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Abstract 

The results of direct numerical integration of the Navier-Stokes equations are evaluated against experimental data for the 
problem of flow around a hard sphere at rest. The evaluation is performed for both the sequence of vortex shedding regimes, 
replacing stable modes after the loss of stability, and the regime of turbulence replacing vortex shedding modes as Reynolds 
number Re increases. The evaluation demonstrates the unsuitability of classic hydrodynamics equations to interpret the 
phenomenon of vortex shedding. Moreover, the attainment of critical value of Re is accompanied by loss of the direction of 
instability development. Wrong direction of instability development results in the attainment of multiperiodic, that is, essentially 
chaotic, solution. Insurmountable discrepancies between calculation results and experimental data show that the chaotic 
deterministic solution to the Navier-Stokes equation is not suitable for interpretation of turbulence. An analogy is revealed 
between the sequence of modes observed in flow around a sphere as Re increases and sequence of modes in shear layer 
behind a cylinder with paraboloidal nose recorded while moving downstream along the contour of streamlined body. The 
conclusions are as follows. The turbulence of shear flow is regular unstable vortex shedding regime distorted by chaotic 
fluctuations. Solutions to the classic hydrodynamics equations are incapable of interpreting both regular and chaotic turbulence 
component. Multimoment hydrodynamics seeks for decision of these problems along the way toward an increase in the number 
of principle hydrodynamic values.  
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1. Introduction 

Turbulent phenomena have a very strong impact on the surrounding reality. This explains the huge efforts that are aimed at the 
study of turbulence. Statistical methods are not sufficiently effective to predict the characteristics of the turbulent phenomena. 
Therefore, understanding the mechanism of origin and development of turbulence is extremely important and relevant. This 
understanding makes it possible to reproduce turbulent phenomena through modeling. The relative simplicity of the semi-
empirical methods of calculating the turbulence encourages them to use when trying to reproduce the turbulent processes 
occurring in the environment and in industrial plants. However, the semi-empirical methods need to be clarified. Moreover, more 
rigorous calculations are required to determine their applicability ranges. 

The direct numerical integration of classic hydrodynamics equations is an accurate way of modeling the unstable processes. 
The direct numerical integration of instability was made possible comparatively recently, about thirty years ago. However, 
evaluation of the results of direct numerical integration against experiment gives the possibility to do some conclusions today.  

Section 2 of this paper is devoted to evaluation of the results of direct numerical integration of the Navier-Stokes equations 
against observed vortex shedding modes, replacing stable regimes in the problem of flow around a solid sphere at rest. In 
Section 3, the experimental data on transition from vortex shedding mode to turbulence in problem of flow past a sphere are 
analyzed. The observed turbulent regime is put in correspondence with calculated deterministic chaotic regime. The 
experimental data on transition to turbulence in shear layer behind an axially symmetric cylinder with paraboloidal nose are 
analyzed. In Section 4, the cause of the problems encountered by classic hydrodynamics is revealed. The paths of these 
problems decision within the frameworks of multimoment hydrodynamics are discussed.  

2. Vortex shedding in problem of flow around a sphere 

Analysis of the behavior of solution to the Navier-Stokes equations, after it loses stability, shows that the evolution of solution 
strictly follows the Landau-Hopf bifurcation scenario [1]. Namely, a solution, after it loses stability, bifurcates to a new stable 
position and experience either periodic or chaotic motion about it. The chaotic state is attained as a result of an infinite 
sequence of Hopf bifurcations. The power spectrum is discrete, approaching to continuous in the limit of infinite number of 
bifurcations. The chaotic state is deterministic, i.e., at a fixed initial and boundary conditions, representative point reaches the 
strictly defined phase space point at certain moment as many times as the calculation carried out. 
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Figure 1. Stable stationary flow 0 ( )cal
U x ,

*Re Re . Figure 1 was drawn using the calculation 

results obtained in [3]. 
 

The direct numerical integration of the Navier–Stokes equations in the problem of flow around a solid sphere at rest was 
performed by various numerical methods. Nevertheless, the results of all these numerical experiments were absolutely identical 
(see review [2]). In this problem with time independent boundary conditions, calculation finds two stationary stable velocity 

distributions, 0 ( )cal
U x  and 1 ( )cal

U x , and a non-stationary stable one-periodic velocity distribution, 2 ( , )cal tU x . Apart from the 

0 ( )cal
U x , 1 ( )cal

U x , and 2 ( , )cal tU x  solutions, the Navier–Stokes equations only have a multiperiodic, that is, essentially 

chaotic, solution 3 ( , )cal tU x . 

Figure 1 draws the flow picture represented by streamlines of the 
0 ( )cal

U x  stationary stable solution.  Figure 1 shows an 

axially symmetric toroidal recirculating zone(vortex) in the near wake behind the sphere, which originates a single rectilinear 
thread in the far wake.  

The stability of the 0 ( )cal
U x  solution with respect to small perturbations 0 ( , )cal tU x  was studied in [4]. The linearized Navier-

Stokes equations for 0 ( , )cal tU x were solved in cylindrical coordinates. Hydrodynamic value perturbations were expanded in a 

Fourier series in time t  and the azimuthal angle  , 
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In Equation (2.1), ( 1)i   ; m  is the azimuthal mode number; 
0

m  is the rate of growth (decay) of mode perturbations; and 

,r z  and   are the cylindrical x  vector coordinates. The direction of the z  axis of the system of coordinates coincides with 

the velocity vector of the free-stream flow.  

The eigenvalues of the rate 
0

m  of changes in mode perturbations corresponding to the azimuthal wave number 1m   are 

shown in Fig. 2. The eigenvalues move from left to right as Re  increases. Two leaders are ahead of the well-defined front of 

eigenvalues. After the attainment of 
*Re , the first leader with zero imaginary part (

0

1Im( ) 0  ) intersects the axis of 

ordinates. According to (2.1), small 
(1)

0 ( , , , )cal t r z U  perturbations, which are damped at 
*Re Re , begin to grow at 

*Re Re . It is shown in [4] that the mode with 1m   predominates in expansion (2.1); that is, this is the mode that most 

strongly influences the stability of the 0 ( )cal
U x  solution. It follows that the 0 ( )cal

U x  solution, which is stable at 
*Re Re , 

loses stability upon the attainment of 
*Re . As distinct from the approach used in [4], a non-stationary approach was applied in 

[3],[5].  In accordance with [3],[5], an increase in 
(1)

0 ( , , , )cal t r z U  effects the saturation of a new stable non-axisymmetric 

solution to the Navier-Stokes equations, 1 ( )cal
U x . The transition from 0 ( )cal

U x  to 1 ( )cal
U x  proceeds during the time interval 

0,1t . The 
*

0,1 ( , ,Re )cal tU x  time-dependent solution ( 0,10 t t   ) describes this transition (regular bifurcation).  
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Figure 2. Eigenvalues of the rate of mode perturbation changes 
0

m  corresponding to the 

predominant mode 1m  . Figure 2 was drawn using the calculation results obtained in [4]. 

 
 

In accordance with the flow pattern represented by streamlines of the 1 ( )cal
U x  non-axisymmetric stationary solutions [3], the 

upper and lower half of the near wake behind a sphere (Fig. 1) are weakly asymmetrical. Each of the near wake halves 

originates its own rectilinear thread in the far wake. According to the linear calculation of [4], 
*Re = 210, the calculation of [3] 

gives 
*Re = 211, the calculation of [5] gives 

*Re = 212. The Reynolds number is calculated from the sphere diameter. 

The second leader (Fig. 2) with a nonzero imaginary part (
0

1Im( ) 0  ) intersects the axis of ordinates after the attainment of 

** *Re Re . It follows that the 1 ( )cal
U x  solution stable at  

**Re Re  loses stability. Increasing perturbations result in the 

saturation of the 2 ( , )cal tU x  stable one-period limiting cycle [3],[5]. The transition from 1 ( )cal
U x  to 2 ( , )cal tU x  proceeds 

during the time interval 1,2t . The 
**

1,2 ( , ,Re )cal tU x  time-dependent solution ( 1,20 t t   ) describes this transition (Hopf 

bifurcation).  

