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Abstract 

In this article, we apply the extended tanh-function method to find the exact traveling wave solutions of the nonlinear 
Biswas-Milovic equation (BME), which describes the propagation of solitons through optical fibers for trans-continental and 
trans-oceanic distances. This equation is a generalized version of the nonlinear Schrödinger equation with dual-power law 
nonlinearity. With the aid of computer algebraic system Maple, both constant and time-dependent coefficients of BME are 
discussed. Comparison between our new results and the well-known results is given. The given method in this article is 
straightforward, concise and can be applied to other nonlinear partial differential equations (PDEs) in mathematical 
physics. 
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1. Introduction 

The investigation of exact traveling wave solutions to nonlinear PDEs plays an important role in the study of nonlinear 

physical phenomena. Nonlinear wave phenomena appears in various scientific and engineering fields, such as fluid 

mechanics, plasma physics, optical fibers, biology, solid state physics, chemical kinematics, chemical physics and 

geochemistry. Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and convection are very important 

in nonlinear wave equations. In recent decades, many effective methods have been established to obtain exact solutions 

of nonlinear PDEs, such as the inverse scattering transform [1], the Hirota method [2], the truncated Painlevé expansion 

method [3], the Bäcklund transform method [1,4,5], the exp-function method [6-8], the simplest equation method [9,10], the 

Weierstrass elliptic function method [11], the Jacobi elliptic function method [12-16], the tanh-function method [17-21], 

sine-cosine method [22-24], the  'G
G

-expansion method [25-30], the modified simple equation method [31-36], the 

Kudryashov method [37-39],the multiple exp-function algorithm method [40,41], the transformed rational function method 

[42], the Frobenius decomposition technique [43], the local fractional variation iteration method [44], the local fractional 

series expansion method [45], the  ' 1,G
G G

-expansion method [46-51] and so on. 

The objective of this article is to use the extended tanh-function method to construct the exact traveling wave solutions of 

the Biswas-Milovic equation (BME) with dual-power law nonlinearity [52] in the following two forms: 

(i) The (1+1)-dimensional Biswas-Milovic equation (BME) with constant coefficients 

        2 4
0, , 1,

n nm m m

t xx
i q a q b q k q q m n                                                                               (1.1)                                                         

where  ,q q x t is a complex function, the variable x  is interpreted as the normalized propagation distance, t -

retarded time, a  is the coefficient of group-velocity dispersion (GVD) and ,  b k  are the coefficients of the nonlinear 

terms, such that , ,  a b k are all constants. 

(ii) The (1+1)-dimensional Biswas-Milovic equation (BME) with time-dependent coefficient 

             2 4
( ) ( ) ( ) 0, , 1,

n nm m m

t xx
i q a t q b t q k t q q m n                                                          (1.2)   

Here  a t  represents the coefficient of GVD while  b t and  k t  are the coefficients of nonlinear terms,  such that 

     ,  ,  a t b t k t  are all functions of the time t . 

If 1m  , then Eqs. (1.1) and (1.2) can be reduced to the nonlinear Schrödinger equation, with dual-power law 

nonlinearity [53]. Mirzazadeh et al [52] have discussed Eqs. (1.1) and (1.2) using the  'G
G

-expansion method and found 

few of the exact solutions. 

This paper is organized as follows: In Sec. 2, the description of the extended tanh-function method is given. In Sec. 3, we 

use the extended tanh-function method described in Sec. 2, to find exact traveling wave solutions of Eqs. (1.1) and (1.2). 

In Sec. 4, some conclusions are obtained. 

2. Description of the extended tanh-function method 

Suppose that we have the following nonlinear PDE: 

( , , , , ,...) 0,t x tt xxF u u u u u                                                                                                                                       (2.1)  

where F  is a polynomial in  ,u x t  and its partial derivatives, in which the highest order derivatives and the nonlinear 

terms are involved. In the following, we give the main steps of this method [17-21]: 

Step 1. Using the wave transformation  

( , ) ( ), ,u x t u x t                                                                                                                                      (2.2) 

where   is a constant, to reduce Eq. (2.1) to the following nonlinear ordinary differential equation ODE: 
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( , ', '',...) 0,P u u u                                                                                                                                                      (2.3) 

where P  is a polynomial in ( )u   and its total derivatives while ' d d . 

