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ABSTRACT

In this paper, we prove the generalized Hyers-Ulam stability of @-homomorphisms and ternary derivations on £"-ternary
algebras associated wiith the generalized Cauchy-Jensen type additive functional equation
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forall x; x; € X, where n € I7 is afixed positive integer with n = 2
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INTRODUCTION

Ternary algebraic operations were considered in the 19th century by several mathematicians and physicists such as
Cayley [3] who introduced the notion of a cubic matrix, which in turn was generalized by Kapranov et al. [10]. The
simplest example of such nontrivial ternary operation is given by the following composition rule:

(i -\!.J.f};i':_- = y ﬂ“;:a!.,":i'wfw:_-v. l:-I'._,". r" = 1,2, ...

1s L mns N

Ternary structures and their generalization, the so-called l-ary structures, raise certain hopes in view of their applications

in physics [11]. As it is extensively discussed in [25], the full description of a physical system implies the knowledge of
three basic ingredients: the set of the observable, the set of the states, and the dynamics that describes the time evolution
of the system by means of the time dependence of the expectation value of a given observable on a given statue.
Originally the set of the observables were considered to be a £"-algebra [8]. In many applications, however, this was

shown not to be the most convenient choice, and so the C"-algebra was replaced by a Von Neumann algebra. This is

because the role of the representation turns out to be crucial, mainly when long range interactions are involved. Here we
used a different algebraic structure.

A £*-ternary algebra is a complex Banach space 4, equipped with a ternary product (x.v. 2} — [x.v. z] of 4% into 4,
WhICh is (C linear in the outer variables, conjugate C-linear in the middle variable, and associative |n the sense that
[x. v 2] = [xlw 2] v] = _x.;_-..».] w.v]] and satisfies || [x.v.z] || = [|x|| [|v]| ||z]| and satisfies || [x x x] || = ||x 3
[2], [27]) If ac” ternary algebra {4, -]_. has an unit elemente edsuchthatxy = [x.e.¢] = [e.e.x] forall x =4, thenit
is routine to verify that 4, endowed Wlth ¥ =v=[x.ev]andx" =[ex.e], iSaunital £ -algebra. Conversely, if (4, =i is a
unital £*-algebra, then [xv.z] =x =v"=z makes 4 into a £"-ternary algebra.

Let 4.7 be £"-algebras and & be a permutation of {1,2,31. A C-linear mapping X : 4 — E is called a z-homomorphisms if
H(lxy 2z 05]) = [B(xpn) Bz 2 Blxom)]

forall x,.x;.x; € 4.A C-linear mapping D : 2 — A is said to be a ternary derivation if

-

D{[x,y.5]3 = [D(x).,v. 2] + [x.D{y)z] + [x.y D(=0]
forallx, v,z € A,

The stability problem of functional equations originated from a question of Ulam [26] concerning the stability of group
homomorphisms. In 1941, the famous Ulam stability problem was partially solved by Hyers [9] for linear functional
equation of Banach spaces. In 1950, Aoki [1] was the second author to treat this problem for additive mappings. In 1978,
Rassias [24] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded. In 1982,
Rassias [22] generalized the Hyers stability result by presenting a weak condition controlled by a product of different
powers of norms. A generalization of the Rassias theorem was obtained by Grivruta [4] by replacing the unbounded

Cauchy difference by a general control function in the sprite of the Rassias approach. Subsequently, various approaches
to the stability problems have been extensively investigated by many mathematician. The interested readers for more
information on such problems are referred to the works [5], [7], [12] — [17], [19] - [21], [23] and reference therein.

Now, we consider a mapping [ :X —¥* satisfying the following functional equation:

" { " % "

Zf |:. i - " ];1 Z .:"..i. ] =z Zf':..xi':" ':_-1.1_\|

forall x; x; € X, wheren £ I7 is afixed positive integer with = == 2. Note that in the case = = 2, the functional equation
(1.1) yields the Cauchy additive equation fix; + x-1= fix)+ f{x). Also, for n =3 in(1.1), we have
Flog+ 2250 4l 22504 ply,+ 225 ) =20flx)+ Flx) + flxa) . (1.2)

The functional equation (1.2) yields the Cauchy-Jensen additive equation

Filoari) )+ .u + & )+ Fla+ % ) =2(flx)+ flx))

If x; = 0. Therefore, the functional equation (1.1) is called the generalized Cauchy-Jensen type additive functional
equation.