The flow picture shown in Fig. 3 gives an idea of the total period of recirculating zone oscillations in the 2 ( , )cal tU x  wake 

behind a sphere [4]. The vortex structure of the lower recirculating zone half (Fig. 3) plays a very passive role during the period 

of oscillations T . It weakly moves and weakly changes in size. Conversely, the vortex structure in the upper half exhibits 

considerable activity. Its center periodically moves from the surface of the sphere to the periphery of the recirculating zone and 
the size of this structure periodically changes. Periodic restructuring that occurs in the near wake causes wave motion in the far 

wake. According to the linear calculation of [4], 
**Re =277.5, the calculation of [3] gives 270

**Re  280, the calculation of [5] 

gives 270
**Re  285.  
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Figure 3. Stable limiting cycle 2 ( , )cal tU x , 
** ***Re Re Re  , Re 300 . Streamline picture for 

every quarter of the period of oscillations T . Figure 3 was drawn using the calculation results 
obtained in [3]. 

 

The front of eigenvalues (Fig. 2) has two well-defined lines. The first eigenvalue of the first front line reaches the axis of 

ordinates at 
*** **Re Re . After the passage of 

***Re , the 2 ( , )cal tU x  limiting cycle loses stability.  As  Re  increases, each 

of the front eigenvalues intersects the axis of ordinates. When the last of eigenvalues of the second front line intersects the axis 

of ordinates, solution finds a new stable position 3 ( , )cal tU x  about which multiperiodic, that is, essentially chaotic, motion 

occurs [5]. The time-dependent solution 
*** ****

2,3( , ,Re ,Re )cal tU x , 2,30 t t   , describes the transition from 2 ( , )cal tU x  to 

3 ( , )cal tU x . According to the calculation of  [5], 
***Re =300. 

In accordance with the Landau-Hopf scenario, the system finds inself in a stable state at each instant and at each Re . The 

exception is made for short periods of time, 0,1t  at 
*Re = Re , 1,2t  at 

**Re = Re , and 2,3t  at 
**** ***Re = Re Re  . 

During these intervals, the flow experiences the restructuring which is completed by saturation of a new stable position. 
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It may be suggested that the field of the 
1

1  eigenvalues of the 
(1)

1 ( , , , )cal t r z U  mode perturbation of the 1 ( )cal
U x  

stationary non-axisymmetric solution should not be qualitatively different from the field of the 
0

1  eigenvalues of the 

(1)

0 ( , , , )cal t r z U  mode perturbation of the 0 ( )cal
U x  stationary axisymmetric solution at 

*Re Re . And at 
**Re Re , 

the field of the  
2

1  eigenvalues of the 
(1)

2 ( , , , )cal t r z U  mode perturbation of the 2 ( , )cal tU x  stationary nonaxisymmetric 

solution should not be qualitatively different from the field of the 
0

1  eigenvalues of the 
(1)

0 ( , , , )cal t r z U  mode perturbation 

of the 0 ( )cal
U x  stationary axisymmetric solution. Calculations [3],[5] substantiated this suggestion.  

 

Figure 4. Three stable medium states originating three turbulence development directions for flow 
past a sphere. The lower branch corresponds to the evolution of stationary axisymmetric flow 

0 ( )exp
U x : 

*

0 0Re Re ( , )exp t U x ; 
* **

0 0Re Re Re  , periodic pulsations of the axisymmetric 

recirculating zone in the wake behind a sphere 0 ( , )exp tV x ; 
** ***

0 0Re Re Re  , vortex ring shedding 

along a spiral path 0 ( , )exp tW x ; and 
***

0Re Re , helicoidal vortex sheet 0 ( , )exp tQ x . The middle 

branch corresponds to the evolution of stable steady non-axisymmetric flow 1 ( )exp
U x : 

*

1 1 1Re Re Re ( )exp  U x ; 
*

1Re Re , periodic horseshoe-shaped vortex loop shedding along a 

rectilinear path 1 ( , )exp tV x . The upper branch corresponds to the evolution of a stable central-type 

state 2 ( , )exp tU x : 
*

2 2 2Re Re Re ( , )exp t  U x ; 
* **

2 2Re Re Re  , periodic horseshoe-shaped vortex 

loop shedding along one of the double undulated thread branches 2 ( , )exp tV x ; and 
**

2Re Re , 

periodic vortex loop shedding along both double undulated thread branches 2 ( , )exp tW x , or 

periodic vortex ring shedding 2 ( , )exp tQ x . 
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That is, the field of eigenvalues exhibits exceedingly conservative behaviour. The replacement of the 0 ( )cal
U x  solution with the 

1 ( )cal
U x solution in eigenvalue field calculations does not cause changes in the direction of evolution at 

*Re Re , and the 

replacement of the 
0 ( )cal

U x  solution with the 2 ( , )cal tU x  solution does not cause changes  in the direction of evolution at 

**Re Re . That is, the results of linear calculation shown in Fig. 2 have neither qualitative no significant quantitative 

differences from the corresponding results in exact calculations [3],[5] within the whole range of Reynolds number Re . Namely, 

within the frameworks of linear calculation, the 
0 ( )cal

U x  basic stationary solution correctly reproduces both the direction of 

instability development and the critical values of Re  calculated strictly in [3],[5]. 

 

Linear analysis allows us to count all the medium stable states. Linear calculation allows us to find such characteristic features 

of the medium stable states as the wave number ( )m  and the frequency 
0Im( )m . However, the possibilities of linear 

analysis are limited. Linear calculations are not able to give more detailed information about the structure and parameters of 
new saturated stable flow. 

In the problem of flow around a solid sphere at rest, experiment records two stable medium states represented by the 0 ( )exp
U x  

and 1 ( )exp
U x  velocity distributions, and a stable state of the central type with the 2 ( , )exp tU x  velocity distribution. The 

0 ( )cal
U x  axisymmetric stationary solution (Fig. 1) satisfactorily reproduces the 0 ( )exp

U x  observed axially symmetric 

recirculating zone in the near wake behind a sphere, which originates a single rectilinear thread in the far wake.  The 1 ( )cal
U x  

non-axisymmetric stationary solution satisfactory reproduce the 1 ( )exp
U x  observed two weakly  asymmetric halves in the near 

wake behind a sphere with double rectilinear thread in the far wake.  The 2 ( , )cal tU x  limiting cycle (Fig. 3)  satisfactorily 

reproduces the 2 ( , )exp tU x  periodic restructuring of recirculating zone in the near wake behind a sphere, which causes wave 

motion in the far wake.  

According to the analysis of [2], the direction of turbulence development is directly determined by level of medium fluctuations 
(disturbances). If the level of medium fluctuations does not differ or slightly differs from the level of thermodynamic fluctuations, 
turbulence develops in a quite specific direction. If the level of fluctuations far exceeds the level of thermodynamic fluctuations, 
the system selects a qualitatively different direction of turbulence development. The level of medium fluctuations is determined 

by both the turbulence coefficient of running flow k  and various factors that distort the flow (see, review [2]). 

Thermodynamic fluctuation level can only be achived in experiments in which a sphere is dragged horizontally through an 
unperturbed medium at a strictly controlled constant velocity. Then, toroidal recirculating zone in the near wake behind a sphere 

0 ( )exp
U x  (Fig. 1) begins to pulsate periodically after the attainment of a certain critical Reynolds number 

*

0Re . The 

recirculating zone remains toroidal during pulsations, and its forefront is firmly fixed on the sphere. The 0 ( , )exp tV x
 
pulsating 

flow remains axisymmetric, lower branch in Fig. 4. The pulsations become increasingly well defined as Re  increases, and their 

amplitude grows. After the passage of 
**

0Re , the periphery of the recirculating zone begins to be periodically shed from its core 

and moves downstream. The shed vortex structure has the shape of a ring. Vortex rings depart from a sphere downstream and 

move along the spiral path 0 ( , )exp tW x  (Fig. 5a). The attainment of 
***

0Re  is accompanied by a change in the regime of vortex 

shedding from a sphere. At 
***

0Re Re , vortex rings penetrate into each other and form the 0 ( , )exp tQ x  continuous spiral 

sheet in the wake behind a sphere (Fig. 5b).  

The development of turbulence proceeds in a different direction in experiments where liquid drop or solid body settles in 
medium under the action of gravitation. In these experiments, the level of fluctuations greatly exceeds the thermodynamic level 

due to body vibration caused by the flow circulation in the wake. Then, the attainment of a certain Reynolds number 1Re  is 

accompanied by a rearrangement of the 0 ( )exp
U x  stationary axisymmetric flow. Namely, flow 0 ( )exp

U x  transforms into 

stationary stable nonaxisymmetric flow 1 ( )exp
U x  (Fig. 4). 
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Figure 5. a) vortex ring shedding along a spiral path 0 ( , )exp tW x , 

** ***

0 0Re Re Re  ; b) helicoidal 

vortex sheet 0 ( , )exp tQ x , 
***

0Re Re . Figure 5 was drawn using the experimental data from [6]. 

