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ABSTRACT 

The object of the present paper is to study a perfect fluid Kähler spacetime. A perfect fluid Kähler spacetime satisfying the 
Einstein field equation with a cosmological term has been studied and the existence of killing and conformal killing vectors 
have been discussed. Certain results related to sectional curvature for pseudo projectively flat perfect fluid Kähler 
spacetime have been obtained. Dust model for perfect fluid Kähler spacetime has also been studied. 
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1. INTRODUCTION  

In 1983, B. O' Neill [1] discussed the application of semi-Riemannian geometry in the theory of relativity. The curvature 
structure of the spacetime is studied by V. R Kaigorodov [2] in 1983. These ideas of general relativity of spacetime are 
extended by A. K. Roychaudhury, S. Banerji and A. Banerji [3]. M. C. Chaki and S. Roy [4] studied spacetime with covariant 
constant energy momentum tensor. A. A. Shaikh, Dae Won Yoon and S. K. Hui [5] studied quasi-Einstein spacetime.                                                                                                                                                                                                              
In 2002, B. Prasad [6] defined a tensor field on a Riemannian manifold of dimension greater than 2 and he called it pseudo 
projective curvature tensor. This tensor is a generalisation of projective curvature tensor. Such tensor was studied on a φ-
recurrent Kenmotsu manifold by Venkatesha and C. S. Bagewadi [7]. C. S. Bagewadi, Venkatesha and N. S. Basavarajappa 
[8] studied such tensor on LP-Sasakian manifold while H. G. Nagaraja and G. Somashekhara [9] studied such tensor on a 
Sasakian manifold.                                                                                                                                                                       

The pseudo projective curvature tensor for an n-dimensional Riemannian manifold is given by 
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                                                 (1.1) 

where R , S , r and g  are Riemannian curvature tensor, Ricci tensor, scalar curvature and Riemannian metric of the 

manifold respectively. The Riemannian curvature tensor ( , )R X Y Z is  defined  as  

                                     ,
, X Y Y X X Y

R X Y Z Z Z Z     . 

Contracting equation (1.1) with a vector field W , we get 
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                   (1.2) 

    The importance of pseudo projective curvature tensor is well known in differential geometry of certain F-structures. If 

1a  and 
1

1
b

n
 


, the pseudo projective curvature tensor becomes projective curvature tensor. A manifold whose 

pseudo projective curvature vanishes at every point is called a pseudo projectively flat manifold. A pseudo projectively flat 



I S S N  2 3 4 7 - 3 4 8 7  

  V o l u m e  1 2  N u m b e r  3  

 J o u r n a l  o f  A d v a n c e s  i n  P h y s i c s  

4351 | P a g e                                        

S e p t e m b e r  2 0 1 6                                                      w w w . c i r w o r l d . c o m  

LP-Sasakian manifold was studied by C. S. Bagewadi, D. G. Prakasha and Venkatesha [10]. In this paper, we focus on 
the study of 4-dimensional Kählerian spacetime manifold. 

    In a 4-dimensional Kähler spacetime the following conditions hold: 

                                   
2 ,X                                                                                                                      (1.3)                                                                      

                                        , , ,g X Y g X Y                                                                                                       (1.4) 

                                          0,X Y                                                                                                                       (1.5) 

where   is 1 1  tensor field and g is Riemannian metric. Let us denote  X  by .X  The Ricci tensor in a Kähler 

manifold satisfies 

                                          , , .S X Y S X Y                                                                                                       (1.6) 

2. PERFECT FLUID KÄHLER SPACETIME 

    For 4-dimensional Kähler spacetime the Einstein field equation with cosmological constant is given by 

                               , , , , ,
2

r
S X Y g X Y g X Y kT X Y                                                           (2.1) 

          where   is cosmological term, k  is the gravitational constant and  ,T X Y  is the energy momentum tensor 

           given by                      

                            , , ,T X Y p A X A Y pg X Y                                                                      (2.2)  

           where  ,  p  and  A  being respectively energy density, isotropic pressure and 1-form defined by                                      

( ) ( , )A X g X U  for time-like vector field U . The time-like vector field U  is called velocity of the fluid and satisfies  

( , ) 1.g U U   . Also the energy density   and the pressure p  can be described in the sense that if   vanishes then 

the  matter of the fluid is not pure and if the pressure p  vanishes then the fluid is dust. 

