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ABSTRACT 

The paper introduces an "ab initio" theoretical model based on an operative definition of space time, regarded as a 
combination of the fundamental constants of the nature. The paper shows that significant concepts of quantum mechanics 
and relativity are straightforward consequence of the proposed definition of space time. Some cosmological implications of 
the model are also shown. 
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1 INTRODUCTION 

One of the most important outcomes of the general relativity is the disclosure of a 4-manifold, the space time, 
curved by the distribution of matter in it contained [1-5]. The fertile idea of gravity force equivalent to the local space time 
curvature, implies the necessity of merging space and time coordinates into a proper metrics to formulate the physical 
events in a covariant way [6-11]. This conceptual frame through which the physical phenomena are appropriately described, 
rises however a question: is the space time a simple arena where the events occur, or rather is it a real entity formulable and 
quantifiable itself via an operative physical definition? If the second chance is actual, then an appropriate mathematical 
formulation of the concept of space time could be introduced "ab initio" and implemented like any fundamental physical 
principle or law. 

On the one hand, the sought definition must be consistent with all fundamental laws today known, possibly 
inferable as corollaries. On the other hand, any theoretical model based on this idea should provide a sensible answer to a 
further crucial question: if the birth of the universe is defined by the beginning of the space time and its inherent physics, 
does the sought definition help to outline even the evolution of the universe? 

The paper proposes some answers to these questions by introducing a theoretical model based exclusively on the 
initial formulation of an operative definition of space time, regarded as a fundamental and productive principle of the nature 
rather than as a mere successful intuition. To this purpose the opening brainwaves of the paper are the Planck units, which 
by definition merge the fundamental constants of nature into single concepts only, e.g. length or time or energy and so on. In 
principle, however, nothing prevents combining arbitrarily these fundamental constants to obtain even more complex 
physical entities: the same idea underlying the Planck measure units is extended here to propose a new combination 
suitable to infer and exploit a composite physical concept, i.e. just that of space time. As the sought definition should 
expectedly include both space and time units, the proposed quantity to be tentatively implemented is  

 (1,1).
2c

hG
 

The physical dimensions of this ratio are the only hint and starting point of the theoretical model exposed below. 

The challenge of the present paper is to extract all possible physical information from this seemingly innocuous 
position: the purpose is to demonstrate that actually this operative definition of space time makes inferable as corollaries 
several interesting features of the quantum mechanics and relativity. 

By necessity, even well known topics are explicitly developed and exposed in the following. This is indispensable 
not only to make the paper as self-contained as possible, but mostly to show the effective chance of obtaining uniquely from 
the naive position (1,1) the physical laws that govern the space time, its evolution as a function of time and the related 
phenomena in it allowed to occur. 

2 PHYSICAL BACKGROUND. 

The proposed combination (1,1) of fundamental constants has physical dimensions timevolume/ , in principle 

sensibly consistent with the sought definition, and thus enables writing  
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This equation means that the definition of space time at left hand side concerns physical phenomena possibly occurring 

within the space volume V  during the time range t , as a function of which is defined the frequency  . In a sense, the 

right hand side is the aforementioned physical arena; the left hand side governs the dynamical variables that describe the 
physical events in this arena. 

The suggested definition poses however some problems, now examined one by one. 

-Expectedly the quantity defined by the eq (1,1) should allow regarding independently V  and t ; this 

requirement is in fact compatible with space and time coordinates separately definable, although intimately merged in 

describing the physical phenomena. The right hand side combines the space volume V  and t  through a function 

)(= t  having necessarily physical dimensions of a frequency. In general   could be expressed as series expansion 

of an appropriate function; if in particular 
1 t , then V  would be a monotonic increasing function of t . This agrees 

with the idea of dynamic space time, whose volume can however steadily increase only. Yet even steady or decreasing 

trends of V  as a function of t  seem reasonable and should be, at least in principle, possible. 

In fact, the lack of hypotheses about V  and   suggests the feasibility of a more flexible definition of space time, 

where really the space and time coordinates can change independently each other like the single zyx ,,  themselves. 

