP &, + anPula?, + 2amnu?a?, = 0.

On solving the above algebraic equations with the aid of Maple 14, we have the following results:
Case 1. We have

2n+m 2n+m bn?(2n +m)
a'OZ_—7 alzi—’ 712 y = ——2,
4k (n+m) 4k (n+m) damk (n +m) 67
w=— a_mk12+b(2n—+m)2 )
4k (n+m)

Form (3.1), (3.2), (3.4), (3.6) and (3.7), we deduce the exact traveling wave solutions of Eq. (1.1) as follows:

| 2n+m _ _bn*(2n +m)
qx,t)= —4k(n+m) 1itanh[\/ by +2makl)J

_18
2n

4amk (n +m) 3.8)

i [—klx —{amkf+4bk(2n+m ) ]t +a]
x@ (n+m)

Where K <0 and ab >0.

Figl: The plot of the |q (X ,t)| of 3.8)when N =1m =2b =2k =-lLa=1k, =1.

Case 2. We have
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2n+m 2n+m _J_ bn?(2n +m)

= ’ =Y, 8.7 = ’ - !
k(n+m) & YT gk (nemy T\ damk (n+m)? -
w=— amklz_}_b(zn—-’_m)2 .
4k (n+m)
In this case, we deduce the exact traveling wave solutions of Eq. (1.1) as follows:
. &
g(x,t)= __an+m 1+ coth —M(x +2mak,)
4k (n+m) 4amk (n +m)
(3.10)
i| —kx | amk12+l)(2n7+m)2 t+60
i mey)
Where K <0 and ab >0.
Case 3. We have
___2n+m ___2n+4m Nk g 2n+m
aknam) 2T Bkmam) T sk(nem)’
(3.11)
2
y= |- bn (2n+m)2’w:_ amk 2 + b(2n+m)2 .
16amk (n +m) 4k (n+m)
In this case, we deduce the exact traveling wave solutions of Eq. (1.1) as follows:
2
g(x,t)= Lk 1+1 tanh| |- g (2n+m)2(x +2mak,)
4k (n +m) 2 16amk (n +m)
1 (3.12)
2 > i am|<f+b(2””")2 t+0
reoth| [-2CNEM) o omak,) e( (o) ]
16amk (n +m)

Where K <0 and ab >0.

12000
10000
800(

6000 4]
4000 AT
2000

0 0

2
(]

Fig 2: The plot of the [q(X ,t)| of 3.12) when N =1, m =1b =1k =-la=1k, =1.
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3.2. Exact traveling wave solutions of Eq. (1.2)

In this subsection, we consider the exact traveling wave solutions of Biswas-Milovic equation (1.2) with variable
coefficients. To this end, we assume that the solution of Eq. (1.2) can be written as:

q(x,t) =u(g)e' O s —x A, (3.13)

where U (&) is areal function of &, A(t) is the soliton velocity, K is the wave number of the soliton, while @(t) is the

frequency of the soliton velocity. Substituting (3.13) into Eq. (1.2) and separating the real and imaginary parts, we obtain

dﬂ(t) ——+A(t)+2mk.a(t) =0, (3.14)
and
a(t)(um )"—(mt dfj)t(t) +mca(t)+m2k12a(t)Ju”‘ +b ()™ +b )k (t)u*"™ =0. (3.15)

Integrating Eq. (3.14) with respect to t with vanishing the constant of integration we get

At)=— 2mk,

(3.16)

1
By balancing between (u m )" with U*™™ in (3.15) we get MN +2=N (4n +m ) — = > According to step
n

3, we use the transformation

u(g) =va (&), (3.17)
where V (&) is a new function of £ . Substituting (3.17) into (3.15), we get the new ODE
" N2 2 do(t)
2nma(t)vv +m(m-2n)at)v )" —4n°‘m| ot) +t ——= r +mk “a(t) v
(3.18)

+4n% (V3 +4n’b )k (tV 4 =

Balancing VV " with V* in (3.18) we get N +N +2=4N =N =1. Consequently, Eq. (3.18) has the formal
solution:

V(&) =g, +ay (&)+ay (9), (3.19)
where @,, @, and a@_; are constants to be determined later satisfying af +afl #0.

Now, substituting (3.19) along with Egs. (2.5) and (2.6) into (3.18), collecting the coefficients of powers of Y (f) and

setting them to zero, we obtain the following system of algebraic equations:

Yt alhnPula + 2altymnua + A k(HPa; = 0,

Ye 4P (6@ + 16 (DK t)ap a5 + dmnu?a(t)aga; = 0,

Y2 12D aod — AmPo(t) & — 2mPu?a(t) @ — 2mPu?a(hara + 16Dkt a3 a
~4mPt20 & + 24P KOK OB — 4P P A& K + 8mma(haray = 0,

Y 12PHDaGa + 12 (D)@ ay + 16 (O k(D aia, — 8mmiPo(t)apa;