 From equation (2.1) and (2.2), we get        

                    , , , ( ) ( ) ( , ) .
2

r
S X Y g X Y g X Y k p A X A Y pg X Y                             (2.3) 

      Replacing X  by  X  and Y  and Y  in equation (2.3), we get 

                           , , , ( ) ( ) ( , ) .
2

r
S X Y g X Y g X Y k p A X A Y pg X Y       

              (2.4) 

     Subtracting equation (2.3) from (2.4), we have 

                                  ( ) ( ) ( ) ( ) 0.k p A X A Y A X A Y                                                                    (2.5) 

       Putting Y U  in (2.5), we obtained 

                                    ( ) 0,k p A X                                                                                                    (2.6) 

    since 0k   and ( ) 0,w X   we have 

                           0p   .                                                                                                           (2.7) 

   Using (2.7) in equation (2.3), we get 
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                                                 ( , ) ( , )
2

r
S X Y kp g X Y

 
   
 

.                                                                        (2.8) 

    Putting { },iX Y e   1 4i   in equation (2.8) and taking summation over i we obtained 

                                              .
4

r
kp                                                                                                                      (2.9) 

    From equation (2.8) and (2.9), we get 

                                 ( , ) ( , ).
4

r
S X Y g X Y                                                                                                              (2.10) 

    Hence the perfect fluid Kähler spacetime is an Einstein manifold. 

    Again, using equation (2.7) in (2.2) we get 

                                ( , ) ( , ).T X Y pg X Y                                                                                                           (2.11)   

 Definition 2.1: A vector field ξ is killing vector field if and only if 

                                                £ ( , ) 0,g X Y                                                                                                        (2.12) 

    where £ denotes the Lie derivative with respect to the vector ξ. 

    Taking Lie derivative of both sides of equation (2.11), we get 

                                           £ ( , ) £ ( , ).T X Y p g X Y                                                                                        (2.13) 

    If ξ is killing vector field, we have (2.12). In view of (2.12), equation (2.13) gives 

                                             £ ( , ) 0.T X Y                                                                                                           (2.14) 

    Conversely, suppose that equation (2.14) holds. Equation (2.13) gives £ ( , ) 0g X Y  , provided 0.p   Hence ξ is 

a killing vector field. 

    This leads to: 

    Theorem 2.2: In a perfect fluid Kähler spacetime admitting the Einstein field equation with a cosmological term, there 

exists a killing vector field ξ if  the Lie derivative of the energy momentum tensor with respect to ξ vanishes. Conversely if 

the Lie derivative of the energy momentum tensor with respect to ξ vanishes then ξ is killing vector field provided 0.p   

    Definition 2.3: A vector field ξ satisfying equation 

                                           £ ( , ) 2 ( , ),g X Y g X Y                                                                                          (2.15) 

    where Ω is a scalar function, is called a conformal killing vector field [11]. A spacetime satisfying equation (2.15) is said 
to admit a conformal motion. 

    From equations (2.13) and (2.15), we get 

                                  2 ( , ) £ ( , )g X Y T X Y  .                                                                                                (2.16) 

    Using equation (2.11) in (2.16), we get 

                                   £ ( , ) 2 ( , ).T X Y T X Y                                                                                                  (2.17) 

    From equation (2.16) we can conclude that the energy momentum tensor has the symmetry inheritance property 
[12,13]. Thus, we can state: 

    Theorem 2.6: A perfect fluid Kähler spacetime manifold satisfying the Einstein field equation with a cosmological term 

admits a conformal killing vector if and only if the energy momentum tensor has the symmetric inheritance property. 

