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ABSTRACT 

A classic problem of the motion of a projectile thrown at an angle to the horizon is studied. The air drag force is taken into 
account as the quadratic resistance law. An analytic approach is used for the investigation. Simple analytical formulae 
are used for constructing the envelope of the family of the projectile trajectories. The equation of envelope is applied for 
the determination of the maximum range of flight. The motion of a baseball is presented as an example. 
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INTRODUCTION 

The problem of the motion of a point mass (projectile) thrown at an angle to the horizon in midair has a long history. It is 
one of the great classical problems. The number of works devoted to this task is immense.  It is a constituent of many 
introductory courses of physics. With zero air drag force, the analytic solution is well known. The trajectory of the point 
mass is a parabola. In situations of practical interest, such as throwing a ball, taking into account the impact of the medium 
the quadratic resistance law is usually used. In that case the mathematical complexity of the task strongly grows.  The 
problem probably does not have an exact analytic solution.  Therefore the attempts are being continued to construct 
approximate analytical solutions  for this problem. In this paper an analytic approach is used for the investigation of the 
projectile motion in a medium with quadratic resistance. For the first time simple analytical formulae are used for 
constructing the envelope of the family of the point mass trajectories. The equation of envelope is applied for the 
determination of the maximum range of flight. The motion of a baseball is presented as an example. The proposed 
analytical solution differs from other solutions by simplicity of formulae, ease of use and high accuracy. All required 
parameters are determined directly from the initial conditions of projectile motion -  the initial velocity and angle of 
throwing. The proposed formulae make it possible to study the motion of a projectile in a medium with the resistance in the 
way  it is done for the case without drag. The object of the present work is to give  simple formulae for the construction 
ofthe projectile trajectoriesunder the motion with quadratic air resistance. These formulae are available even for first-year 
undergraduates. 

The problem of the motion of a projectile in midair arouses interest of authors as before [1–3]. For the construction of the  
analytical solutions various methods are used – both the traditional approaches [4–9], and the modern methods[10]. All 
proposed approximate analytical solutions are rather complicated and inconvenient for educationalpurposes. This is why 
the description of the projectile motion by means of a simple approximate analytical formulae under the quadratic air 
resistance is of great  methodological and educationalimportance. In [11–13] comparatively simple approximate analytical 
formulae have been obtained to study the motion of the projectile in a medium with a quadratic drag force. In this article 
these formulae are used to solve the classical problem of maximizing the projectile distance with using the envelope. In 
papers [2,16] the equation of the envelope was used to solve problems of maximizing the range of the projectile only 
within parabolic theory.From now on the term “point mass” means the center of mass of a smooth spherical object of  finite 
radius r and cross-sectional area S = πr

2
. The conditions of applicability of the quadratic resistance law are deemed to be 

fulfilled, i.e. Reynolds number Re lies within 1×10
3 
< Re < 2×10

5
. These values correspond to the projectile motion velocity 

, lying in the range between 0.25 m/s and 53 m/s. 

EQUATIONS OF POINT MASS MOTION AND ANALYTICAL FORMULAE FOR BASIC 
PARAMETERS 

Suppose that the force of  gravity affects the  point mass together with the force of air resistance  R (Fig.1).Air resistance 
force is proportional to the square of the velocity of the point mass and is directed opposite the velocity vector. For the 

convenience of further calculations,  the drag force  will be written as 
2R mgkV  .  Here   m  is the mass of the 

projectile, g is the acceleration due to gravity,  k  isthe proportionality factor.  Vector equation of the motion of the point 
mass has the form 

mw = mg + R, 

wherew – acceleration vector of the point mass. Differential equations of the motion,  commonly used in ballistics, are as 

follows [14] 

2gkVθsing
dt

dV
 ,    

V

θcosg

dt

θd
  ,     θcosV

dt

dx
 ,     θsinV

dt

dy
 .         (1) 

Here V  is the velocity of the point mass, θis the angle between the tangent to the trajectory of the point mass and the 
horizontal, x, y are the Cartesian coordinates of the point mass, kis  

2

1
,

2

a d

term

c S
k const

mg V


    

aisthe air density,  cdisthe drag factor for a sphere,S  is the cross-section area ofthe object,andVterm  is the terminal 

velocity.The first two equations of the system (1) represent the projections of the vector equation of motion on the tangent 
and principal normal to the trajectory, the other two are kinematic relations connecting the projections of the velocity vector 
point mass  on the axis  x, y  with derivatives of the coordinates. 

The well-known solution  of system (1) consists of an explicit analytical  dependence  of  the  velocity  on  the  slope  angle  
of the trajectory and three quadratures 
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Figure 1.Basic motion parameters. 