 

At the instant when the 1 ( )exp
U x  flow loses stability, experimental evidence also suggests two variants of instability 

development. Experiment [7] performed in water tunnel registers periodic street of horseshoe-shaped vortex loops. Vortex loops 
oriented in the same direction move from a sphere downstream along a rectilinear path, the middle branch in Fig. 4. 
Experiments performed in air tunnels have a significantly higher level of fluctuation in comparison with the fluctuation level of 
experiments performed in water tunnels. Experiments carried out in air tunnels find another direction of turbulence development. 

The attainment of a certain Reynolds number 
2Re   is accompanied by a rearrangement of the 1 ( )exp

U x  stationary 

nonaxisymmetric flow. Namely, flow 1 ( )exp
U x  transforms into nonstationary stable nonaxisymmetric state of central type 

2 ( , )exp tU x  (Fig. 4). 

After the attainment of a certain critical value of Reynolds number 
*

2Re , the 2 ( , )exp tU x  flow becomes unstable. Horseshoe-

shaped vortex loops are detached periodically from the recirculating zone core and rush downstream along one of the double 

undulated thread branches 2 ( , )exp tV x , Fig.6a. The attainment of the next critical value of the Reynolds number 
** *

2 2Re Re  

is accompanied by the appearance of the next vortex shedding mode 2 ( , )exp tW x  in the wake behind a sphere, Fig.6b. At 

**

2Re Re , horseshoe-shaped loops shed at two symmetry-coupled points move along two different double undulated thread 

branches. In addition, these vortex loops have diametrically opposite orientations. According to [9], two vortex shedding modes 

existed at 
**

2Re Re . Apart from the 2 ( , )exp tW x
 
mode discussed above, the 2 ( , )exp tQ x  regime was observed. In the 

2 ( , )exp tW x  mode, horseshoe-shaped vortex loops are shed, whereas the 2 ( , )exp tQ x  mode is characterized by vortex ring 

shedding. The selection of one of the two development variants, 2 ( , )exp tW x  or 2 ( , )exp tQ x , was a matter of chance in each 

separate experiment [9]. This direction of development is represented by the upper branch in Fig. 4. 
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Figure 6. a) periodic horseshoe-shaped vortex loop shedding along one of the double undulated 

thread branches 2 ( , )exp tV x  in uniform flow, 
*

2Re Re , Re 350 ; b) periodic vortex loop shedding 

along both double undulated thread branches 2 ( , )exp tW x  in uniform flow, 
**

2Re Re , Re 650 ; c) 

the 2 ( , )exp tW x  mode in uniform flow, 
**

2Re Re , Re 1350 ; d) the 2 ( , )exp tV x  mode in shear flow, 

*

2Re Re , Re 1444 . Figure 6 was drawn using the experimental data from [8]. 

 

In accordance with the interpretation of existing experimental data of [2], strong fluctuations inevitably cause the system to pass 

from the 0 ( )exp
U x  state to some point A  (Fig. 4), from which the system passes to the 1 ( )exp

U x
 
state. At 

*

0Re Re , the 

system cannot return from point A  to the 0 ( )exp
U x  state because the 0 ( )exp

U x  state is unstable at 
*

0Re Re . The absence 

of strong fluctuations allows us to track the growth of small perturbations of the 0 ( )exp
U x  stationary state, that is, record the 

behavior in time of the 0 ( )exp
U x  state itself, which loses stability at 

*

0Re Re  (the lower branch in Fig. 4). The strictly uniform 

profile of the flow running against a body corresponds to the boundary conditions of experiments, which guide the system along 
the lower branch in Fig. 4. It follows that the boundary conditions of these axperiments correlate with the boundary conditions of 
modeling. The boundary conditions of experiments where a liquid drop or hard body settles in a medium under the action of 
gravity, generally speaking, do not correlate with the boundary conditions of modeling. However, according to the calculation, 

after attainment of 
*Re , the 0 ( )cal

U x  solution, after it loses stability,  bifurcates to the 1 ( )cal
U x  stationary solution. The 

transition from 0 ( )cal
U x  to 1 ( )cal

U x  is at variance with the interpretation of experimental data. 
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A high level of medium fluctuations causes the transition of the system from the 1 ( )exp
U x  state to a certain point B  (Fig. 4), 

from which the system passes to the 2 ( , )exp tU x  state. At 
*

1Re Re , the system cannot return from point B  to the 1 ( )exp
U x  

state because the 1 ( )exp
U x  state is unstable at 

*

1Re Re . If the level of fluctuations is insufficient for the system to jump into 

point B , experiment records the behavior in time of the 1 ( )exp
U x  state itself, which loses stability at 

*

1Re Re  (the middle 

branch in Fig. 4). According to the calculation, after attainment of 
**Re , the 1 ( )cal

U x  solution, after it loses stability,  bifurcates 

to 2 ( , )cal tU x  limiting cycle. However, calculation does not take into account the fluctuation jump. It follows that the transition 

from 1 ( )cal
U x  to 2 ( , )cal tU x  is at variance with the interpretation of experimental data. 

Thus, experiment records six vortex shedding modes 0 ( , )exp tW x , 0 ( , )exp tQ x , 1 ( , )exp tV x , 2 ( , )exp tV x , 2 ( , )exp tW x , and 

2 ( , )exp tQ x , and one pulsation mode 0 ( , )exp tV x . Each of six vortex shedding modes is characterized by its own characteristic 

features intrinsic in it. Different experiments record different vortex shedding modes. However, irrespective of the experiment, 
periodic vortex shedding is an obligatory, well defined, and fairly prolonged along Reynolds numbers mode of the development 
of a turbulent process. The flow picture shown in Fig. 7 gives an idea of the appearance of vortex street. Vortex loop or vortex 

ring is periodically shed from the core of the non-axisymmetric recirculating zone 2 ( , )cal tU x  and rushes downstream along the 

undulated path 2 ( , )exp tV x , or 2 ( , )exp tW x , or 2 ( , )exp tQ x  (the upper branch in Fig. 4). Similarly, vortex loop is periodically 

shed from the core of the non-axisymmetric recirculating zone 1 ( )exp
U x  and rushes downstream along the straight path 

1 ( , )exp tV x (the middle branch in Fig. 4). Vortex ring is periodically shed from the core of the axially symmetric, pulsating, 

recirculating zone 0 ( , )exp tV x  and rushes downstream along a spiral path 0 ( , )exp tW x or 0 ( , )exp tQ x ( the lower branch in Fig. 

4). 

 

 
 

Figure 7. The detachment of the periphery of the recirculating zone originating a horseshoe- 

shaped vortex loop moving downstream, regime 2 ( , )exp tV x , 
* **

2 2Re Re Re  , Re 300 . Figure 7 

was drawn using the experimental data from [3]. 

 

The 2 ( , )cal tU x  stable limiting cycle is likely the only possibility of establishing correlation between the observed vortex 

shedding modes and the results of numerical integration. Indeed, the 0 ( )cal
U x  and 1 ( )cal

U x  solutions are stationary. The 

*

0,1 ( , ,Re )cal tU x , 
**

1,2 ( , ,Re )cal tU x , and 
*** ****

2,3( , ,Re ,Re )cal tU x  non-periodic solutions are limited in time. The 3 ( , )cal tU x  

mode following after the 2 ( , )cal tU x  monoperiodic limiting cycle is multiperiodic, that is, chaotic in essence. Correlation of 

3 ( , )cal tU x  with the observed strictly periodic vortex loops street is hardly possible.   
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It follows that the 2 ( , )cal tU x  monoperiodic limiting cycle must reproduce all the observed regular nonstationary periodic 

modes. The idea of bringing the 2 ( , )cal tU x  stable solution to interpret the six observed vortex shedding modes and the 

pulsation mode in wide range of Reynolds number values initially seems to have no prospects. Moreover, this idea is not able to 
resolve the encountered discrepancies when evaluating the results of calculation against experiment. Indeed, at each 

*

0Re Re , the 2 ( , )cal tU x  solution should simultaneously correspond to several non-stationary modes. For instance, at some 

***

0Re Re  value, experiment records four different vortex shedding modes, 0 ( , )exp tQ x  on the lower branch, 1 ( , )exp tV x  on 

the middle branch, and 2 ( , )exp tW x  and 2 ( , )exp tQ x  on the upper branch (Fig. 4). One solution, namely, 2 ( , )cal tU x  cannot 

however simultaneously correspond to four qualitatively different vortex shedding modes. Moreover, only three of six modes, 

0 ( , )exp tW x , 1 ( , )exp tV x , and 2 ( , )exp tV x  are monoperiodic, whereas the 0 ( , )exp tQ x , 2 ( , )exp tW x , and 2 ( , )exp tQ x  modes 

are two-periodic. Clearly, the 2 ( , )cal tU x  monoperiodic solution can by no means be put in correspondence to two-periodic 

modes. 

