
ISSN 2277-3061                                                           

3114 | P a g e                                                   D e c e m b e r  0 1 ,  2 0 1 5  

On approximate -homomorphisms and derivations in   

-ternary algebras 

Seong Sik Kim  and  Soo Hwan Kim 
Department of Mathematics, Dong-eui University 

Busan 614-714, Repubic of Korea 

sskim@deu.ac.kr 
Department of Mathematics, Dong-eui University 

Busan 614-714, Repubic of Korea 

sh-kim@deu.ac.kr 
 

ABSTRACT 

In this paper, we prove the generalized Hyers-Ulam stability of -homomorphisms and ternary derivations on 
 

-ternary 

algebras associated wiith the generalized Cauchy-Jensen type additive functional equation 

 

for all , where  is a fixed positive integer with  
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1. INTRODUCTION  

Ternary algebraic operations were considered in the 19th century by several mathematicians and physicists such as 
Cayley [3] who introduced the notion of a cubic  matrix, which in turn was generalized by Kapranov et al. [10]. The 
simplest  example of such nontrivial  ternary operation is given by the following composition rule: 

 

Ternary structures and their generalization, the so-called  -ary structures, raise certain hopes in view of their applications 

in physics [11]. As it is extensively discussed in [25], the full description of a physical system implies the knowledge of 
three basic ingredients: the set of the observable, the set of the states, and the dynamics that describes the time evolution 
of the system by means of the time dependence of the expectation value of a given observable on a given statue. 
Originally the set of the observables were considered to be a 

 
-algebra [8]. In many applications, however, this was 

shown not to be the most convenient choice, and so the 
 

-algebra was replaced by a Von Neumann algebra. This is 

because the role of the representation turns out to be crucial, mainly when long range interactions are involved. Here we 
used a different  algebraic  structure. 

A 
 

-ternary algebra is a complex Banach space , equipped with a ternary product of  into ,  

which is ℂ-linear in the outer variables, conjugate ℂ-linear in the middle variable, and associative in the sense that  
 and satisfies  and satisfies   ( 

[2], [27]). If a
 

-ternary algebra   has an unit element  such that   for all  ,  then it 

is routine to verify that , endowed with  and , is a unital 
 

-algebra. Conversely, if   is a 

unital 
 

-algebra, then   makes   into a -ternary algebra. 

Let  be
 

-algebras and  be a permutation of . A ℂ-linear mapping  is called  a -homomorphisms if 

 

for all   . A  ℂ-linear mapping  is said to be  a ternary derivation  if 

 

for all .  

The stability problem of functional equations originated from a question of Ulam [26] concerning the stability of group 
homomorphisms. In 1941, the famous Ulam stability problem was partially solved by Hyers [9] for linear functional 
equation of Banach spaces. In 1950, Aoki [1] was the second author to treat this problem for additive mappings. In 1978, 
Rassias [24] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded. In 1982, 
Rassias [22] generalized the Hyers stability result by presenting a weak condition controlled by a product of different 
powers of norms. A generalization of the Rassias theorem was obtained by G vruta [4] by replacing the unbounded 

Cauchy difference by a general control function in the sprite of the Rassias approach. Subsequently, various approaches 
to the stability problems have been extensively investigated by many mathematician. The interested readers for more 
information on such problems are referred to the works [5], [7], [12] – [17], [19] - [21], [23] and reference therein. 

Now, we consider a mapping    satisfying the following functional equation: 

 

for all , where  is a fixed positive integer with  Note that in the case the functional equation 

(1.1) yields the Cauchy additive equation  .  Also,  for  in (1.1),  we have 

 

The functional equation (1.2)  yields  the Cauchy-Jensen  additive  equation  

 

If  Therefore, the functional equation (1.1) is called the generalized Cauchy-Jensen type additive functional 

equation.   

In this paper, we investigate the generalized Hyers-Ulam stability of -homomorphisms and ternary derivations on -

ternary algebras associated with the generalized Cauchy-Jensen type additive functional equation (1.1) in the sprite of 
Hyers, Ulam and  Rassias.  
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2.    Main Results  

Throughout this section, let be -ternary algebras. Assume that   is a fixed positive integer with  and  

  For a given mapping , we define 

 

for all  and . 

We prove the generalized Hyers-Ulam stability of -homomorphisms on -ternary algebras for the functional equation 

.  We need  the following  lemma  in  the main  theorems. 

Lemma 2.1 [5].  Let  be linear spaces and   be a fixed positive integer.  A mapping  satisfies 

(1.1) if and only  if  is additive. 