Step 2. Assume that Eq.(2.3) has the formal solution 

0

1

( ) ( ) ( ) ,
N

i i

i i

i

u a aY a Y  





                                                                                                                  (2.4) 

where 0 , ,i ia a a are constants to be determined, such that 0Na  or 0Na  , while ( )Y   is given by 

( ) tanh( ),Y                                                                                                                                                       (2.5) 

where   is a constants to be determined later. The independent variable (2.5) leads to the following derivatives: 

2

2 2
2 2 2

2 2

3 2 3
3 2 2 2 2 2

3 2 3

(1 ) ,

(1 ) 2 (1 ) ,

(1 ) (6 2) 6Y(1 ) (1 ) ,

d d
Y

d dY

d d d
Y Y Y

d dY dY

d d d d
Y Y Y Y

d dY dY dY










 

 
     

 

 
       

 

                                                 (2.6) 

And so on. 

Step 3. We determine the positive integer N   in (2.4) by using the homogeneous balance between the highest-order 

derivative and the highest nonlinear term in Eq. (2.3). More precisely we define the degree of ( )u   as  ( )D u N   

which gives rise to the degree of other expressions as follows: 

,

( ).

q

q

s
q

p

q

d u
D N q

d

d u
D u Np s q N

d





 
  

 

  
    

   

                                                                                                                    (2.7) 

Therefore, we can get the value of N  in (2.4). In some nonlinear equations the balance number N   is not a positive 

integer. In this case, we make the following transformations [54]: 

(a) When 
q

p
N   where 

q

p
 is a fraction in the lowest terms, we let 

( ) ( ),
q

pu v                                                                                                                                                      (2.8) 

then substituting (2.8) into (2.3) to get a new equation in the new function ( )v   with a positive integer balance number. 

(b) When N  is a negative number, we let 

( ) ( ),Nu v                                                                                                                                                        (2.9) 

and substituting (2.9) into (2.3) to get a new equation in the new function ( )v   with a positive integer balance number. 

Step 4. We substitute (2.4) along with Eq. (2.6) into Eq. (2.3), collect all the terms with the same powers of  Y   and set 

them to zero, we obtain a system of algebraic equations, which can be solved by Maple to get the values of 0a , a , ai i  

and  . Consequently, we obtain the exact traveling wave solutions of Eq. (2.1). 
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3. Applications 

In this section, we will apply the method described in Sec. 2 to find the exact traveling wave solutions of Biswas-Milovic 

equation with dual-power law nonlinearity Eqs. (1.1) and (1.2). 

3.1. Exact traveling wave solutions of Eq. (1.1) 

In this subsection, we consider the exact traveling wave solutions of Biswas-Milovic equation (1.1) with constant 

coefficients. To this end, we assume that the solution of Eq. (1.1) can be written as: 

 1( , ) ( )e , ,
i k x t

q x t u x t
 

  
  

                                                                                                              (3.1) 

where ( )u   is a real function of   while 1, ,k    and    represent the frequency, wave number, phase constant and 

the speed of the wave respectively. Substituting (3.1) into Eq. (1.1) and separating the real and imaginary parts, we obtain 

12 ,mak                                                                                                                                                                (3.2) 

and the following nonlinear ODE: 

   2 2 2 4

1'' 0.m m n m n ma u m am k u bu bku                                                                                          (3.3) 

By balancing between   ''mu  with 
4n mu 

 in (3.3) we get  
1

2 4
2

mN N n m N
n

      . According to step 

3, we use the transformation 

1
2( ) ( ),nu v                                                                                                                                                      (3.4) 

where ( )v   is a new function of  . Substituting (3.4) into (3.3), we get the new ODE 

 2 2 2 2 2 3 2 4

12 '' ( 2 )( ') 4 4 4 0.namvv am m n v n m amk v n bv n bkv                                           (3.5) 

Balancing ''vv  with 
4v  in (3.5) we get 2 4 1N N N N     . Consequently, Eq. (3.5) has the formal solution: 

1

0 1 1( ) ( ) ( ),v a aY a Y  

                                                                                                                                  (3.6) 

where 0 1,a a  and 1a  are constants to be determined later satisfying 
2 2

1 1 0a a  . 