In [3],[5], the attempt was executed to attract the 2 ( , )cal tU x  stable one-period limiting cycle to interpret the 2 ( , )exp tV x  vortex 

shedding mode at 
*** **Re Re Re  . Let us consider the flow picture represented by streamlines in Fig. 3. After the 

appearance in the upper half of the wake behind a sphere (Fig. 3a), the size of the vortex structure becomes substantial at the 
surface of the sphere (Fig. 3b). Subsequently, the structure moves toward the periphery of the recirculating zone, which is 
accompanied by its continuous dissipation (Fig. 3c). Lastly, it fully disappears at the periphery of the recirculating zone (Fig. 3d). 
Because of the absence of the detachment of the recirculating zone periphery in Fig. 3, there is no vortex loop street in the 
wake behind a sphere. This picture is qualitatively different from the observed full period of oscillation of the recirculating zone 
[3]. As in calculations, the experimental vortex structure engendered begins to expand and move downstream. After reaching 
the periphery of the recirculating zone, this vortex structure, however, acquires a maximum size rather than dissipates as 
predicted by calculations. At the end of the period, the vortex localized at the periphery of the recirculating zone separates from 
this zone. The separation of the shed vortex from the recirculating zone is very clearly shown in Fig. 7. The periphery of the 
recirculating zone, which is periodically shed from the recirculating zone, rushes downstream and forms a vortex loops street 

(Fig. 6a). Therefore, the 2 ( , )cal tU x  stable solution is incapable of reproducing the 2 ( , )exp tV x  vortex shedding mode at 

*** **Re Re Re  . 

In [3],[5], observed vortex shedding put in correspondence with the calculated vorticity distributions ( , )ω t x . However, closed 

curves on the vorticity distributions in the far wake correspond to the wave motion in the far wake rather than vortex structures 

(Fig. 3). In accordance with [10], the observed vortex shedding put in correspondence with the 2 ( , )λ t x  boundaries of the 

regions of supposed existence of vortex structures in the far wake behind a sphere in [3]. However, flow patterns drawn by 
streamlines do not find the vortex structures within the regions of their supposed existence. In [3], the flow patterns of the near 
wake behind a sphere drawn by streaklines show a lines remind of horseshoe-shaped vortex loops. However, in the far wake 
behind a sphere, horseshoe-shaped vortex loops were not found. That is, the flow patterns drawn by streaklines also do not 
recorde vortex shedding. Therefore, attempts to put both vorticity distributions and boundaries of the regions of vortex structures 
supposed existence in correspondence to vortex shedding did not give the desired result. 

It follows that calculation cannot put anything in correspondence to seven of ten experimentally observed modes schematically 
shown in Fig. 4. Namely, to periodic axially symmetrical pulsation of the recirculation zone not accompanied by vortex shedding 

0 ( , )exp tV x , and six periodic vortex shedding modes 0 ( , )exp tW x  and 0 ( , )exp tQ x , 1 ( , )exp tV x , 2 ( , )exp tV x , 2 ( , )exp tW x , and 

2 ( , )exp tQ x . Calculation determines the direction of instability development, indicated by a dashed slant line in Fig. 4. That is, 

after the critical Reynolds number 
*Re  is reached, the solutions to the Navier–Stokes equations lose the ability to predict the 

direction of instability developments shown in Fig. 4 by three horizontal branches. Solutions to classic hydrodynamics equations 
successfully reach the boundary of the unstable field shown by a dashed slant line in Fig. 4. These solutions move along the 

boundary of this field as Re  increases. But solutions to classic hydrodynamics equations are unable to cross this boundary. In 

[2], the conclusion about discrepancy between the results of direct numerical integration of the Navier-Stokes equations and 
experiment is based on the deeper analysis. In [2], the responsibility for calculation failures has been laid on the Navier–Stokes 
equations themselves.   

3. Transition to turbulence in shear flow 

The first eigenvalue of the first front line reaches the axis ordinates at 
*** **Re Re  (Fig.2). After the passage of critical value 

***Re , the  2 ( , )cal tU x  limiting cycle loses stability. At  
****Re Re , the 2 ( , )cal tU x  solution is replaced by the multiperiodic, 

that is, essentially chaotic,  3 ( , )cal tU x  solution. However, such scenario of turbulence appearance contradicts the experiment. 
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There are no experiments, in which the turbulent regime substitutes any of medium stable states, 
0 ( )exp

U x , 1 ( )exp
U x , or 

2 ( , )exp tU x . The development of each of these stable states inevitably passes through the vortex shedding mode (Fig.4). 

Periodic vortex shedding is an obligatory, well defined, and fairly prolonged along Reynolds number regime of transition from 
stability to turbulence. This is the first significant discrepancy between calculation and experiment. 

The role played by fluctuations in experiments is not limited to determining the direction of turbulence development (Fig. 4). In 

addition, the level of medium fluctuations can substantially distort the observed flow pictures. At fairly high Re  values, chaotic 

fluctuations grow up to the extent that we cannot see the true flow picture. Medium fluctuations are the dominant factor in 

determining the place of randomness emergence in regular flow picture on the Re  scale. 

Experiments performed in an air tunnels and experiments where body settles in medium under the action of gravitation have the 
highest level of fluctuations. In Fig. 4, these experiments are represented by the upper branch. In the experiment performed in 

[8], randomness appeared in the system at Re between 
*

2Re  and 
**

2Re , 
*

2Re =300, 
**

2Re =800. Starting with Re = 420, the 

point of shedding began to move over the surface of the periphery of the recirculating zone, and shed vortex loops acquired 
irregularly twisted shapes. However, the emergence of randomness elements extremely weak distort the regular structure of 

vortex shedding. In the experiment performed in [9], randomness elements in vortex shedding became noticeable at Re > 700, 

and, in [11], randomness elements were already perceptible at Re =360.    

The absence of strong chaotic fluctuations allows us to observe the regular vortex shedding without signs of randomness even 
at fairly high Reynolds number values. In [7], experiment was performed in water tunnel, but the principle of water circulation 
was not used. The level of fluctuations was likely not high, well below the fluctuation level of the air tunnel. Experiment 

performed in [7] recorded the regular vortex shedding over the whole range of Reynolds number values studied, up to Re = 

3000. The lowest, almost thermodynamic level of fluctuations is ensured in experiments, in which the sphere is dragged 
horizontally through an unperturbed medium at a constant strictly controlled velocity [12], [6]. In such experiments, randomness 

elements are not observed on a strictly regular flow picture over the whole range of Reynolds numbers studied, up to  Re = 

30000 [6].  

Thus, the range of emergence of randomness elements in regular flow on the Re  scale to be  very wide. The lower boundary 

of this range has a few hundreds. The upper boundary of this range has not been established. The place of emergence of 

randomness elements on the Re  scale depends strongly on the level of medium fluctuations. This strong dependence is 

known since the times of O.Reynolds. The experiment records this relationship in each of the shear flows (boundary layers, jets 
and wakes, and flows in pipes and channels, etc.) [13]. 

Calculation draws a diametrically opposite picture of turbulence appearannce. The 0 ( )cal
U x  basic stationary solution is 

markedly different from the 1 ( , )cal tU x  stationary solution (Fig. 1) and is quite different from the 2 ( , )cal tU x  limiting cycle (Fig. 

3). However, as noted in Section 2, within the frameworks of linear approximation, the 0 ( )cal
U x  basic stationary solution sets 

the direction of the flow evolution, which coincides with the direction given by the exact calculation in the range 
* ****Re Re Re  . Moreover, critical values calculated in the linear approximation very poorly differ from those given by 

exact calculation.  

It is then highly improbable that the eigenvalue field of the 
(1)

2 ( , , , )cal t r z U  mode perturbation of the 2 ( , )cal tU x  solution 

can be qualitatively different from the eigenvalue field of the 
(1)

2 ( , , , )cal t r z U  mode perturbation of the 2 ( , )cal tU x  solution 

if 2 ( , )cal tU x  differs from 2 ( , )cal tU x  only to  within 0.1, which corresponds to maximum difference between the level of 

fluctuations in experiments performed in [8],[11] and the level of fluctuations in experiments performed in [6],[12]. Thus, a critical 

value of Reynolds number Re  corresponding to the appearance of randomness elements at the 2 ( , )cal tU x  regular solution 

(according to [5], 
***Re =300) depends very weakly or does not depend essentially on the level of fluctuations in experiment. 