In this paper, we investigate the generalized Hyers-Ulam stability of z-homomorphisms and ternary derivations on £"-

ternary algebras associated with the generalized Cauchy-Jensen type additive functional equation (1.1) in the sprite of
Hyers, Ulam and Rassias.
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2. Main Results

Throughout this section, let 4, & be C*-ternary algebras. Assume that = £ Z7 is a fixed positive integer with » = 2 and
Ti= {w EC :|u|=1} Foragiven mapping f: 4 — 5, we define

[ )
Ao S Flue+ 1 — 1, e
Dy Nixp ey ) = T £ox - s K i)
] n-1 L = /| i

forall x,,...x, € 4andu €T

We prove the generalized Hyers-Ulam stability of z-homomorphisms on £*-ternary algebras for the functional equation
D, fixy...xy 1=0. Weneed the following lemma in the main theorems.

Lemma 2.1 [5]. LetkX, ¥ be linear spaces and = £ IZ™ { = 27 be a fixed positive integer. A mapping f : ¥ — ¥ satisfies
(1.1) if and only if f is additive.

f:A— B satisfies

Theorem 2.2, Letw =1, = 3 and & be positive real numbers. If a mapping

h p
Edf':_..l.: T, | = EE.{':_ X .:_'2.:|
and
fllxe x2.x5]) = [F (). ) Fa] || = 8( [l + Nl + [l ) (2.3
forall x;....x, € Aand u £ T, then there exists a unique z-homomorphism & : 4 = 2 such that
4 8llxll®
|ffed — Hexll < 5 _ o0 (2.4)
forall x e A.
Proof. Substitutingx; =+ = x, =x and & = 1in(2.2), we have
Inf(zx) = 2n feoll =ngll|f {2.5)
which gives
i .‘-:'Ex‘u Bllx g
|.-Z_x_| =1 = — (2.6)
forall x £ 4. If we replace x by 2'x and divide 2/ both sides of (2.6), then we have
i+ P
N f(27x) = gllx rap=1yj
forallx € 4andall j =0.1,2.... Therefore, we obtain
- = g m-1
| 3K L 5 40t ] (2.7)

for all x € 4 and all integers k. m withm =k = 0 Then, the sequence {— is a Cauchy sequence for all x £ 4.

F oty

Since & is complete, the sequence {— converges. So, we can define a mapping H: 4 — E by

fiztx)

4

Bl

Hix) = lim
l—=z=

for all x £ 4. Moreover, letting = — == in (2.7) with ¥ = 0, we obtain the desired inequality (2.4). It follows from (2.2) that

Dy Hxp g )| £ lim o 110, f 2% 2R 0126 Dim (2P |lxgl )7+ 4 12l )= 0
which gives 0, H{xy. ... x, 1 =0 forall z,....x, € 4 andu € TH fweputu =1 in D, H{x. ... %, ) =0, then by Lemma
2.1, the mapping & is additive. Letting x; = x and x; = - = x,, = 0 in the last equality, then H{ux} = u #{x}. By the same
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reasoning as that the proof of Theorem 2.1 of [18], the mapping & is C-linear. Also, it follows from linearity of & and (2.3)
that

P - Tow i Y oerd L )
Hi[x, 20,2210 — |H (Zory b H{Zo oy W H Xora I]
WL - = L L P LWL
= lim o ||F02" 2™, 2%]) — [F(2%%, 0 ) (2™ 10 ) F{2™05 0]
= oo man A= Ages Age s gl O S b L R A AT Sl i
=

=6 lim (259" (

for all x;,x,.x; € 4. Thus, the mapping H:4 =&

B is a @ -homomorphism. Now, let ¥ : 4 — & be another additive
mapping satisfying (2.4). Then we have

o
- :
28| |x
rat . Tt - = P
HZ' vy - 2%| & —s 2F 5"

3 20 =

By — B || =

L
.'s| Lol

which tends to zero as n — == for all x € 4. So, we can conclude that H{x} = H'{x) for all x € 4. This proves the
uniqueness of #. This completes the proof.