3. PSEUDO PROJECTIVELY FLAT PERFECT FLUID KÄHLER SPACETIME  

 Let V₄ be the spacetime of general relativity. The pseudo projective curvature tensor for this space assumes the 

following form;    
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 

                        (3.1)          

   If ( , , , ) 0,P X Y Z W  , then equation (3.1) gives 

   

   

( , , , ) , ( , ) , ( ,

, ( , ) , ( , ) ,
4 3
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R X Y Z W S X Z g Y W S Y Z g X W
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r a
b g Y Z g X W g X Z g Y W

a

   

 
      

 

                                                         (3.2)    

  Putting the value of Ricci tensor S from (2.10) in (3.2), we have  

         ( , , , ) , ( , ) , ( , )
12

r
R X Y Z W g Y Z g X W g X Z g Y W                                                   (3.3) 

Thus we can state: 

 Theorem 3.1:  A pseudo projectively flat perfect fluid Kähler spacetime is of constant curvature. 

  Let U 
 be the 3-dimensional distribution in a pseudo projectively flat perfect fluid spacetime orthogonal to U . 

Then by putting Z Y  and T X  in (3.3) we have      

       ( , , , ) , ( , ) , ( , ) ,
12

r
R X Y Y X g Y Y g X X g X Y g Y X                                                                                                                                                                                                               

 where , .X Y U   Putting Y U ,  we have 

    ( , , , ) ( , ),
12

r
R X U U X g X X                                                                                                  

where .X U   If we denote the sectional curvatures by  ,K X Y  and  ,K X U  determined by ,X Y  

and ,X U respectively then from the above equations, we have 

                        
   

( , , , )
( , )

, ( , ) , ( , )

R X Y Y X
K X Y

g X X g Y Y g X Y g X Y



                                                 (3.4)                                                     

                                               ,
12

r
     

and 

                               
   

( , , , )
( , ) ,

, ( , ) , ( , )

R X U U X
K X U

g X X g U U g X U g X U



                                                    (3.5)     

                                                          .
12

r
     

  Thus we have: 

   Theorem 3.2: In a pseudo projectively flat perfect fluid Kähler spacetime the sectional curvature determined by 

,X Y U  and sectional curvature determined by two vectors X  and U  are same and equal to .
12

r
 

    A Lorentzian manifold was called by Karcher [14] infinitesimally isotropic relative to the velocity vector field U  if the 

Riemannian curvature tensor R  satisfies 

                           ( , , , ) , ( , ) , ( , ) ,R X Y Y X l g Y Z g X W g X Z g Y W                                             (3.6) 
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and     

                                       ( , , , ) ( , ),R X U U Y mg X Y                                                                                    (3.7) 

    where l  and m  are real valued functions and , , , .X Y Z U U   Putting Y Z U  in (3.3), we get 

                                    ( , , , ) ( , ).
12

r
R X U U W g X W                                                                                 (3.8) 

    Hence from (3.7) and (3.8), we can state: 

    Theorem 3.3: A pseudo projectively flat perfect fluid Kähler spacetime obeying the Einstein field equation with a 

cosmological constant and having the vector field U  as the velocity vector field is infinitesimally spatially isotropic relative 

to the unit time-like vector field U . 

    Einstein's field equation without cosmological constant is given by 

                                            ( , ) ( , ), ( , ),
2

r
S X Y g X Y kT X Y                                                                      (3.9) 

    where r  be the scalar curvature of the manifold and 0k  . 

    Using equation (2.11), we get 

                                       ( , ) ( , ) ( , ).
2

r
S X Y g X Y kpg X Y                                                                        (3.10) 

Putting { }iX Y e  in equation (3.10) and taking the summation over ,i 1 4i  , we get 

                                                            4 .r kp                                                                                                 (3.11) 

Using equation (3.11) in (3.10), we obtained 

                                                  ( , ) ( , ).S X Y kpg X Y                                                                                 (3.12) 

The Einstein field equation for purely electromagnetic distribution [15] in Kähler spacetime is given by 

                                                   ( , ) ( , ).S X Y kpg X Y                                                                                  (3.13) 

From equations (3.12) and (3.13), we get 

                                                     0.p   

    Putting  0p   in (2.11) gives 0r  . 