This is the second significant discrepancy between calculation and experiment. 

According to experiments, a vortex street appears in the wake behind a sphere suddenly. This occurs after the attainment of a 
certain critical Reynolds number value. Starting with the moment of its origination, it is fairly well defined. Unlike the regular 
vortex shedding, increase in randomness occurs gradually. Completely chaotic picture replaces the picture of regular vortex 
shedding for a large range of Reynolds number values. In experiment performed in [8], the first randomness elements appeared 

at Re = 420. Randomness increases as Re  grows. At Re =650>
**

2Re  (Fig. 6b), chaos may not be able to distort the regular 

nature of vortex shedding. 

As Re  increases further, the structure of vortex loops becomes less clear (Fig. 6c, Re = 1350). In Fig. 6d, the structure of 

vortex loops becomes obscure and increasingly difficult to distinguish from a chaotic structure. The flow pattern (Fig. 6d) 

recorded for the shear flow at Re = 1444. In uniform flow, the Reynolds number value corresponding to full chaotic picture will 
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exceed Re =1444. The reason is as follows. The flow shift should be identified with an additional increase in the level of 

turbulence. Thus, in accordance with experiment performed in [8], the replacement of strictly regular vortex shedding flow by 

completely chaotic flow occurs gradually, within the large range of Reynolds number values ( Re >1000). 

Calculation draws a diametrically opposite picture of replacing the strictly regular mode by the completely chaotic mode. In 
accordance with Fig. 2, the distance between the first eigenvalue of the first front line and the last eigenvalue of the second front 

line is 
**** ***Re Re Re   approximately equals 40. Apparently, the intersection of the axis of ordinates by all the 

eigenvalues of the first front line is the sufficient condition for high distortion of regular flow pattern, then, Re  approximately 

equals 20. Further, take into account that calculated critical values in the linear approximation very poorly differ from those given 

by exact calculation. Thus, the regular flow pattern is replaced by a chaotic picture very quickly, within Re  approximately 

equals 20. This is the third significant discrepancy between calculation and experiment. 

Three significant discrepances between calculation and experiment lead to the following conclusion. The 3 ( , )cal tU x  

multiperiodic, in essence, chaotic deterministic solution to classic hydrodynamics equations is not suitable for the interpretation 
of observed turbulence. Losing the direction of instability development, classic solutions fail into deterministic chaos, which is 
not directly related to the turbulence recorded experimentally.   

Experiments with low level of medium fluctuations record the following set of flow regimes, replacing successively each other as 

Re  increases: basic axially symmetric recirculating zone, pulsating recirculating zone, street of separated vortex rings, street of 

adjoining vortex rings, i.e., vortex sheet (the lower branch in Fig. 4). Experiments with a high level of medium fluctuations record 
the following sequence of flow regimes: basic axially symmetric recirculating zone, secondary non-axisymmetric recirculating 
zone, recirculating zone with oscillating focus, several modes of vortex shedding, turbulence (the upper branch in Fig. 4). 
Experiments on the flow around other bodies of simple shape (cylinder, disc, plate) record the similar sequence of modes (see 
review [14]). 

Figure 8 demonstrates the structure of the shear layer behind a cylinder with axially symmetric paraboloidal nose at high angles 
of attack [15]. In experiment of [15], the body is dragged through an undisturbed medium in the air chamber. It ensures a low 
level of medium fluctuations. The following sequence of modes is observed: main recirculating zone (vortex) B, secondary 
recirculating zone S, primary recirculating zone A, street of adjoining vortex loops C, turbulence D. The secondary recirculating 
zone S is located between the primary and main ones. The experiment [15] records this sequence of modes in the shear layer 
while moving downstream along the contour of the streamlined body, accompanied by the growth of local value of Reynolds 

number Re . This sequence of modes is similar to one observed in the flow behind a bluff body as Re  increases. In [15], 

titanium tetrachloride was employed to produce a dense white smoke, appearing as a result of a chemical reaction with water in 
the air. The vortex loop structure appears with smoke filaments in the shear layer. The visualized image records CCD camera 
by use a strobe flash lamps. The experiments with a fine flow visualization technique also record vortex shedding in the shear 
layer [16],[17],[18], and [19]. Rough flow visualization technique also records vortex structures near the surface of the 
streamlined body. For a long time, it is considered that the presence of these structures is necessary condition for the 
appearance of turbulence in laminar shear layer [13]. 

Fine flow visualization technique of [15] has allowed revealing the evolution of the instability in the shear layer. The experiment 
of [15] records two coexisting streets of vortex loops. The secondary recirculating zone S gives the origine to preceding vortex 
loops street. The primary recirculating zone A gives the origine to delayed vortex loops street. The preceding vortex loops 
appear intermittently. The delayed vortex loops are stronger in magnitude than the preceding ones. The preceding vortex loops 
street is difficult to observe by visualizations, since it is overshadowed by the delayed one C (Fig.8). 

The process of separating the vortex loop from the recirculating zone core was studied in detail in [3] (Fig. 7). In accordance 
with Fig. 7, the vortex loop arises within recirculating zone. After reaching the border of the recirculating zone, vortex loop is 
detached from this zone and rushes downstream. Characteristic features of development of the vortex structure within the 
recirculating zone and type of separating vortex structure strongly depend on both the geometry of the streamlined body and the 
form of recirculating zone. However, it is very improbable that there is a mechanism of appearance of a vortex street different 
from the mechanism shown in Fig.7. 

In accordance with these ideas and Figures in [15], vortex loops separate periodically from the primary recirculating zone A and 
rush downstream along the contour of the streamlined body. Vortex loop increases in magnitude while propagating downstream 
from the middle of the nose. Increasing vortex loops encircle the main recirculating zone B and extend to the cylinder part of 
streamlined body. The street of adjoining vortex loops (vortex sheet) has the form of wave-like folds of the shear layer C. 
Elements of randomness D appear at the end of nose (Fig. 8). Fine uniform vortex loops become turbulent, changing the 
appearance to the rough vortex loops. The process of distortion of regular flow C (Fig. 8) is similar to the process of distortion of 

the 2 ( , )exp tW x regular flow (Fig. 6c). 
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Figure 8. Shear layer behind a paraboloidal-nose cylinder: angle of attack 

070α  , Re 7200 . 

Figure 8 was drawn using the experimental data from [15]. 

 

The established analogy between the mode sequence at instability development in the problem of flow around a sphere and the 
structure of shear layer behind a cylinder with the axially symmetric paraboloidal nose leads to the following conclusions. As 
shown in Section 2, solutions to the Navier-Stokes equations are not able to describe the process of separating the vortex loop 
from the recirculating zone adjacent to the surface of the streamlined body (Fig.7). As a result, solutions to these equations 
could not describe the phenomenon of vortex shedding represented by six regular periodic regimes in the problem of flow 
around a sphere. It is highly improbable that solutions to the Navier-Stokes equations can describe the process of separating 
the vortex loop from the recirculating zone A in more complex problem of the shear layer behind a cylinder. Therefore, it is 
highly improbable that solutions to the Navier-Stokes equations are able to describe the vortex loops street C (Fig.8). 

Analysis of experimental data on flow around a sphere shows that the process of turbulence development strongly depends on 

the turbulence level in incoming flow k . The absence of strong chaotic fluctuations allows us to observe the regular flow 

without signs of randomness even at very high Reynolds number values ( Re = 30000 in [6]). Different picture is observed at a 

high level of turbulence k  in incoming flow (Fig. 6). The chaotic fluctuations rise strongly in the wake behind a sphere. This 

growth allows us to observe elements of randomness in the wake. The randomness elements grow as Re  increases. Figure 6 

shows that at sufficiently high values of Re , experiment records the highest level of chaotic fluctuations in the near wake, both 

within the core and on the periphery of recirculating zone. High level of fluctuations achieved in the near wake contributes to the 
spread of detached vortex loops as they move in the far wake. The structure of vortex loops becomes obscure and increasingly 
difficult to distinguish from the chaotic structure at sufficiently large distances from the sphere.  Thus, chaotic distorting the 
regular flow picture by means of chaotic fluctuations growth is responsible for turbulence development (Fig. 6). 