HereV0   andθ0are the initial values of the velocity and the slope of the trajectory respectively,  t0is the initial value of the 

time, x0, y0are the initial values of the coordinates of the point mass (usually accepted 
0 0 0 0t x y   ). 

The derivation 

of the formulae (2) is shown in the well-known monograph [15]. The integrals on the right-hand sides of formulae (3) 
cannot be expressed in terms of elementary functions. Hence, to determine the variables t, x and y we must either 
integrate system (1) numerically or evaluate the definite integrals (3). Formulae (2) of this solution will be used later. 

Comparatively simple approximate analytical formulae for the main parameters of motion of the projectile are derived in 
[11, 13]. The  four parameters  correspond to the  top  of the  trajectory, the four other parameters correspond to the point 
of drop. We will give a complete summary of the formulae for the maximum height of ascent of the point mass  H,  motion 
time Т,  the velocity at the  trajectory apex  Va = V(0),  flight range   L,  the time of ascent  ta,  the abscissa of the trajectory 
apex  хa ,  impact angle with respect to the horizontal   θ1  and the final velocity  V1(Fig. 1). These formulae are 

summarized in the right column of Table 1. In the left column of this Table 1  similar formulae of the parabolic theory are 
presented for comparison. With zero drag (k = 0), these formulae go over into the respective formulae of the point mass 
parabolic motion theory. All motion characteristics described by these formulae  are functions of initial conditions of 

throwing  V0 , θ0. Proposed formulae have a bounded region of application. We introduce the notation 
2

0p kV . The 

dimensionless parameter p  has the following physical meaning – it is the ratio of air resistance to the weight of the 
projectile at the beginning of the movement. The main characteristics of the motion  H, T, Va, L,  хahave accuracy to within  
2 - 3%  for values of the launch angle, for initial velocity and for the parameter  p  from ranges 

0°≤θ0≤ 70°,   00 50V   m/s  ,   0≤  p≤ 1.5. 
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Table 1.Analytical formulae for the main parameters. 

No drag( R = 0 ) Quadratic drag force ( R = mgkV2 ) 
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For a baseball the typical values of the drag force coefficient  kare about 0.0005 ÷ 0.0006  s
2
/m

2
,maximal initial velocity  is 

about 50m/s [1,9]. Therefore the proposed formulae are suitable for the qualitative and quantitative description of the 
baseball and other similar objects motion. 

These formulae, in turn, make it possible to obtain a simple analytical formula for the main functional relationship of the 
problem  y(x) [11].In the absence of air resistance, the trajectory of a point mass is a parabola. The equation of the 
trajectory can be written in two forms. It can be written in terms of the initial conditions of throwing V0 , θ0 ( first form). It 
can also be written in terms of the motion parameters  H, L, xa(second form) 

2

0 2 2 2

0 0

( )
( ) tan .

2 cos
 

a

gx Hx L x
y x x

V x





    (4) 

The trajectory is symmetric with respect to the maximum. When the point mass is under a drag force, the trajectory 
becomes asymmetrical.  The top of the trajectory is shifted towards the point of incidence. In addition, a vertical asymptote  
appears near the trajectory. Taking these circumstances into account, the function  y(x) may be constructed using 
parameters   H, L , xaas [11] 

2

( )
( )

( 2 )a a

Hx L x
y x

x L x x




 
 .                                           (5)         

The constructed  dependencey(x) provides  the shift  of  the apex of  the trajectory  to the right and has a vertical 
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asymptote. In the case of no drag L = 2xaand formula (5) goes over to formula (4). Wenotethe remarkable  property of 
formula (5). We insert the exact values of the parameters  L, Н,хa , obtained by numerical integration of system (1), into  
formula (5).  Then the numerical trajectory and the analytical trajectory constructed by means  offormula (5) are identical. 
This means that formula (5) approximates absolutely precisely  projectile's trajectory which is numerically constructed 
using system (1) at any values of the initial conditions V0 ,θ0. 

As an example of the use of the proposed formulaeforH, L, хafrom the Table 1 and of formula (5) we calculated the motion 
of a baseball with the following initial conditions 

 

V0 = 40  m/s ,  θ0  = 45°,  k = 0.000625  s
2
/m

2
 ,  g = 9.81  m/s

2
.               (6) 

 

An  approximate trajectory is constructed.  It is shown in  Fig. 2 (dotted line). The thick solid line in Fig. 2 is obtained by 
numerical integration of system(1) with the aid of the 4-th order Runge-Kutta method. As it can be seen from Fig. 2, the 
analytical solution (formula (5)) and a numerical solution are almost the same. The dashed line in Fig. 2 is constructed in 
the absence of air resistance. 