Now, substituting (3.6) along with Eqs. (2.5) and (2.6) into (3.5), collecting the coefficients of powers of ( )Y   and setting 

them to zero, we obtain the following system of algebraic equations: 

Y4 : am22a1
2  2amn2a1

2  4bkn2a1
4  0,

 

Y3 : 4bn2a1
3  16bkn2a0a1

3  4amn2a0a1  0,
 

Y2 : 4am2n2a1
2k1

2  2am22a1
2  2aa1m22a1  4mn2a1

2  8aa1mn2a1  

           
24bkn2a0

2a1
2  12bn2a0a1

2  16bka1n2a1
3  0,

 

Y : 8am2n2a0a1k1
2  8mn2a0a1  4amn2a0a1  16bkn2a0

3a1  12bn2a0
2a1  

         
48bka1n2a0a1

2  12ba1n2a1
2  0,

 

Y0 : 4am2n2a0
2k1

2  8am2n2a1k1
2a1  am22a1

2  4am22a1a1  am22a1
2  4mn2a0

2
 

         
8mn2a1a1  2amn2a1

2  16amn2a1a1  2amn2a1
2  4bkn2a0

4  4bn2a0
3

 

          
48bkn2a0

2a1a1  24bn2a0a1a1  24bkn2a1
2a1

2  0,
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Y1 : 8am2n2a0k1
2a1  8mn2a0a1  4amn2a0a1  16bkn2a0

3a1  12bn2a0
2a1  

          48bka1n2a0a1
2  12ba1n2a1

2  0,  

Y2 : 4am2n2k1
2a1

2  2am22a1
2  2aa1m22a1  4mn2a1

2  8aa1mn2a1  

          24bkn2a0
2a1

2  12bn2a0a1
2  16bka1n2a1

3  0,  

Y3 : 4bn2a1
3  16bkn2a0a1

3  4amn2a0a1  0,
 

Y4 : 4bkn2a1
4  am22a1

2  2amn2a1
2  0.  

On solving the above algebraic equations with the aid of Maple 14, we have the following results: 

Case 1. We have 

2

0 1 1 2

2

1 2

2 2 (2 )
, , 0, ,

4 ( ) 4 ( ) 4 ( )

(2 )
.

4 ( )

n m n m bn n m
a a a

k n m k n m amk n m

b n m
amk

k n m







  
      

  

 
   

 

                                               (3.7) 

Form (3.1), (3.2), (3.4), (3.6) and (3.7), we deduce the exact traveling wave solutions of Eq. (1.1) as follows: 

1
2

2
1 1 2

2

12

(2 )

4 ( )

2 (2 )
( , ) 1 tanh ( 2 )

4 ( ) 4 ( )

e ,

n

b n m
i k x amk t

k n m

n m bn n m
q x t x mak

k n m amk n m


  
         

    
       

       



                                                (3.8) 

Where 0k   and 0ab  . 

 

Fig1:  The plot of the   ( , )q x t  of (3.8) when 1
1 2

1, 2, 2, 1, 1, .n m b k a k        

Case 2. We have 
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2

0 1 1 2

2

1 2

2 2 (2 )
, 0, , ,

4 ( ) 4 ( ) 4 ( )

(2 )
.

4 ( )

n m n m bn n m
a a a

k n m k n m amk n m

b n m
amk

k n m







  
      

  

 
   

 

                                              (3.9) 

In this case, we deduce the exact traveling wave solutions of Eq. (1.1) as follows: 
1

2

2
1 1 2

2

12

(2 )

4 ( )

2 (2 )
( , ) 1 coth ( 2 )

4 ( ) 4 ( )

e ,

n

b n m
i k x amk t

k n m

n m bn n m
q x t x mak

k n m amk n m


  
         

    
       

       



                                              (3.10) 

Where 0k   and 0ab  . 

Case 3. We have 

0 1 1

2
2

12 2

2 2 2
, , ,

4 ( ) 8 ( ) 8 ( )

(2 ) (2 )
, .

16 ( ) 4 ( )

n m n m n m
a a a

k n m k n m k n m

bn n m b n m
amk

amk n m k n m
 



  
     

  

  
     

  

                                                                   (3.11) 

In this case, we deduce the exact traveling wave solutions of Eq. (1.1) as follows: 

1
2

2
1 1 2

2

12

(2 )
2

4 ( )

12

2 1 (2 )
( , ) 1 tanh ( 2 )

4 ( ) 2 16 ( )

(2 )
coth ( 2 ) e ,

16 ( )

n b n m
i k x amk t

k n m

n m bn n m
q x t x mak

k n m amk n m

bn n m
x mak

amk n m


  
         

     
           

  
       

                                       (3.12) 

Where 0k   and 0ab  . 