The process of turbulence development observed in Fig. 6 is correlated with the process of turbulence development in the shear 

layer behind a cylinder (Fig. 8). The low level of fluctuations within incoming flow k  contributes to the formation of fine clearly 

defined vortex loops C. However, local Reynolds number value increases as we move downstream along the contour of the 

streamlined cylinder. Even low level of fluctuations k  gives the possibility to attain the turbulent regime as local Reynolds 

number value increases. Namely, moving downstream from the primary recirculating zone A, each fine vortex loop spreads and 
gradually loses its strict contours at the end of the nose D. 
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In the problem of flow around a bluff body, the Navier-Stokes equations find solutions to interpret all the medium stable states, 
stationary and non-stationary. However, the Navier-Stokes equations do not have solutions that can interpret the phenomenon 

of vortex shedding. Thus, the 3 ( , )cal tU x  deterministic chaotic solution immediately follows the 2 ( , )cal tU x  limiting cycle on 

Re  scale. That is, according to the solutions to the Navier-Stokes equations, turbulence replaces the 2 ( , )cal tU x  limiting cycle 

bypassing vortex shedding modes. As shown above, it is one of reasons for the insolvency of the 3 ( , )cal tU x  chaotic solution in 

interpretation of observed chaotic distortion of regular vortex shedding, i.e., the observed turbulence.   

It is reasonable to assume that the Navier-Stokes equations also have solutions to interpret all the stable medium states 
(stationary and non-stationary) in the shear layer. It means that the probability of the existence of solutions to the Navier-Stokes 
equations, interpreting stable recirculating zone (vortices) B, S, and A in the shear layer behind a cylinder, is extremely high. 
However, as noted above, it is most unlikely that the Navier-Stokes equations have solutions that can be put in correspondence 
with the vortex shedding modes, which arise behind the vortices A and S when the flow loses stability. That is, the direct 
numerical integration of the Navier-Stokes equations will not be able to interpret the vortex shedding mode C in the wake behind 
the recirculating zone A after stability loss. 

Landau scenario leads solutions, after they lose stability, to a new stable positions about which periodic motion is performed. 
Chaotic deterministic state is achieved as a result of sequence of Hopf bifurcations. According to Landau scenario, bifurcations 
inevitably lead to multiperiodic mode at the end of the body while moving downstream along the contour of the streamlined 
cylinder. However, solutions to the Navier-Stokes equations are also not able to pass through the vortex shedding modes during 
interpretation of the transition to turbulence in the shear layer. Therefore, deterministic solutions to the Navier-Stokes equations, 
interpreting the laminar-turbulent transition, are also not suitable to describe the observed chaotic distortion D of the vortex 
loops street C, that is, the observed turbulence (Fig 8). 

4. Regular and chaotic components in solutions to the multimoment hydrodynamics 
equations. 

In accordance with Section 3, experimental transition to turbulence proceeds through chaotic distortion of the regular regime of 
vortex shedding both in the wake behind a sphere and in the shear layer behind a cylinder. Evolution of solutions to classic 
hydrodynamics equations inevitably effects the attainment of deterministic chaos. However, the deterministic chaos is incapable 
of interpreting the experimental chaotic component of turbulence. Furthermore, as shown in Section 2, the Navier-Stokes 
equations are unsuitable of interpreting the experimental regular component of turbulence, that is, the vortex shedding modes. 
In accordance with the conclusions of [2],[14], the cause of these failures is an insufficient number of principle hydrodynamic 
values used in the formation of classic hydrodynamics equations. 

The classic hydrodynamics equations follow directly from the Boltzmann equation and, quite naturally, involve the error inherent 
in the derivation of the classic kinetic equation. Namely, the two-particle distribution function in collision integral is approximated 
by the product of two one-particle functions. The approximation used was called the molecular chaos hypothesis 
(«Stosszahlansatz»).The physical meaning of the Boltzmann hypothesis was disclosed in [14]. It was found that just the 
Boltzmann hypothesis allows classic hydrodynamics to be constructed for only three lower principal hydrodynamic values. The 
use of the Boltzmann hypothesis excludes higher principal hydrodynamic values from the participation in the formation of classic 
hydrodynamics equations. 

The possibility of the improvement of classic hydrodynamics equations should be sought on the way toward an increase in the 
number of principal hydrodynamic values. The formalism of the method [20],[21] allows hydrodynamics equations to be derived 
with an arbitrary number of principal hydrodynamic values specified beforehand. In [20],[21], multimoment hydrodynamics 
equations are constructed using seven principal hydrodynamic values. Just these seven values are measurable moments of the 
one-particle distribution function. 

The numerical integration of the multimoment hydrodynamics equations in the problem of flow around a solid sphere at rest 
[22],[23],[24],[25] showed that solutions to these equations lead the development of turbulence in the direction compatible with 

experiments (lower branch in Fig. 4). The stationary axisymmetric solution 0Sol  to the multimoment hydrodynamics equations 

satisfactorily reproduces the basic stable flow 0 ( )exp
U x . Upon reaching 

*

0Re , the solution 0Sol  loses stability. The first 

unstable flow 0 ( , )exp tV x  is satisfactorily described by the unstable axisymmetric solution 0Sol . Upon reaching 
**

0Re , the 

unstable solution 0Sol  for the periphery of the recirculating zone and in the far wake is replaced by the non-stationary solution 

2Sol , which describes a vortex ring moving downstream. The reason for the replacement is that the combination of solutions 

0Sol  and 2Sol  provides a sharper drop in the entropy in the course of evolution than the solution 0Sol  does [25]. In 

accordance with the combination of solutions 0Sol  and 2Sol , the vortex ring separates from the core of the recirculating zone 

and moves downstream. The process of detachment is repeated periodically. The combination of the solutions 0Sol  and 2Sol  

describes the vortex shedding mode 0 ( , )exp tW x . At 
***

0Re Re , the non-stationary solution 2Sol  at the periphery of the 
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recirculating zone and in the far wake behind the sphere is replaced by the non-stationary solution 1Sol , which also describes 

a vortex ring moving downstream. The reason for the replacement is that the combination of solutions 0Sol  and 1Sol  provides 

a sharper decrease in the entropy in the course of evolution than the combination of the solutions 0Sol  and 2Sol  does [25]. In 

accordance with the combination of solutions 0Sol  and 1Sol , the vortex rings periodically separate from the core of the 

recirculating zone and move downstream. The combination of the solutions 0Sol  and 1Sol  describes the vortex sheet 

0 ( , )exp tQ x . 

The multimoment hydrodynamics confirms the ideas of experiment on unstable nature of the phenomenon of vortex shedding. 

The intersection of the first critical Reynolds number value 
*

0Re  is accompanied by the stability loss. The system loses its 

stability when entropy produced in the system can not compensate entropy outflow through the surface confining the system. 
Such interpretation follows directly from the principle of retention and loss of the open system stability formulated in [25],[26]. In 
accordance with solutions to the multimoment hydrodynamics equations, the system, when loses its stability, remains further 

unstable. One unstable flow is replaced by another unstable flow as Re  grows. The replacement of one unstable regime by 

another is governed the tendency of the system to discover the fastest path to depart from the state of statistical equilibrium. 
This striving follows directly from the evolution criterion formulated in [25],[26]. Thus, the evolution of solutions in any way does 

not follow the Landau-Hopf bifurcation scenario on the Re  scale.  

The multimoment hydrodynamics equations [21], as well as the classic hydrodynamics equations, govern space and time 
evolution of the whole ensemble of systems (Gibbs ensemble) rather than of some individual system. All the macroscopic 
parameters of each individual system do not equal strictly to macroscopic parameters of the statistical system. Macroscopic 
parameters vary within certain limits corresponding to their possible fluctuations Thus, each statistical hydrodynamic value 

( , )M t x  is a linear combination of a great many dynamic hydrodynamic values. Let us denote their number by К, which can be 

infinitely large, 

                                          

1

( , ) ( , )
K

i

i

M t M t


x x                1K                                         (4.1) 

All the dynamic hydrodynamic values ( , )iM t x  are calculated within the classic mechanics. Fluctuation ( , )iM t x  at any 

time is defined as a difference between the dynamic and statistical hydrodynamic values, 

 

                                     ( , ) ( , ) ( , )i iM t M t M t x x x    1,..., , 1i K K              (4.2)    

 

In the regime of stability (
*

0Re < Re ), the overwhelming majority of dynamic hydrodynamic values passing in the immediate 

vicinity of ( , )M t x  at 0t    ( ( 0, ) ( 0, ) ( 0, ) 1i iM t M t M t      x x x ) will remain in the vicinity of ( , )M t x  

indefinitely long ( ( , ) ~ ( 0, )i iM t M t  x x ). Statistical solution ( , )M t x (represented by a trajectory in non-stationary 

case) describes most of the dynamic trajectories ( , )iM t x  with the fluctuation accuracy ( , ) 1iM t x . 