-The second problem concerns the time dependence of V  in the proposed definition: whatever the time profile of 

V  might be, a physical motivation is necessary to explain why V  could in fact increase or decrease. Otherwise stated, as 

this motivation must be included itself in the position (1,1), a correct definition of space time requires inherently the chance of 
justifying and calculating an appropriate pressure acting against the internal or external boundaries of the space time 
volume. 

-The third problem concerns just the pressure, which indeed requires itself admitting that the space time cannot be 
empty even in lack of matter; despite neither matter nor radiation energy appear explicitly in the eq (1,1), as previously 
assured this pressure must be inferable itself in the frame of the eqs (2,1) only. 

-The fourth problem concerns the reference system R  where are defined the lengths characterizing the size of 

V , expressed for example as 
3x , and the time length t  necessary to define  . The quantities at left hand side are 

constant, thus invariant by definition in any reference system where are definable 
3x  and t  at right hand side. These 

latter must fulfill the physical dimensions of the position (1,1) and satisfy an appropriate property of invariance, necessary to 
make consistent both sides of the eq (2,1). In fact, however, no information is available "a priori" about the actual kind of 
transformation law compelled by the position (1,1) itself; if for instance the essential invariance would be that of Lorentz, then 

this condition could be satisfied in several ways: e.g.   )/()(=
222 txxtcV   fulfills this requirement. More in 

general, any )(= txfV   via a suitable expansion of the function f  in series of powers of the argument is 

appropriate too. Being arbitrary both time and space ranges here introduced and the function f  itself linking them, any 

value of V  can be in principle consistent with the condition constV =  inherent the eq (2,1). Yet, once having fixed V  

the resulting   is compatible with and corresponds to various values of t  depending on the specific function 

)( txf  . Otherwise stated, the link between V  and   does not imply rigidly that between   and t : in principle 

various values of V  are therefore compatible with any given t  via an appropriate )( t . 

Are thus interesting the definitions of volume   3222 =/)(= xxxtcV   and frequency tg /= , 

being )(= txgg   an arbitrary dimensionless function of x  and t . For sake of brevity and simplicity of notation, 

however, in the following the right hand side of the eq (2,1) will be shortly concerned as 3x  only. Actually, being   not 

necessarily coincident with 
1t  but rather a more general function of t , these shortened forms subtend for instance  
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where 0x , 0g  and   are arbitrary constants. Note that apparently a more general definition of V  should have the form 

zyxV  = ; yet if y  and z  are arbitrary like x , then any value of V   is also allowed to and thus described by 
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V  itself; so, without loss of generality, in the following will be shortly mentioned and implemented the given form of V  

only. The merit of the eqs (2,2) is that of having involved by necessity both time and space ranges; so both coordinates are 
merged together since the beginning in the model aimed to implement the eqs (2,1). 

Having indicated, at least in principle, how to tackle the problem of the invariance, arises the further problem of the 

reference system R  where are defined the ranges of the eq (2,2). Also in this respect, the eqs (2,1) do not provide any 
indication; moreover no information is available even about the properties of these ranges, e.g. their sizes. The only hint 
available is that the quantum uncertainty, expressed in its most agnostic form proposed in [12], disregards in fact the range 
sizes and the related reference system; this information is in effect inessential as concerns the calculation of the eigenvalues 
and thus the existence of physical observables [13,14]. This point is so important for its quantum and relativistic implications, 
that some concepts are preliminarily summarized now to clarify subsequently why the uncertainty is an essential corollary 
ensuring a coherent formulation of the model based on the eqs (2,1) only. This will be shortly shown in the section 9.2 as 
well. 