Theorem 2.3. Let w=1, =3 and & be positive real numbers, and let

[ 4 —= E be a mapping such that (2.2) and
(2.3). Then there exists a unique s-homomorphism 5 : 4 — & such that
e ool gl .
Jlx) —aix) = oF_5 l:__'.Ei_I
for all x & A.
Proof. It follows from (2.5) that
27 (= ||| = ﬂl;,l NAT. (2.9)

forallx € 4 and all integers &. m withm =k = 2

o It follows that the sequence {Z"f |— ;:I } is a Cauchy sequence for all
¥ € Aand it converges. Thus, we can define a mapping H: 4 — B by

I : T
H(x) = lim 2" fl—f
M=

7 |

I

forall x € 4. Letting n — == in (2.9) with ¥ = 0, we get (2.8). It follows from (2.2) that

-
T

i . Coan ke Yoo I 2" - g g
Dy Bz vz )| 2 lim 2" || Dyflomeeam ) 20 lim o [l + tllzal]” = 0
for all ¥;....x, € Aand g €T% So, D, H{xy...xy ) =0 foralx,

iy € Aand u ETT By the same reasoning as that
the proof of Theorem 2.1 of [18], the mapping X is £-linear. Also, it follows from linearity of & and (2.3) that

- Fpw i d epd " e R
Hilx gy, %2 1) — [H(xp 00 H(xg (o)l (%50 |]

-

lim
Fl— 22

=8 lim (239" [|lxd]"+ |ll|” + |l=l]” )= 0

forall x;,x,.2; € 4. Now, let F': 4 = & be another additive mapping satisfying (2.8). Then we have

o
- I " . - T .'.j'\.
|.!'.rl:..3.':'l - .".r'l:..'l.':'l | = 2" Hllﬁj—fl:.ﬁ_l + H I.F.I_.-F'.

which tends to zero as n — = for all x € 4. So, we can conclude that H{x} = H (x) for all x € 4. This proves the
uniqueness of H. This completes the proof.

Theorem 2.4. Let y =7, p: = 1,5 = 1 and & be positive real numbers, and let f : 4 — 7 satisfies

il
Dy Hxp e x| =28 ﬂ || (2.10)
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Fllxg 2,25 ) — [F G Q) fx] 1] = E':f Iy ) Xz : g :.] (2.11)
forall x.. ... ¥, € Aand i €T Then there exists a unique s-homomorphism # : 4 — & such that
gll«l®
Fea - Hall £ ——p (212)
niZ— 25 :
forall x e A.
Proof. Letus assumex; =+ = x, =x and x = 1in(2.10). Then we have
i fr2x f|lx
|.-:_A|—' — | =2 (2.13)
and so, we have
. . B om-1
|f(2%x) frz™ey 20|« s
A - e (2Pt (2.14)
| 2¢ 2m - Im Z “ a s e =)

£ oty
1

for all x € 4 and all integers &, m withm =& = 0 It follows that the sequence {— is a Cauchy sequence for all

x € 4, and so it converges. By the same reasoning as the proof of Theorem 2.2, we can define the C-linear additive
mapping ¥ : 4 — B by

H{x) = lim -

e

forall x € 4. Letting n — == in (2.14) with & = 0, we obtain the desired inequality (2.12). It follows from (2.11) that

BT FT o - R Tt "' A E "' A "'.. ik
H{[xy 2. %510 — [H (xp00) H(xr ) H 2203 )]
R - = L VoA LALS P LowLald
: Lrratl,. Al Aafl. 17 [efan,. Yoefan,, Norfan,. N
= J;lEL::: Jils X5 X s "'E].' — k= -’-:_:_-J-; Ve Xgrn T = -’-;—_;_.J]
q::"f.' . 4 = 4
= 8 lim 7-—1 ol [kl ()] V=0
M=o 2 - ™ = £

For all x;.x-.x; £ 4. The rest of proof is similar method to the proof of Theorem 2.2. Thus, the mapping 5 : 4 =E isa
unigue z-homomorphism satisfying (2.12). This completes the proof.