     Using 0r  in equation (3.3), we get 

                                              ( , , , ) 0,R X Y Z W   

    which shows that the spacetime is flat. Hence, we have: 

    Theorem 3.4: A pseudo projectively flat Kähler spacetime satisfying the Einstein field equation without cosmological 

term is an Euclidean space. 

        Note: This theorem points towards the conditions under which a Riemannian space can be reduced to a Euclidean 

space [16]. 

4. DUST MODEL FOR PERFECT FLUID KÄHLER SPACETIME  

    The energy momentum tensor for dust model (i.e isotropic pressure 0p   and 0  ) is 

                                              , ( ) ( ).T X Y A X A Y                                                                              (4.1) 

Using equations (2.11) and (4.1), we get 

                                              , ( ) ( ).pg X Y A X A Y                                                                           (4.2 
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 Putting iX Y e  in (4.2) and taking the summation over ,i 1 4i  , we get 

                                                4p  .                                                                                                       (4.3) 

Now putting ,X Y U  , in equation (4.2), we obtain 

                                                .p                                                                                                          (4.4) 

From equations (4.3) and (4.4), we get 0  . 

Thus, we have: 

 Theorem 4.1: A perfect fluid Kähler spacetime satisfying the Einstein field equation with a cosmological term represent a 

dust cosmological model if 0  . 

    REFERENCES 

I. Neill, B.O. 103(1983). Semi-Riemannian Geometry with application to Relativity, Pure and applied Mathematics, 
New York, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers].  

II.  Kaigorodov, V. R. 14(1983). The curvature structure of spacetime, Prob. Geom., 177-204. 

III. Roychudhury, A. K., Banerji,S.,  Banerjee, A. 1992. General Relativity, Astrophysics and Cosmology, Springer-
Verlag. 

IV.  Chaki, M. C. and Roy, S. 35(1996).  Spacetime with covariant constant energy momentum tensor, Int. J. Theor. 
Phys., 1027-1032. 

V. Shaikh, A. A., Yoon D. W. and Hui, S. K. 33(2009). On quasi-Einstein spacetime, Tshukuba J. Maths., 305-326. 

VI. Prasad, B. 94(3) (2002)  On pseudo projective curvature tensor on a Riemannian manifold, Bull. Cal. Math. Soc., 
163-166. 

VII. Venkatesha and Bagewadi, C. S., 32(3) (2006),.On pseudo projective ϕ-recurrent Kenmotsu manifolds, Soochow 
Journal of Mathematics, 433-439. 

VIII. Bagewadi, C.S., Venkatesha and Basavarajappa, N.S.  16 (2008) On LP-Sasakain manifold, Scientia Series A: 
Mathematical Sciences, 1-8. 

IX. Nagaraja, H.G.  and Somashekhara, G. 27(6) (2011) On pseudo projective curvature tensor in Sasakian manifolds, 
Int. J. Contemp. Math. Sciences, 1319-1328. 

X.  Bagewadi, C.S., Prakasha, D.G. and Venkatesha, 61(2007)On pseudo projectively flat LP-Sasakain manifold with a 
coefficient α, Annales Universitatis marie Curie-Sklodowska, 1-8. 

XI. Ahsan, Z. and Ali, M. 2016. Curvature tensor for the spacetime of General Relativity, arXiv: 1506.03476V2 [Math. 
DG], 1-15.,  

XII. Pandey, P.N., 24(1982). On Lie recurrent Finsler manifold,Indian Journal of Mathematics,135-143. 

XIII. Pandey, P.N. and Saxena, S., 136(12)(2012). On projective N-curvature inheritance, Acta Math. Hungar, 30-38. 

XIV. Karchar, H. 38(1982). Infinitesimal characterization of Friedmann Universes, Arch. Math. Basel,  58-64. 

XV. Ahsan, Z., and Siddiqui, S.A.,48(11)(2009).Concircular curvature tensor and fluid spacetime, Int. J .Theor. Phys., 
3202-3212. 

XVI. Yano, K.,16 (1940). Concircular geometry I. Concircular transformation, Proc. Imp. Acad. Tokyo, 195-200.                                                 

 