Consider for instance 01= xxx  . Knowing 0x  means having preliminarily introduced any kind of reference 

system, e.g. a coordinate axis in the simplest case or even a system of curvilinear coordinates, with respect to which the 

position of x  in R  can be determined; moreover, once knowing also 1x  the range size can be determined as well. Of 

course the role of 0x  and 1x  is identically interchangeable. Let however 0x  and 1x  be both undefined and indefinable 

in principle, i.e. conceptually and not as a sort of approximation to simplify some calculation; so, by fundamental assumption, 
neither the range size nor the range position in the reference system are in fact physically specifiable, whereas the concept 

of local x  is disregarded itself in any R . Even in the case of the time coordinate, the current time t  is replaced by 

01= ttt  : this means regarding t  as a random variable ranging between the time boundaries 0t  and 1t  during which 

any physical event is allowed to occur; both boundaries are however arbitrary and unknowable by definition as well. Without 

such preliminary information, is not specifiable the origin of R  and even what kind of reference system it actually 
symbolizes. Yet this agnostic standpoint is compatible with the chance of determining physical properties through the ranges 
of the dynamical variables only. 

In the following, these ideas are better specified as necessary features of the present strategy: to gain all possible 
physical information from the definition of space time only. In previous papers the statistical formulation of the quantum 
uncertainty was assumed as a postulate to infer as corollaries the foundations of both quantum physics and relativity [15]. 
Here it is necessary to demonstrate that effectively the quantum uncertainty is inherent itself the definition (1,1). 

This position has been introduced considering in general the Planck constant h . It is known however that several 

equations require the reduced constant  . This depends on the kind of problem and related definition of  : e.g. the Planck 

energy is given by h , whereas the angular momentum is expressed as )( sl  . The reduced Planck constant is 

necessary in problems where the frequency   is actually a circular frequency  2= , e.g. to express the energy 

levels of hydrogenlike or many electron atoms where one or several electrons somehow move around the nucleus; in this 

case indeed  h= . For simplicity of notation, in the present paper h  symbolizes in general the Planck constant 

regardless of whether, case by case, it must be actually regarded as  . 

Investigating one by one all of the possible outcomes of the eqs (2,2) allows in fact a preliminary evaluation of the 
physical rationality of the eq (2,1). The next two sections aim to assess the self-consistency of these major points, invariance 
property and uncertainty, whose clarification legitimates the physical usefulness of the eq (2,1) and stimulates preliminary 
confidence on its physical rationality. 

3 THE INVARIANT INTERVAL 

Let us demonstrate first that effectively the eqs (2,1) imply just the Lorentz transformations. Rewrite the eq (2,1) 

replacing c  with an arbitrary velocity cv < ; one finds 
32 =/ xvhG  , having put 

3x  instead of 
3x  to introduce 

the new volume consistent with v . In fact, this is nothing else but dividing both sides by an arbitrary factor 1<<0 a  such 

that 
22 = vac  and 

33 =/ xax  . Having left unchanged   by definition, results xx > . The ratio between the last 

equation and the eq (2,1) yields 
232 )/(= vxxc  . Multiply both sides by 

2t ; putting next ltv =  and 

qxx  1=)/( 3 , where 0>q  is an arbitrary real number, one finds then 
2222 = lltc    with 

22 = lql  . 

The conclusion is  

 (3,1).=or= 22222222 ltclltcl    

Note that l  and l  can be exchanged of place while leaving formally unchanged the result, i.e. their role is physically 

interchangeable with respect to tc . This symmetry implies that either 
2l  or 

2l  must be an invariant with respect to 
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the Lorentz transformations, as in fact it follows straightforwardly. 

Multiply the former equation by an arbitrary coefficient   such that by definition 
22 = ll  ; then one obtains 

2222 = ltcl   , being of course 
22 = tt    and 

22 = ll   . The second eq (3,1) requires thus 

222222 = ltcltc   , i.e.: whatever the changes of the single intervals at left hand side might be, the whole 

interval 
222 ltc   is invariant. This holds in particular for time space uncertainty ranges in two inertial reference 

systems in reciprocal motion. 

It is known that the invariancy rule is the basis of the special relativity [16]. 

