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ABSTRACT 
In this paper, we extend normed spaces to quasi-normed spaces and prove the generalized Hyers-Ulam stability of a 
nonic functional equation: 

                                                            

                                                  

where               in quasi-normed spaces. 
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1. INTRODUCTION AND PRELIMINARIES  

The stability problem of functional equations originated from a question of Ulam [22] concerning the stability of group 
homomorphisms. Hyers [9] gave the first affirmative answer to the question of Ulam for Banach spaces. Hyers’s theorem 
was generalized by Aoki [1] for additive mappings. In 1978, Rassias [19] generalized Hyers theorem by obtaining a unique 
linear mapping near an approximate additive mapping. The paper of Rassias has provided a lot of influence in the 
development of what we called the generalized Hyers-Ulam-Rassias stability of functional equations. 1994, G  vruta 

generalized the Rassias' result in [7] for unbounded Cauchy difference. Different with the direct proof used before, 
C  udariu and Radu [3] proposed a novel method for studying the stability of the Cauchy functional equation based on a 

fixed point result in generalized metric spaces. The stability problems of several functional equations have been 
extensively investigated by a number of [2, 5, 8, 10, 11, 12, 15, 16, 21, 23] and references therein for more detailed 
information. 

The mathematical analysis one of the most important functional equations. In 1821, Cauchy noted that every 
continuous solution of the additive Cauchy functional equation proved the functional equation: 

                 

for all       , is linear. Every solution of the additive Cauchy equation is called an additive function.  

In 1984, Cholewa [4] initiated the study of the stability of the following quadratic functional equation: 

                                  

A quadratic functional equation was used to characterize inner product spaces.  

In [17], [18], Rassias proposed the cubic and quartic functional equations: 

                                                 

and 

                                                             

respectively, and considered the solution and the stability problem of these equations in normed spaces.  

In [24], Xu et al. investigate the general solutions of the quintic and sextic functional equations: 

                                                                               

and 
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respectively, and then proved the stability of these two types of equations in quasi- -normed spaces. 

In 2015, Shen and Chen [20] proved the general solutions and investigated the stability of the septic and octic 
functional equations in normed linear spaces: 

                                                           

                                              

and 

                                                               

                                                                    

respectively. 

Before we present our results, we introduce some basic facts concerning quasi-normed space. Let    be a real linear 

space. A quasi-norm       is a real-valued function on satisfying the following: 

             for all      and          if and only if      ; 

(ii)                   for all     and    ; 

(iii) there is a constant     1 such that                        for all      . 

The pair           is called a quasi-normed space if       is a quasi-norm. The smallest possible   is called the 

modulus of concavity of      . A quasi-Banach space is a complete quasi-normed space.  

Now, we consider a mapping        satisfying the following functional equation, which introduced in [13], in 2016, 

as follows: 

                                                            

                                                        

for all      . It is easy to see that the function is a solution of the functional equation (1.1). Every solution of the 

functional equation (1.1) is said to be a nonic mapping. Note that the functional equation (1.1) have the properties (i) 

      , (ii)              and             . 

2. MAIN RESULTS 

For a given mapping       , we defined the difference operator 

                                                                    

                                                  

for all         

Firstly, we investigate the generalized Hyers-Ulam stability of the functional equation (1.1) in quasi-normed spaces in 
the spirit of Hyers, Ulam, and G  vruta. 

Theorem 2.1.  Let   be a quasi-normed space and   be a quasi-Banach space. Suppose that there exist a mapping 

               for which a mapping         with        satisfies 

                                                                                                                                                                        

for all         and the series 

                                                 
 

  
 

 

   

 

                                                                                                                

for all     , where       
 

  
                                                    

                                                                                                     

and        
 

    
                 for all       . Then there exists a unique nonic mapping         which satisfies 

(1.1) and 

                                                  
 

  
   

 

  
  

   

 
                                                                                 

for all        
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Proof.                 with        in (2.1), we get 

                                                                                                            

for all     .  Replacing       with        in (2.1), we get 

                                                                                                   

                                                                                                                          

for all     . Subtracting equations (2.4) and (2.5), we get 

                                                                                      

                                                                                                                  

for all       Replacing       with        in (2.1), and multiplying the resulting equation by 9, we have 

                                                                                    

                                                                                                                                    

for all       Subtracting equations (2.6) and (2.7), we get 

                                                                    

                                                                                                                             

                                                                                                                                                      

for all       Replacing       with        in (2.1), and multiplying the resulting equation by 37, we have 

                                                                          

                                                                                                                        

for all     . Subtracting equations (2.8) and (2.9), we arrive at 

                                                                                                  

                                                                                     

                                                                                                                                 

for all     . Replacing       with        in (2.1), and multiplying the resulting equation by 93, we get 

                                                                              

                                                                                                                                                

for all     . Subtracting equations (2.10) and (2.11), we arrive at 

                                                                                              

                                                                                                                

for all       Replacing       with       in (2.1), and multiplying the resulting equation by 162, we get 

                                                                                                                         

                                                    ||                                                                                            

for all     . Subtracting equations (2.12) and (2.13), we arrive at 

                                                                                         

                                                                         

                                                                                                                                                  

For all       Replacing       with       in (2.1), and multiplying the resulting equation by 210, we get 

                                                                                                   

for all     . Subtracting (2.14) and (2.15), we get 
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for all     . Thus, we can deduce that 

                    
 

  
                                                 

                                                       

                                                                                                                                                                                                

for all     . It follows from (2.16) that 

                                        
     

  
       

 

  
                                                                                                                     

for all     . Replacing   by     in (2.17) and dividing by    , we get 

                                    
       

    
   

         