 

Fig 2:  The plot of the   ( , )q x t  of (3.12) when 1
1 2

1, 1, 1, 1, 1, .n m b k a k        
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3.2. Exact traveling wave solutions of Eq. (1.2) 

In this subsection, we consider the exact traveling wave solutions of Biswas-Milovic equation (1.2) with variable 

coefficients. To this end, we assume that the solution of Eq. (1.2) can be written as: 

 1 ( )
( , ) ( )e , ( ) ,

i k x t t
q x t u x t t


  

 
                                                                                                      (3.13)    

where ( )u   is a real function of , ( )t   is the soliton velocity, 1k  is the wave number of the soliton, while ( )t  is the 

frequency of the soliton velocity. Substituting (3.13) into Eq. (1.2) and separating the real and imaginary parts, we obtain 

1

( )
( ) 2 ( ) 0,

d t
t t mk a t

dt


                                                                                                                              (3.14) 

and 

  2 2 2 4

1

( )
( ) '' ( ) ( ) ( ) ( ) ( ) 0.m m n m n md t

a t u mt m t m k a t u b t u b t k t u
dt


   

      
 

                          (3.15) 

Integrating Eq. (3.14) with respect to t  with vanishing the constant of integration we get 

12
( ) ( ) .

mk
t a t dt

t
                                                                                                                                           (3.16) 

By balancing between   ''mu  with 
4n mu 

 in (3.15) we get  
1

2 4
2

mN N n m N
n

     . According to step 

3, we use the transformation 

1
2( ) ( ),nu v                                                                                                                                                          (3.17) 

where ( )v   is a new function of  . Substituting (3.17) into (3.15), we get the new ODE 

2 2 2 2

1

2 3 2 4

( )
2 ( ) '' ( 2 ) ( )( ') 4 ( ) ( )

4 ( ) 4 ( ) ( ) 0.

d t
nma t vv m m n a t v n m t t mk a t v

dt

n b t v n b t k t v



 

     
 

  

                                        (3.18) 

Balancing ''vv  with 
4v  in (3.18) we get 2 4 1N N N N     . Consequently, Eq. (3.18) has the formal 

solution: 

1

0 1 1( ) ( ) ( ),v a aY a Y  

                                                                                                                           (3.19) 

where 0 1,a a  and 1a  are constants to be determined later satisfying 
2 2

1 1 0a a  . 

Now, substituting (3.19) along with Eqs. (2.5) and (2.6) into (3.18), collecting the coefficients of powers of ( )Y   and 

setting them to zero, we obtain the following system of algebraic equations: 

Y4 : atm22a1
2  2atmn2a1

2  4btktn2a1
4  0,

 

Y3 : 4n2bta1
3  16n2btkta0a1

3  4mn2ata0a1  0,
 

Y2 : 12n2bta0a1
2  4mn2ta1

2  2m22ata1
2  2m22ata1a1  16n2btkta1

3a1  

         
4mn2t

dt
dt

a1
2  24n2btkta0

2a1
2  4m2n2ata1

2k1
2  8mn2ata1a1  0,

 

Y : 12n2bta0
2a1  12n2bta1

2a1  16n2btkta0
3a1  8mn2ta0a1  

     
8mn2t

dt
dt

a0a1  48n2btkta0a1
2a1  4mn2ata0a1  8m2n2ata0a1k1

2  0,
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Y0 : 4n2bta0
3  m22ata1

2  m22ata1
2  4mn2ta0

2  4n2btkta0
4

 

       
4m22ata1a1  8mn2ta1a1  4mn2t

dt
dt

a0
2  24n2btkta1

2a1
2

 

2mn2ata1
2  24n2bta0a1a1  4m2n2ata0

2k1
2  2mn2ata1

2  8mn2t
dt

dt
a1a1

 

48n2btkta0
2a1a1  16mn2ata1a1  8m2n2ata1k1

2a1  0,  

Y1 : 12n2bta0
2a1  12n2bta1a1

2  16n2btkta0
3a1  8mn2ta0a1  

8mn2t
dt

dt
a0a1  48n2btkta0a1a1

2  4mn2ata0a1  8m2n2ata0k1
2a1  0,

 

Y2 : 12n2bta0a1
2  4mn2ta1

2  2m22ata1
2  2m22ata1a1  16n2btkta1a1

3
 

4mn2t
dt

dt
a1

2  24n2btkta0
2a1

2  4m2n2atk1
2a1

2  8mn2ata1a1  0,
 

Y3 : 4n2bta1
3  16n2btkta0a1

3  4mn2ata0a1  0,
 

Y4 : m22ata1
2  4n2btkta1

4  2mn2ata1
2  0.

 

On solving the above algebraic equations with the aid of Maple 14, we have the following results: 

Case 1. We have 

0 1 1

2
2

12 2

2 2
, , 0,

4( ) ( ) 4( ) ( )

(2 ) ( ) 1 (2 ) (t)
, ( ) ( ) .