Corollary 2.5. Let v = E_‘};: #; = 1,s= 1land ¢ be positive real numbers. If / : 4 — & satisfies (2.10) and (2.11), then
there exists a unique s-homomorphism # : 4 — & such that

g ||=I?

_— RIS
=T (2,15

r o
flx) — Hix)

14

for all x & A.

Proof. It follows from (2.10) that

.w-..'” y (2t (2169
2™ n L T

=k

forall x € 4 and all integers k. = withm =k = 0. The sequence {Z"f |— ;:I 1 is a Cauchy sequence for all x £ 4 and it
converges So, we can define a mapping ¥ : 4 = B by H{x} = le 2" 2= | forallx e 4. Lettingn — == in (2.16) with

= 0, we obtain (2.15). The rest of proof is similar method to the proof of Theorem 2.3. This completes the proof.

2.2. Stability of ternary derivations

In this subsection, we investigate the generalized Hyers-Ulam stability of ternary derivations on C*-ternary algebra 4 for
the functional equation I, f{xy. ..., 1 =100

Theorem 2.6. Letw <1, 5= I and & be positive real numbers, and f: 4 — 4 be a mapping such that (2.2) and
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Flloy.zD = [f (). 2] = [o. fv).2] = By FEN | = 81| + Iyl + [lz1]) (217)

forall x,v.z € A and z & T*. Then there exists a unique ternary derivation I : 4 — 4 such that

8ll]1?

a__ 2B

o —
|Fixh — Dyl =

(2.18)
forall x & A.

Proof. By the same method as in the proof of Theorem 2.2, there exists a unique C-linear mapping O : 4 — 4 satisfying

(2.18). The mapping is given by D{x} = lim,,_... r, for all x £ 4. It follows from (2.17) that

ang . -
D{[x.v.z]) —[B{x).v. 2] — [x.D{v).2] — [x.v. D201 | 2 lim — (|l=l]" + vl + Izl ) =0

for all x,v.z € A. Then, we have

D{[x.y.2]) = [D(x).v. 2] + [x.D{y)Lz] + [x.v. D{=0]

for all x,v.z € 4. Thus, the mapping I : 4 — 4 is a unique ternary derivation satisfying (2.18). This completes the proof.

Corollary 2.7. Let » =1, == 3 and £ be positive real numbers. Let { : 4 - 4 be a mapping such that (2.2) and

Filz v 2]) — [f(x) v 2] — [k FOve] — [ FE = 8=l + vl + sl )

for all x.v.z € 4and u £ T*. Then there exists a unique ternary derivation & : 4 — 4 such that

8l

Al __ A

IFx =Dl <
forall x & A.

Proof. By the same method as in the proof of Theorem 2.3, there exists a unique C-linear mapping & ¢ 4 — 4 satisfying
(2.19). The mapping is given by D{x} = lim.,_ 2",.*'.;_”_%_) for all x & 4. The rest of proof is similar method to the proof of
Theorem 2.6. This completes the proof.

Theorem 2.8. Letw =%", »;

=1, == 1and ¢ be positive real numbers. If f : 4 — 4 satisfies (2.10) and

flx 2D = [F @), y.2) = [x. F )2 — [ FENL < 811yl 1z1)
forall x.1.z € 4and u £ T then there exists a unique ternary derivation I : 4 — 4 such that

r Allxl®
. p =14 51
niz -2, ;
gll«]¥

nf2f —27%

o) — Dl = 4
forallx g 4.

Proof. The proof is similar to the proofs Theorem 2.4, 2.6 and Corollary 2.5.
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