Theorem 2.2.  Let  and  be positive real numbers. If a mapping   satisfies  

 

 

and  

 

for all  and  then there exists a unique -homomorphism    such that 

 

for all .  

Proof.  Substituting  and   in (2.2), we have 

 

which gives  

 

for all .  If we replace  by  and divide  both sides of (2.6), then we have 

 

for all  and all   . Therefore, we obtain 

 

for all  and all integers  with   Then, the sequence  is a Cauchy sequence for all  

Since  is complete, the sequence   converges. So, we can define a mapping    by  

 

for all . Moreover, letting   in (2.7) with , we obtain the desired inequality (2.4). It follows  from (2.2)  that 

 

which gives   for all    and   If we put   in  , then by Lemma 

2.1, the mapping  is additive. Letting and  in the last equality, then  By the same 
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reasoning as that the proof of Theorem 2.1 of [18],  the mapping   is ℂ-linear.  Also, it follows from linearity of  and (2.3) 

that 

 

          

 

for all  Thus, the mapping  is a -homomorphism. Now, let  be another additive 

mapping  satisfying  (2.4).  Then we have 

 

which tends to zero as  for all . So, we can conclude that for all . This proves the 

uniqueness of  This completes the proof. 

 

Theorem 2.3.  Let   and  be positive real numbers, and let   be a mapping such that (2.2) and 

(2.3). Then there exists a unique -homomorphism  such that 

 

for  all  .  

Proof.  It follows from  (2.5)  that 

    

for all   and all integers  with  It follows that the sequence    is a Cauchy sequence for all 

 and  it  converges. Thus, we can define a mapping    by  

 

for all  Letting   in (2.9) with we get (2.8).  It follows from (2.2) that 

 

for all  and    So,  By the same reasoning as that 

the proof of Theorem 2.1 of [18], the mapping    is -linear.  Also, it follows from linearity of  and (2.3)  that 

 

 

 

for all Now,  let   be another additive mapping satisfying  (2.8). Then we have  

 

 which tends to zero as  for all . So, we can conclude that for all . This proves the 

uniqueness of  This completes the proof. 

Theorem 2.4.  Let  ,  and  be positive real numbers, and let  satisfies  
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and  

 

for all  and  Then there exists a unique -homomorphism  such that 

 

for all . 

Proof.  Let us assume  and   in (2.10). Then we have 

 

and so, we have 

 

for all  and all integers  with  It follows that the sequence    is a Cauchy sequence for all 

, and so it converges. By the same reasoning as the proof of Theorem 2.2, we can define the ℂ-linear additive 

mapping  by  

 

for all Letting   in (2.14)  with , we obtain the desired inequality (2.12).  It follows  from (2.11)  that 

 

 

 

For  all   The rest of proof is similar method to the proof of Theorem 2.2.  Thus, the mapping   is a 

unique -homomorphism satisfying  (2.12).  This completes the proof. 

 

Corollary 2.5. Let  ,  and  be positive real numbers. If  satisfies (2.10) and (2.11), then 

there exists a unique -homomorphism  such that 

 

for  all  

Proof.  It follows from (2.10) that 

 

for all  and all integers  with . The sequence    is a Cauchy sequence for all  and it 

converges. So, we can define a mapping  by for all  Letting  in (2.16) with 

we obtain (2.15). The rest of proof is similar method to the proof of Theorem 2.3. This completes the proof. 

2.2. Stability of ternary derivations  

In this subsection, we investigate the generalized Hyers-Ulam stability of ternary derivations on C*-ternary algebra  for 

the functional equation   

Theorem 2.6.  Let  and  be positive real numbers, and   be a mapping such that (2.2) and 
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for all  and . Then there exists a unique ternary derivation  such that 

 

for all .  

Proof.  By the same method as in the proof of Theorem 2.2, there exists a unique ℂ-linear  mapping  satisfying 

(2.18). The mapping is given by   for all . It follows from (2.17) that 

 

for all . Then, we have 

 

for all . Thus, the mapping  is a unique  ternary  derivation satisfying (2.18). This completes the proof. 

 

Corollary 2.7.  Let   and  be positive real numbers. Let    be a mapping such that (2.2) and 

 

for  all   and  . Then  there exists a unique ternary derivation  such that 

 

for all .  

Proof. By the same method as in the proof of Theorem 2.3, there exists a unique ℂ-linear  mapping  satisfying 

(2.19). The mapping is given by   for all . The rest of proof is similar method to the proof of 

Theorem 2.6. This completes the proof. 