The situation in the unstable range (
*

0Re > Re ) is radically different. It immediately follows that each dynamic hydrodynamic 

value ( , )iM t x , strictly speaking, behaves in its own way. There is no unique ( , )M t x , which describes any dynamic 

hydrodynamic value from the set ( , )iM t x , 1,..., , 1i K K  , for the whole ensemble with the fluctuation accuracy 

( 0, ) 1iM t  x . Initially close trajectories diverge. The Gibbs ensemble disintegrates [21],[25]. 

Disintegration of the Gibbs ensemble in the unstable region suggests the follows. The multimoment hydrodynamics equations 
governing the Gibbs ensemble as a whole are invalid in the region where solutions to these equations become unstable. Strictly 
speaking, to solve the unstable problem accurately, one needs to switch from the statistical to the dynamic level of description 
and apply the equations of classic mechanics modeling the dynamics of each individual gas particle. Another algorithm was 

proposed in [27]. In accordance with [27], when modeling an individual system, each statistical hydrodynamic value ( , )M t x  in 

the equations of conservation should be supplemented with its fluctuation component ( , )iM t x  (4.2). In [22], the ( , )iM t x  

fluctuations are divided into two components, 
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                                       ( , ) ( , ) ( , )R S

i i iM t M t M t   x x x                               (4.3)                

 

Regular deterministic component appears in system after it loses stability. The ( , )R

iM t x  regular deterministic fluctuations 

(4.3) are interrelated both in time and space. The regular fluctuations attain the basic order of magnitude as unstable process 
develops.  

Stochastic (spontaneous) fluctuations ( , )S

iM t x  (4.3) are random independent events. Let characteristic spatial and 

temporal scales be l  and τ  correspondingly for a stochastic fluctuations. Small-scale stochastic fluctuations with l a  

and  0Reτ << a/U contribute very little, if at all, to the distribution of the hydrodynamic values ( , )M t x . However, space and 

time gradients of small-scale stochastic fluctuations are of the basic order of magnitude. Small-scale stochastic fluctuations 
ensure fulfillment of the conservation laws in the problem of flow around a solid sphere [22],[23],[25]. The emergence of large-

scale stochastic fluctuations ( ~l a  and 0Reτ ~ a/U ) can introduce distortions into observed regular flow pattern. Large-

scale stochastic fluctuations attain an basic order of magnitude.  

Even at a relatively high flow turbulence level k , experimental chaotic fluctuations remain small-scale ones. The sharp increase 

in experimental chaotic fluctuations may occur in the recirculating zone after passing the critical value of Reynolds number, 
*

0Re > Re . The reasons may be as follows. Figure 9 shows the time dependence of the dimensionless pair entropy 

(0) ( )pS t ,
(0) ( )pS t 

 calculated from the 0Sol  unstable solution at Re =400. The details of the calculation are represented in 

[22],[23]. The 0Sol  unstable solution describes the 0 ( , )exp tV x  pulsations of the recirculating zone in the wake behind a 

sphere after the 0 ( )exp
U x  solution loses stability. The intensity of pulsations increases as Re  rises. Beginning from the time 

0t   up to the time 
*

t t , the 
(0) ( )pS t  entropy  decreases very sharply within the vicinity of 

*
t t . The movement of the 

representative point over the 
(0) ( )pS t 

 curve from 
*

t t  to 2
*

t t  corresponds to the return of the recirculating zone to its 

original position, i.e., the position corresponding to the time 0t  . Since the time 
*

t t , the movement of the representative 

point is described by the reverse multimoment hydrodynamics equations [28]. The reverse set of equations is solved with 
progressive timing along the time axis. However, the positive direction of the time axis runs from the future to the past. This 

process is repeated with a period 2
*

T t . At 
*

0Re > Re , all the other hydrodynamic values exhibit similar behavior in the 

recirculating zone.  

The sharp increase in the ( , )R

iM t x  regular deterministic fluctuations within the recirculating zone is balanced by sharp rise 

in the ( , )S

iM t x  stochastic fluctuations in the conservation equations [22],[23],[25]. It is likely that there are many options for 

balancing. However, large-scale stochastic fluctuations are more preferred in this process compared to the small-scale 
stochastic fluctuations. Indeed, the emergence of large-scale stochastic fluctuations corresponds to a stronger deviation of 
system state from the state of statistical equilibrium, i.e., to a lower entropy. Therefore, the instability development through the 
development of large-scale stochastic fluctuations provides a faster path to depart from the state of statistical equilibrium 
compared to instability development through the development of small-scale stochastic fluctuations. Then, in accordance with  
the evolution criterion [25],[26], the system will go along the instability development path contained large-scale stochastic 
fluctuations. Moreover, before large-scale fluctuations arrive at the periphery of recirculating zone at the instant of separation, 
they may experience some periods of sharp increase in the recirculating zone (Fig. 9), i.e., to increase many times over. 
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Figure 9. Time behavior of the pair entropy 
(0)ˆ ( )pS t , 

+(0)ˆ ( )
+

pS t , Re 400 , ˆ 6.99t
*
 . 

 

5. Conclusions 

Experiment records three stable medium states for flow past a sphere. The 0 ( )exp
U x  stable stationary flow consists of an 

axisymmetric toroidal recirculating zone in the near wake (Fig. 1), which originates a single rectilinear thread in the far wake. 

The 1 ( )exp
U x  stable non-axisymmetric flow consists of two weakly asymmetric halves in the near wake, which originate two 

rectilinear threads in the far wake. The 2 ( , )exp tU x  central-type stable state is characterized by periodic restructuring in the near 

non-axisymmetric wake, which causes wavy motion in the far wake (Fig. 3). 

Each of the three stable states, 0 ( )exp
U x , 1 ( )exp

U x , and 2 ( , )exp tU x , is characterized by its own direction of turbulence 

development different from the other directions. These directions are schematically shown by three horizontal branches in Fig. 

4. Turbulence begins to develop upon the attainment of critical Reynolds number values, 
* *

0 1Re ,Re ,  and 
*

2Re , respectively. 

Turbulence development inevitably involves periodic vortex shedding modes. Each of the three turbulence development 
directions has vortex shedding features of its own only characteristic of the given direction. No matter what direction is selected 
by experiments, periodic vortex shedding is, however, an unavoidable, well-defined turbulence-development mode, which is 
fairly extended along the Re scale. Experiment records six vortex shedding modes 

0 ( , )exp tW x , 0 ( , )exp tQ x , 1 ( , )exp tV x , 2 ( , )exp tV x , 2 ( , )exp tW x , and 2 ( , )exp tQ x , and one pulsation mode 0 ( , )exp tV x . The 

recorded set of regular unstable periodic modes is most likely incomplete.  

The direct numerical integration of the Navier-Stokes equations in the problem of flow around a solid sphere at rest was 
performed in [3],[5]. In this problem with time independent boundary conditions calculation finds two stable stationary solutions, 

0 ( )cal
U x  and 1 ( )cal

U x , and the 2 ( , )cal tU x  stable non-stationary limiting cycle. Apart from the 0 ( )cal
U x , 1 ( )cal

U x , and 

2 ( , )cal tU x  solutions, the Navier-Stokes equations only have multiperiodic, that is, essentially chaotic, solution 3 ( , )cal tU x . The 

numerical integration of the Navier-Stokes equations shows that turbulence development occurs in strict correspondence to the 

Landau-Hopf scenario [1]. Accordingly, after some critical Reynolds number value 
*Re  is reached, the 0 ( )cal

U x  solution loses 
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stability and experiences bifurcation to the 1 ( )cal
U x  solution (regular bifurcation). The 1 ( )cal

U x  solution, after it loses stability 

at 
** *Re Re , experiences bifurcation to the 2 ( , )cal tU x  limiting cycle (the Hopf bifurcation). After some Reynolds number 

value 
***Re  is reached, the 2 ( , )cal tU x  limiting cycle loses stability and is substituted by the 3 ( , )cal tU x  deterministic chaotic 

solution.  It follows that, according to Landau-Hopf scenario, the system, after it loses stability, inevitably reaches a new stable 
position and experiences either periodic or chaotic motion about it. Calculation determines the direction of instability 
development, indicated by a dashed slant line in Fig. 4.  

According to the modeling performed in [3],[5], the evolution of the 0 ( )cal
U x  solution follows the slant direction (Fig. 4), 

whereas experiment directs the evolution of 0 ( )exp
U x  in the horizontal direction along the lower branch. According to [3],[5], the 

evolution of 1 ( )cal
U x  occurs in the slant direction (Fig. 4), whereas experiment directs the evolution of 1 ( )exp

U x  in the 

horizontal direction along the middle branch. According to [5], the 2 ( , )cal tU x  solution loses stability to be replaced by the 

3 ( , )cal tU x  chaotic solution, whereas experiment directs the evolution of 2 ( , )exp tU x  along the upper branch shown in Fig. 4. It 

follows that calculations give turbulence development direction incompatible with experiment. 