 

Figure 2.The graph of the trajectory  y=y(x). 

One of the most important aspects of the projectile motion problem is the determination of an optimum angle of throwing 
of a point mass which provides the maximum range. The equation for the optimum angle of throwing αin the case when 
the points of incidence and throwing are on the same horizontal is obtained in [12]: 

 
2

2

sin 1
tan

4 4 sin 1 sin cos

p p

p p

 


   


 

  
.                (7) 

Here
2

0p kV ,   ln tan
2 4

 
 

 
  

 
. The dependence of the root of equation (7) on the parameter  p  is 

represented in Fig. 3. We use Fig.3for constructing the envelope. 
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Figure 3. The graph of function   = (p) . 

THE EQUATION OF THE ENVELOPE IN MIDAIR 

In the case of no drag the trajectory of a point mass is a parabola. For different angles of throwing under one and same 
initial velocity the projectile trajectories form a family of parabolas. The maximum range and the maximum height for 
limiting parabolas are given by formulae 

2
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V
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g
                                               (8) 

The envelope of this family is also a parabola, the equation of which is usually written as [16] 
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Using (8), we will convert theequation(9)  as 

 
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2
.




max max
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H L x
y x

L
                                          (10)     

We will set up an analytical formula similar to (10)for the envelope of the projectiletrajectories taking into account the air 
drag force.Considering(10), we will write down an equation of the envelope as 

 
 2 2

2 2






max max

max

H L x
y x

L ax
.                                                 (11) 

Such structure of the equation takes into account the fact that the envelope has the maximum under    х= 0. Besides, this 
function underthe conditions  0 <a< 1has a vertical asymptote, as well as any projectile trajectory accounting the 
resistance of air. In (11)Hmaxis the maximum height, reached by the projectile when throwing with initial conditions  V0 , θ0 = 
90°; Lmaxis the maximum range, reached when throwing a projectile with the initial velocity V0  under some optimum 
angle𝜃0 = 𝛼. In the parabolic theory an angle αis45° under any initial velocity . Taking into account the resistance of air, 

the optimum angle of throwing αis less than 45°and depends on the value of parameter
2

0p kV .  The maximum 

heightHmaxin the used notations is defined by formula [14] 

 2

0

1
ln 1 .

2
 maxH kV

gk
                                         (12) 

For generation of the envelope it is required to construct the trajectory equation of the maximum distance. As it follows 
from formula (5), for the construction of the trajectory equation of the maximum distancethree parameters are required:  H, 

Lmax, xa. We will calculate these  parameters as follows. Under a given value of quantity 
2

0p kV we will find the root  

αofthe equation (7) using the graph of the function   = (p). An angle αensures the maximum range of the flight. 
Substituting the initial conditions V0, αin the formulae of the Table 1, we obtain the values  H(α),  L(α)= Lmax, xa(α)  for the 
maximum range trajectory.  
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A choice of a positive factor ain(11) is sufficiently free. However it must satisfy the condition  a= 0  in the absence of 
resistance ( k = 0 ).  We shall find this coefficient from the following considerations. We set the equal slopes of the 
tangents to envelope  (11)  and to the maximum range trajectory 

 
   

    2 2

max

a max a

H x L x
y x

x L x x



 




 
 

in the spot of incidence𝑥 = 𝐿𝑚𝑎𝑥 . It follows that parameter  a is defined by the formula 

2

2 ( )
1 1

( )





 
   

 

max a

max

H x
a

H L
 .                                        (13) 

In the absence of air resistance parameter  avanishes  ( a=0 ).For typical values of the characteristics of a baseball and 
initial velocity of throwing the conditions   0 <a<1  are carried out. 

The equation of the envelope can be used for the determination of the maximum range if the spot of falling lies above or 
below the spot of throwing. Let the spot of falling be on a horizontal straight line defined by the equation𝑦 = 𝑦1 = 𝑐𝑜𝑛𝑠𝑡. 
We will substitute a value 𝑦1in (11) and solve it for x. We obtain the formula 

1

1

max
max max

max

H y
L

H a
x

y





.                                                 (14) 

Formula (14) allows us to find a maximum range under the given height of the spot of falling (point B(xmax, y1) in Fig.4). 
Another simple exampleof  the use of the envelope is maximizing the vertical range. Let a projectile be thrown towards a 
vertical target wall at distance x =x1 = const from the spot of throwing  (point  A(x1, ymax)  in Fig.4). The  ymaxcoordinate of 
the intersection of the envelope and the target wall is simply the  y  coordinate of the envelope at  x = x1 . 

 

Figure 4. Maximizing the horizontal  xmax and vertical  ymax ranges of a projectile using the envelope. 