 

Theorem 2.8.  Let ,   and   be positive real numbers. If  satisfies  (2.10)  and  

 

for all   and    then there exists a unique ternary derivation  such that 

 

for all  

Proof. The proof  is  similar  to  the  proofs  Theorem  2.4, 2.6 and  Corollary 2.5.   

ACKNOWLEDGMENTS 

The first author was supported by Dong-eui University (2015AA184). 

REFERENCES 

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan.  2 (1950), 64-66. 

[2] M. Amyari and M.S. Moslehian, Approximately ternary semigroup homomorphisms, Letter  Math. Phy. 77 (2006), 1-9. 

[3] A. Cayley,  On the 34 concomitants of the ternary cubic, Am. J. Math. 4. 1(1881). 

[4] P. G vruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. 

Appl. 184 (1994), 431-436. 



ISSN 2277-3061                                                           

3120 | P a g e                                                   D e c e m b e r  0 1 ,  2 0 1 5  

[5] M.E. Gordji and H. Khodai, A fixed point technique for investigating the stability of -derivation on Lie C*-

algebras, Nonlinear Anal. 76 (2013), 52-57. 

[6] M.E. Gordji and A. Fazeli, Stability and superstability of homomorphisms on C*-ternary algebras, An. Stiint Univ. 
‘‘Ovidius’’ Constanta Ser. Math. 20 (2012), 173-188. 

[7] M.E. Gordji and A. Najati, Approximately JC*-homomorphisms : A fixed point approach, J. Geom. phy. 60(2010), 809-
814. 

[8] R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5, 848 (1964) ; 
http://dx.doi.org/10.1063/1.1704187. 

[9] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), 222-224. 

[10] M. Kapranov, I.M. Gelfand and A. Zelevinskii, Discriminants, Resultants and Multidimensional Determinants 
Birkhauser, Berlin, 1994. 

[11] R. Kerner, Ternary Algebraic Structures and Their Applications in Physics, (Pierre et Marie Curie University, Paris, 
2000); http://arXiv.org/list/math-ph/00110230. 

[12] S.S. Kim, G.Y. Kim and S.H. Kim, On the stability of -derivations and Lie C*-algebra homomorphisms on Lie 

C*-algebras: A  fixed  points  method, Math. Prob. Eng. 2013 (2013), Article ID 954749. 

[13] H. Khodaei, M.E. Gordji, S.S. Kim and Y.J. Cho, Approximation of radical functional equations related to quadratic 
and quartic mappings, J. Math. Anal. Appl, 395 (2012), 284-297. 

[14] M.S. Moslehian, Approximate C*-ternary ring homomorphisms, Bull. Braz. Math. Soc. 38 (2007), 611-622. 

[15] A. Najati, C. Park and J.R. Lee, Homomorphisms and derivations in C*-ternary algebras, Abs. Appl. Anal. 2009, 
Article ID 612392. 

[16] A. Najati and A. Ranjbari, Stability of homomorphisms for a 3D Cauchy-Jensen type functional equation on C*-ternary 
algebras, J. Math. Anal. Appl. 341 (2008), 62-79. 

[17] C. Park, Isomorphisms between C*-ternary algebra, J. Math. Anal. Appl. 327 (2007), 101-115. 

[18] C. Park, Homomorphisms between Poisson JC*-algebra, Bull. Braz. Math. Soc. 36 (2005), 79-97. 

[19] C. Park, J.M. Rassias and W.G. Park, Jordan derivations on C*-ternary algebras for a Cauchy-Jensen functional 
equation, Adv. Th. Math. Phy. 14(2010), 1-19. 

[20] C. Park and Th.M. Rassias, Homomorphisms in C*-ternary algebras and CB*-triples, J. Math. Anal. Appl. 337 (2008), 
13-20. 

[21] J.M. Rassias, On the Cauchy-Ulam stability of the Jensen equation in C*-algebras, Inter. J. Pure and Appl. Math. Sci. 
2 (2005), 92-101. 

[22] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-
130. 

[23] J.M. Rassias and H.M. Kim, Approximate homomorphisms and derivations between C*-ternary algebras, J. Math. 
Phys. 49. 063507 (2008). 

[24] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. 

[25] G.L. Sewell, Quantum Mechanics and Its Emergent Macrophysis, Princeton Univ. Press, Princeton (2002). 

[26] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John WILEY & Sons, New York, USA, 1940. 

[27] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983), 117-143. 

 

 