The separation of the shed vortex loop from the recirculating zone is very clearly shown in Fig. 7. Figure 7 gives the idea of the 
vortex shedding phenomenon. The experimental vortex structure engendered begins to expand and moves downstream within 
the recirculating zone. After reaching the periphery of the recirculating zone, this vortex structure separates from this zone and 

rushes downstream. An attempt to put the 2 ( , )cal tU x  limiting process in correspondence with the observed 2 ( , )exp tV x  vortex 

shedding did not give the desired result. The 2 ( , )cal tU x  limiting cycle is incapable of reproducing the 2 ( , )exp tV x  vortex 

shedding mode (Fig. 3). Really, after the appearance in the upper half of the wake behind a sphere, the size of the vortex 
structure becomes substantial at the surface of the sphere. Subsequently, the structure moves toward the periphery of the 
recirculating zone, which is accompanied by its continuous dissipation. Lastly, it fully disappears at the periphery of the 
recirculating zone. This is an essential difference between calculation and experiment. Because of the absence of the 
detachment of the recirculating zone periphery in Fig. 3, there is no vortex loop street in the far wake behind a sphere. 

Thus, the 0 ( )cal
U x , 1 ( )cal

U x , and 2 ( , )cal tU x  solutions satisfactorily reproduce three stable flows observed experimentally, 

0 ( )exp
U x , 1 ( )exp

U x , and 2 ( , )exp tU x . However, calculation are incapable of reproducing any of six periodic vortex shedding 

modes observed along the three turbulence development directions (Fig. 4).  Moreover, after the critical Reynolds number 
*Re  

is reached, the Navier-Stokes equations lose the ability to predict the directions of turbulence development shown in Fig. 4 by 
three horizontal branches.  

Losing direction of instability development, classic hydrodynamics equations arrive at  deterministic, multiperiodic, in essence, 

chaotic solution 3 ( , )cal tU x . The study of possibility to use the 3 ( , )cal tU x  solution of interpreting the observed appearance 

and development of turbulence has revealed three significant discrepancies. Firstly, the development of each of the stable 

medium states 0 ( )exp
U x , 1 ( )exp

U x , and  2 ( , )exp tU x , inevitably passes through the vortex shedding mode (Fig. 4). There are 

no experiments, in which the turbulent regime replaces any of these stable states bypassing vortex shedding modes. On the 
contrary, calculated transition to turbulence bypasses the modes of vortex shedding. 

Secondly, the level of medium fluctuations (disturbances) is the dominant factor in determining the place of randomness 

appearance in regular flow pattern on the Re  scale. Experiment records the first manifestations of the randomness in the 

regular flow within a very wide range of Reynolds number values. The lower boundary of this range equals to a few hundreds. 
The upper boundary has not been established. In experiment with low level of fluctuations [6], randomness was not observed in 

a strictly regular flow pattern over the whole range of Reynolds numbers studied, up to Re = 30000. Calculation draws a 

diametrically opposite picture of turbulence onset. The critical value of  Reynolds number 
***Re , which corresponds to origin of 

randomness in regular solution, depends very weakly or, in essence, does not depend at all on the experimental level of 

fluctuations (
***Re =300 was reported in [5]).  

Thirdly, according to experiment, completely chaotic picture substitutes the strictly regular vortex shedding pattern gradually, 

over a wide range of Reynolds number values ( Re >1000). Calculation draws a diametrically opposite picture for such 

substitution. Namely, highly chaotic picture replaces strictly regular flow pattern very quickly, within Re  approximately equals 

20.  

The analogy is revealed between the sequence of modes at instability development in the problem of flow around a sphere and 
the structure of the shear layer behind axisymmetric cylinder with paraboloidal nose. Namely, the sequence of modes observed 

in the flow around a sphere as Re  increases (Fig. 4) is similar to the sequence of modes recorded while moving downstream 
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along the contour of the streamlined cylinder (Fig. 8).  Figure 8 demonstrates two recirculating zones (vortexes) A and B, street 
of vortex loops C, turbulence D. Vortex loops periodically separate from the recirculating zone A and rush downstream. The 
street of adjoining vortex loops (vortex sheet) has the form of wave-like folds of the shear layer C. At the end of the nose D, 
vortex loop loses its strict contours. Characteristic features for the development of vortex structure within recirculating zone and 
type of separating vortex structure strongly depend on both the geometry of the streamlined body and the form of recirculating 
zone. However, it is highly improbable that there is a mechanism of vortex street occurrence different from the mechanism 
shown in Fig. 7. Namely, vortex loop engendered within the recirculating zone separates from it and rushes downstream. 

Figure 8 is obtained through a fine flow visualization technique in the experiment [15]. However, a great number of experiments, 
fine and coarse, records stable vortexes and vortex streets in the shear layer at a surface of streamlined profile. Therefore, it is 
reasonable to assume that the mechanism of transition to turbulence in the shear layer behind cylinder with the axisymmetric 
paraboloidal nose recorded in [15] is common (probably the only one) for each of shear layers. 

Experimental studies have shown that the mechanisms for turbulence development in boundary layers and channels are 
universal [29],[30]. Therefore, it is expected that the scenario of transition to turbulence as a result of chaotic distortions of 
regular unstable medium state is suitable for the interpretation of the laminar-turbulent transition in channels and pipes. 

Analysis of experimental data shows that the turbulence in shear flow is the result of chaotic distortion of regular vortex 
shedding regime. That is, the turbulence of shear flow is the vortex shedding regime distorted by chaotic fluctuations. The 
vortex shedding is the regular component of turbulence. In the turbulent flow, each hydrodynamic value is a linear combination 
of regular and chaotic components. More precise definition is as follows. The turbulence of shear flow is regular unstable regime 

distorted by chaotic fluctuations. This elaboration greatly supplements turbulent picture. Indeed, the 0 ( , )exp tV x  regular 

unstable mode also takes part in development of turbulence. Moreover, the sharp rise in the chaotic fluctuations, which distort 
the regular unstable flow, is simulated by sharp increase in the hydrodynamic values within the recirculating zone at the 

0 ( , )exp tV x  pulsating mode. 

In the problem of flow around a sphere, solutions to the Navier-Stokes equations satisfactorily reproduce all the observed stable 
flows. However, the Navier-Stokes equations do not possess the solutions to interpret the process of vortex structure separation 
from the core of recirculating zone, i.e., the vortex shedding. Thus, the Navier-Stokes equations are not able to interpret the 
regular component of turbulence. It is reasonable to assume that the Navier-Stokes equations also have the solutions to 
interpret all stable medium states, stationary and non-stationary, in shear layer. This means that the Hopf bifurcations 
consistently lead to stable solutions, which interpret recirculating zones (vortices) A and B in the shear layer behind a cylinder 
(Fig. 8). However, it is highly improbable that these stable solutions will be able to describe the process of vortex loop 
separation from recirculating zone in more complex problem of the shear layer behind a cylinder. That is, it is extremely unlikely 
that stable non-stationary solutions to the Navier-Stokes equations may be put in correspondence with the vortex shedding C in 
the shear layer. According to Landau scenario, a sequence of Hopf bifurcations will inevitably lead the solutions to classic 
hydrodynamics equations to a chaotic deterministic solution while moving downstream along the contour of streamlined body in 
the shear layer. 

In problem of flow around a sphere, the loss of direction of instability development is completed by attainment of the 3 ( , )cal tU x  

deterministic chaotic solution. The 3 ( , )cal tU x  deterministic solution  is not able to interpret the observed chaotic distortion of 

the vortex streets, 2 ( , )exp tV x  and 2 ( , )exp tW x  (Fig. 6). That is, the deterministic chaotic solution to the Navier-Stokes 

equations is not able to describe the chaotic component of turbulence.  

During the interpretation of the transition to turbulence in the shear layer behind a cylinder, solutions to the Navier-Stokes 
equations also can not take into consideration the vortex shedding modes. Therefore, it is reasonable to assume that the 
deterministic solutions to the Navier-Stokes equations, interpreting the laminar-turbulent transition, are not suitable to describe 
the observed chaotic distortion D of the vortex loops street C, that is, the observed turbulence (Fig. 8). Thus, the deterministic 
chaos is a dead end, into which solutions to the Navier-Stokes equations fail as a result of movement in the wrong direction.  
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