Thus, it is required to use  the following seven step algorithm to find the maximum range of the projectilexmaxat a given 
height of the point of falling  y1 = const. 

Step 1:  2

0 ,p kV p    
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Calculations based on the present  formulae can be done even on a standard calculator.  But this algorithm does not 

determine the optimal throwing angleθ0  for maximum distance  xmax . To calculate this angle  it is necessary to find the 

root of equation  (5) 

 2

0 1( ) ( 2 ) ( ) 0 (15)      a a max max maxf y x L x x Hx L x

 

This task can be solved using computer algebra systems Mapleor Mathematica. 

THE RESULTS OF THE CALCULATIONS 

As an example we will consider the moving of a baseball with the resistance factor [1]
2 2

1 1
0.000625

40term

k
V

  

s
2

/m
2

. 

Other parameters of motion are given by values 

g = 9.81 m/s
2
,  V0= 40 m/s,   y1 = ±20, ±40m. 

At specified values k and V0  the value of non-dimensional parameter is  2

0 1p kV 
.  Under a given value  p = 1we 

will find the root  αof the equation  (7) using the graph of the function   = (p)   ( Fig. 3).  This angle ensures the 

maximum range: α= 40.8°. Substituting values k and  V0in formula (12), we get𝐻𝑚𝑎𝑥 = 56.5 m. Substituting in the formulae 
of the Table 1 the initial conditions  V0 = 40,  θ0 = α= 40.8°, we find the meanings 

H(α)= 26.2  m,   L(α)=Lmax= 96.6 m,   xa(α) = 54.2 m. 

According to formula (13) the factora isa =0.17.  The graph of the envelope is plotted in Fig.5  together with the family of 

trajectories. The envelope is shown by a thick line in Fig.5. We note that family of trajectories is received by means of 
numerical integration of the system (1). A standard  fourth-order Runge-Kutta method was used. The dashed line in Fig. 5 
is the envelopeaccording to formula (9) with the same initial velocity in the absence of air resistance. 
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Figure 5.The family of projectile trajectories and the envelope of this family. 

The results of calculations using formula (14) are presented in Table 2.The second column of Table 2 contains range 
values calculated analytically by formula (14). The third column of Table 2 contains range values from the integration of the 
equations of system  (1). The fourth column presents the error of the calculation of the range in the percentage. The error 
does not exceed  2 %. Formula (14) gives a sufficiently exact value of the maximum distance in a wide range of the height 
of the drop point. The results of calculations using formula (15) with the help of  Mathematica  are presented in Table 3. 

Table 2.  Maximum range  xmax  at different heights of the point of the falling y1. 

 

   y1 (m) 

Analyticalvalue 

xmax, (m) 

Numericalvaluexmax

, (m) 
Error 

( % ) 

40 55.7 54.8        1.6 

20 80.1 79.6        0.6 

0 96.6 96.8 0.2 

20    109.2 110.1 0.8 

40 119.3 121.0 1.4 

Table 3.  Optimal angle
0
opt

at different heights of the point of the fallingy1. 

 

   y1, (m) 

Analyticalvalue 

xmax, (m) 

Root of the equation (15) 

0
opt

, (deg) 

Numericalvalue

0
opt

, (deg) 

Error 

( % ) 

40 55.7 59.4° 60°  1.0 

20 80.1     47.4° 47.8°  0.8 

0 96.6 41.4° 40.8°    1.5 

 

The second column of Table 3 contains range values calculated analytically by formula (14). The third column of Table 3 
contains optimal angle values calculated using equation (15).  The fourth column of Table 3 contains optimal angle values 
from the integration of the equations of system  (1). The fifth column presents the error of the calculation of the optimal 
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angle in the percentage. The error does not exceed  2 %. Formula (15) gives a sufficiently exact value of the optimal angle 
in a wide range of the height of the drop point.   

CONCLUSION 

The proposed approach based on the use of analytic formulae makes it possible to simplify significantly a qualitative 
analysis of the motion of a projectile with the air drag taken into account. All basic parameters of motion and various 
problems of optimization are described by simple analytical formulae containing elementary functions.Moreover, numerical 
values of the sought variables are determined with an acceptable accuracy. It can be implemented even on a standard 
calculator. Lately some authors [17–19] have used the Lambert W function to study the projectile motion with resistance. 
But this relatively “new” function is not available on a calculator.Special algorithms are required to compute this function. 
Thus, proposed formulae  make it possible to study projectile motion with quadratic drag force even for first-year 
undergraduates. In conclusion, we hope that efforts to obtain an analytical solution to this problem will be continued and 
will get new exact and efficient solutions. 
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