—8m/721‘“"(’) aoay + 48P (O k(avazay — 4mnu?a(t)ava, — 8nP P a(t)asa k2 = 0,
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YO D 4P (Da3 + mPuta(t)a + nPula(t) a2, — dmmPo(H)as + 4 (6 k(Hag
APl a(tara, — 8mo(Haa, — 4mP tL g + 242 (O KD &8,
—2mnula(t)a + 24 Havara-y — 4mP P a(H)ai ke — 2mnu?a(t) @, 8mn2td"’(’) a1d1
+48rP (O K(t)aiara 1 — 16mnula(aia, — 8mPrPa(Haikia; = 0,
\ 12n2b(z‘)a§a_1 + 12 tyar @2, + 16 () k(D aia1 — 8mPw(faoas
—8mn2t D ava_y + 482 k(D aoay &, — dmmula(fava-, — 8mPrRa(takias = 0,
y?2:. 12/72b(1.‘)ézoézf1 —4mrPo(Ha, - ZmZHZa(z‘)aEl —2nmPpla(t)aiay + 16 (DK(Ha @,
~AmPt20 2 + 242 MO KD By — P PaAD K&, + 8mla(hara s = 0,
Y3 4P b(D)a3, + 16 () k(D apd®, + 4mnu?a(f)apa., = 0,
Y4 mPula(t)@, + AP O k(Hat + 2mnuta(ha, = 0.

On solving the above algebraic equations with the aid of Maple 14, we have the following results:

Case 1. We have

___2n+m [y 2n +m N
ST T d Ik ® T T s mk )’

ﬂ:\/_ n2(2n+2n)b(t) ,a)(t):—}_[{mkfa(th (2n +mzb(t) }dt
d4m(n+m)a(t)k (t) t 4(n+m)°k (t)

(3.20)

Form (3.13), (3.16), (3.17), (3.19) and (3.20), we deduce the exact traveling wave solutions of Eq. (1.2) as follows:

1

B8 T nf2n+mpb() 5
q(x’t)_{ 4(n +m)k(t){1ﬂanh(\/ 4m(”+m)za(t)k(t)(x+2mklja(t)dt)m (3.21)

. 2 b(t
i [—klx —I{mkfa(t )+%}dt +€J

xXe )

Where K (t) <0 and a(t)b(t) >0.

Remark 1. Our result (3.8) for Eg. (1.1) and the result (3.21) for Eq. (1.2) have the same expressions as the results (18)
and (31) of [52] respectively. But the authors [52] have derived the result (18) if abK < 0. From their analysis and the
values of parameters of figure 1 of [52], it seems to us that the authors have chosen ab <0 and k >0. This yields the
function U (&) is complex. Therefore, the result (18) of [52] does not exist if ab <0 and kK > 0. The same discussion
is applied for the result (31) of [52].

Case 2. We have

2n+m 2n+m
-, =0, a, =,
4n+m)k (t) 4n+m)k (t)

ﬂ:\/_ n2(2n+2n)b(t) ,w(t):—lj{mkfa(tw (2n +m2b(t) }dt
Am(n+m)-a(t)k (t) t 4(n+m)°k (t)

(3.22)

In this case, we deduce the exact traveling wave solutions of Eq. (1.2) as follows:
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2n

qox,t)={-—20EM 1y coth J_ n*(2n +mb ()

4(n+m)k(t)

i (2n+m)b (¥)

i [—klx —J{mkfa(t )+7z}dt+9]
x e 4(n+m)k (t)

Where K (t) <0 and a(t)b(t) > 0.

am( rmyamk @ 220 623

Case 3. We have

2n+m 2n+m 2n+m
By = A= Ay =
(n+mk (t) 8(n+m)k (t) 8(n +m)k (t)
(3.24)
n?(2n+m)b(t) 1 ) (2n +m)b ()
A yo(t) =——[imk/a(t) + - ———— = dt
g J ﬂmﬂn+mfa¢W¢)C“) tj{mla()+4n+mfka)}
In this case, we deduce the exact traveling wave solutions of Eq. (1.2) as follows:
2n +m 1 n?(2n +m)b (t)
t)=¢————|1+=| tanh| , |- 2mk t)dt
WO d k| 2| J Tomn +myak * H2M[2OW
i
n?(2n +m)b(t) 2
thi |- 2mk, [at)dt |
o Jlﬁmm+m0%awa)“+'mijﬂ) ) (3.25)

N 2 (2n+m)b (t)
xel[ kyx I{mkla(t)+74(n+m)zk(t)}dt+6j

Where K (t) <0 and a(t)b(t) > 0.

Remark 2. Our results (3.10), (3.12) for Eq. (1.1) and the results (3.23), (3.25) for Eq. (1.2) are new and not found in [52]

or elsewhere. This shows that the extended tanh-function method is more general and effective than the (%) -expansion

method used in [52].

4. Conclusions

The extended tanh-function method is used in this article to obtain some new exact traveling wave solutions of the the
Biswas-Milovic equation with dual-power law nonlinearity, which describes the propagation of solitons through optical
fibers for trans-continental and trans-oceanic distances. From our results, we deduce that the solutions (3.8), (3.21) are
kink shaped soliton solutions, the solutions (3.10), (3.23) are singular kink shaped soliton solutions and the solutions
(3.12), (3.25) are kink-singular kink shaped soliton solutions. Note that all solutions obtained in this article are new and not
reported elsewhere which have been checked with the Maple 14 by putting them back into the original equations (1.1) and
(1.2).
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