        
      

 

       
                                                                                             

for all     . Using induction on       and summing up the resulting inequality for            , we have 

                                 
      

    
     

 

  
   

 

  
 

   

   

 

         
 

  
  
 

  
 
   

                                               

for all      and        Putting   by      and dividing by      in (2.17), we get 

 
         

        
   

       

                                                                                                            

 
 

       
   

 

  
 

   

   

 

           
 

       
  
 

  
 
   

                                            

                        
 

       
 

  
    

   

   
           

 

      
 

  
 
     

                               (2.20) 

Since the right-hand side of (2.20) tends to 0 as    , the sequence   
       

    
    is a Cauchy sequence in the quasi-

Banach space  . Thus, we may define a mapping        by 

        
    

 
       

    
 

for all     . Taking the limit as     in (2.19), we obtain that the mapping   satisfies (2.3). 

Replacing       by             in (2.1) and dividing it by       we have 

               
    

 
 

    
                      

    
 
            

    
      

for all       . Thus, the mapping         satisfies (1.1). This implies that the mapping   is nonic. 

Now, let          be another nonic mapping satisfies (1.1) and (2.3). Fix     . Then 

                                        for all        It follows from (2.3) that 

                             
      

    
     

      

    
         

                                                                                 
 

         
 

  
 

 

   

   

                                                                  

for all     . Letting the limit as     in (2.21), we have     . Thus, the nonic mapping   is unique. This completes 

the proof. 

Theorem 2.2. Let   be a quasi-normed space and   be a quasi-Banach space. Suppose that there exist a mapping 

                for which a mapping        with        satisfies the inequality (2.1) and the series 

            
 

  
   

      and    
   

       
 

  
 
 

  
     for all         where 

      
 

  
                                                  

                                               

Then, there exists a unique nonic mapping        which satisfies (1.1) and  
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for all    .  

Proof. The proof is similarly proved by the following inequality due to (2.17) 

                               
 

  
      

 

  
           

 

  
  

 

    
           

 

  
    

                                                                 

for all     and      . Then the sequence          
 

  
   is a Cauchy sequence in the quasi-Banach space  . So, we 

can define a mapping        by         
   

        
 

  
  for all    . Letting the limit as      in (2.23), we obtain 

(2.22). The rest of proof is similar method to the corresponding part of Theorem 2.1. This complete the proof. 

Corollary 2.3.  Let   and   be positive real numbers. Suppose that a mapping        with        satisfies the 

inequality 

                   
 
      

 
  

for all       . Then there exists a unique nonic mapping         which satisfies (1.1) and  

                 

 
 
 

 
   

     

      
      

 
                    

  
     

      
      

 
                            

                  

for all    , where      
  

  
                                                            

Corollary 2.4.  Let       be positive real numbers and         be a mapping with        satisfying  

                   
 
     

 
  

for all        . Then there exists a unique nonic mapping         which satisfies (1.1) and  

                 

 
 
 

 
   

     

      
      

   
                      

  
     

      
      

   
                              

                   

for all    , where      
   

  
                                   

Next, we investigate the generalized Hyers-Ulam stability of the functional equation (1.1) in quasi-normed spaces by 
the fixed point alternative. We will deal with the fixed point theorem which was proved by Diaz and Margolis. 

Theorem 2.5. [6]  Let  (     be a complete generalized metric space and         be a strictly contractive mapping 

with Lipshitz constant  . Then, for any     , either                for all nonnegative integers       or other 

exists a natural number    such that 

(i)                 for all     ; 

(ii)  the sequence       is convergent to a fixed point     of  ;  

(iii)       is the unique fixed point of   in the set               
             

(iv)             
 

   
         for all        

Theorem 2.6.  Let   be a quasi-normed space,   be a quasi-Banach space and                 be a mapping 

such that there exists a constant     with  

                                                                                                                                                               

for all         where      . If         is a mapping with        satisfying 

                                                                                                                                                                      

for all      , then there exists a unique nonic mapping        such that 

                                               
 

          
                                                                                              

for all     , where       
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Proof.  It follows from (2.16) that 

                                                                                                                                                                  

for all       Let                 and introduce a generalized metric   on   as follows: 

                                                         

where, as usual,            Then (     is a generalized complete metric space [14]. We consider the mapping 

         is defined by 

       
      

   
 

for all     . Let          and         be an arbitrary constant with         . It follows from the definition of  ,   

and (2.24) that  

                   
 

   
                 

for all     , which gives                  for all       . This means that   is a strictly contractive self-mapping on 

  with Lipschitz constant  .  

It follows from (2.27) that 

           
  
 

  
            

  
 

  
                      

         

for all     . It follows from the conditions (2) and (3) of Theorem 2.5 that there exists a mapping   which is a unique 

fixed point of T in the set                       such that 

         
   

       

    
 

for all      since    
   

          . Again, from the condition (4) of Theorem 3.1, we have 

       
 

   
          

 

          
. 

Then, we conclude that the inequality (2.26) holds for all     .  

If we replace   by      and y by      in (2.25), then we obtain 

  
             

    
      

                   

    
     

            

    
 

for all     . Taking the limit as     in the above inequality, we deduce that           for all       . Therefore, 

the mapping        is nonic, as desired. This completes the proof. 

Corollary 2.7. Let    be positive real number and be a mapping         with        satisfying 

              

for all       . Then there exists a unique nonic mapping         such that 

                
   

         
 

for all    . 

Corrllary 2.8. Let     be positive real numbers with       and         be a mapping with        satisfying  

                   
 
      

 
  

for all        . Then there exists a unique nonic mapping         such that 

                 
    

       
     

 
  

for all    , where      
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