4 ( ) ( ) ( ) 4( ) ( )

n m n m
a a a

n m k t n m k t

n n m b t n m b
t mk a t dt

m n m a t k t t n m k t
 



 
    

 

  
     

  


                                       (3.20) 

Form (3.13), (3.16), (3.17), (3.19) and (3.20), we deduce the exact traveling wave solutions of Eq. (1.2) as follows: 

2
1 1 2

1

22

12

(2 ) (t)
( )

4( ) ( )

2 (2 ) ( )
( , ) 1 tanh ( 2 ( )dt)

4( ) ( ) 4 ( ) ( ) ( )

e ,

n

n m b
i k x mk a t dt

n m k t

n m n n m b t
q x t x mk a t

n m k t m n m a t k t


   
         

     
              





                (3.21) 

Where ( ) 0k t   and ( ) ( ) 0a t b t  . 

Remark 1. Our result (3.8) for Eq. (1.1) and the result (3.21) for Eq. (1.2) have the same expressions as the results (18) 

and (31) of [52] respectively. But the authors [52] have derived the result (18) if 0abk  . From their analysis and the 

values of parameters of figure 1 of [52], it seems to us that the authors have chosen 0ab   and 0k  . This yields the 

function ( )u   is complex. Therefore, the result (18) of [52] does not exist if  0ab   and 0k  . The same discussion 

is applied for the result (31) of [52]. 

Case 2. We have 

0 1 1

2
2

12 2

2 2
, 0, ,

4( ) ( ) 4( ) ( )

(2 ) ( ) 1 (2 ) (t)
, ( ) ( ) .

4 ( ) ( ) ( ) 4( ) ( )

n m n m
a a a

n m k t n m k t

n n m b t n m b
t mk a t dt

m n m a t k t t n m k t
 



 
    

 

  
     

  


                                        (3.22) 

In this case, we deduce the exact traveling wave solutions of Eq. (1.2) as follows: 
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2
1 1 2

1

22

12

(2 ) (t)
( )

4( ) ( )

2 (2 ) ( )
( , ) 1 coth ( 2 ( )dt)

4( ) ( ) 4 ( ) ( ) ( )

e ,

n

n m b
i k x mk a t dt

n m k t

n m n n m b t
q x t x mk a t

n m k t m n m a t k t


   
         

     
              





               (3.23) 

Where ( ) 0k t   and ( ) ( ) 0a t b t  . 

Case 3. We have 

0 1 1

2
2

12 2

2 2 2
, , ,

4( ) ( ) 8( ) ( ) 8( ) ( )

(2 ) ( ) 1 (2 ) (t)
, ( ) ( ) .

16 ( ) ( ) ( ) 4( ) ( )

n m n m n m
a a a

n m k t n m k t n m k t

n n m b t n m b
t mk a t dt

m n m a t k t t n m k t
 



  
     

  

  
     

  


                                      (3.24) 

In this case, we deduce the exact traveling wave solutions of Eq. (1.2) as follows: 

2
1 1

2

12

1

2
2

12

(2 ) (t)
( )

4(

2 1 (2 ) ( )
( , ) 1 tanh ( 2 ( )dt)

4( ) ( ) 2 16 ( ) ( ) ( )

(2 ) ( )
coth ( 2 ( )dt)

16 ( ) ( ) ( )

e

n

n m b
i k x mk a t

n

n m n n m b t
q x t x mk a t

n m k t m n m a t k t

n n m b t
x mk a t

m n m a t k t


  

     
           

  
       







2) ( )
,

dt
m k t


   

      


                (3.25) 

Where ( ) 0k t   and ( ) ( ) 0a t b t  . 

Remark 2. Our results (3.10), (3.12) for Eq. (1.1) and the results (3.23), (3.25) for Eq. (1.2) are new and not found in [52] 

or elsewhere. This shows that the extended tanh-function method is more general and effective than the  'G
G

-expansion 

method used in [52]. 

4. Conclusions 

The extended tanh-function method is used in this article to obtain some new exact traveling wave solutions of the the 

Biswas-Milovic equation with dual-power law nonlinearity, which describes the propagation of solitons through optical 

fibers for trans-continental and trans-oceanic distances. From our results, we deduce that the solutions (3.8), (3.21) are 

kink shaped soliton solutions, the solutions (3.10), (3.23) are singular kink shaped soliton solutions and the solutions 

(3.12), (3.25) are kink-singular kink shaped soliton solutions. Note that all solutions obtained in this article are new and not 

reported elsewhere which have been checked with the Maple 14 by putting them back into the original equations (1.1) and 

(1.2). 
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