All this has a conceptual cost. The classical intervals of the special relativity, exactly knowable, become now 
uncertainty ranges about which nothing is known; the interval rule and all its consequences hold identically, but become also 
compliant by definition with the Heisenberg principle. This way of deducing the invariant interval skips the existence of local 
coordinates and bypasses not only the introductory postulates of the special relativity but also the tensor calculus, which is in 
fact precluded in the present model that disregards "a priori" the local coordinates. 

The next considerations will concern further the problem of the reference system and that of the covariancy. 

4 THE SPACE TIME UNCERTAINTY 

Rewrite identically the right hand side of the eq (2,1) as xtxgmmx  )/)(/(  according to the definitions 

(2,2). Formally therefore one finds  

 (4,1);====
t

x
vgpgmvppx

m

x
V xxxxx







  

the subscript x  symbolizes any space coordinate additional to the time. In the second equation the range xp  is 

consistent with the definition of g , as in general 01= ppgpx   with 
j

jjx xtxapp )/(= 00    and 

xpgp 01 = ; there is no constrain or restriction to define the boundaries of the uncertainty ranges, which in fact are 

completely arbitrary, unknown and unknowable. 

Note that the physical dimension of momentum is defined without need of specific hypotheses, even without 
introducing explicitly the mass in the equation: m  has been simply multiplied and divided the at the right hand side of the eq 

(2,1). Also, this step has contextually introduced the velocity component xv  via the time range t  necessary for a 

hypothetical particle of mass m , possibly present in x , to travel throughout the given range size; otherwise stated, m  

is delocalized in x . 

An analogous reasoning is carried out to rewrite V  as ttxgmmx  2)/()/( , which introduces the range 

2= xgmv  and yields now   tmxV )/(= ; accordingly, the physical dimension of energy is introduced as well. 

Considering that these outcomes share the quantity xmV / , the conclusion is  

 (4,2),== t
x

Vm
px x 


 


 

which holds for any space time coordinate. Note that all terms have the physical dimensions of h  and that xpx  reads 

actually more in general px  , regardless of the actual number of space coordinates defining the scalar product. These 

equations thus do not conflict in principle with the existence of extra-dimensions additional to tzyx ,,, ; anyway, the 

merging of time and space coordinates, whatever their number might be, appears intrinsically inherent any approach based 
on the proposed definition of space time. Write then in general  

 (4,3),=S=S=S= qh
x

Vm
tpx





  

which actually summarizes as many equations in principle compatible with quantum properties as the number of scalar 

components at left hand side; q  is a dimensionless arbitrary factor to be defined, whereas the physical dimensions of S  

are that of the action. 

To complete these remarks coherently with the lack of physical information about V  and   in the eq (2,1), it is 
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enough to define conveniently S  in the eq (4,3): let us put nh=S  with n  arbitrary integer. To justify this point and 

explain its importance, let for instance xpx  in R  change to xpx   in R ; it is clear that the respective n  and 

n  are actually indistinguishable by definition, since both symbolize whole sets of unspecified and unspecifiable integers. In 

other words, whatever any particular xpnn =  in R  might be, its change in R  yields another particular pxnn 
 = , 

which however still reproduces an integer already contained in the whole set n . With this definition of n , therefore, S  and 

'S  are indistinguishable themselves, i.e. there is no specific or preferential correlation between any nh=S  and its 

distinctive R ; otherwise stated, S  is disconnected from a particular R , whereas this latter is indistinguishable from any 

other R  once admitting that neither 0x  and 1x  nor 0x  and 1x  are knowable. 

This conclusion becomes even more evident noting that the eqs (4,3) can be expressed via Planck units; e.g. 

Plxlnx *= , being Pll  the Planck length and 
*

xn  any real number arbitrary likewise the range size it describes. The main 

worth of expressing in this way the products of range sizes is that it highlights the true nature of the eqs (4,3), i.e. they 
actually concern products of real numbers times the corresponding Planck units linked by n  only: so the eqs (4,3) take the 

weird form of a bare relationship between arbitrary and indeterminable numbers  

 (4,4).== ****

tpx nnnnn   

The asterisks indicate arbitrary real numbers, n  only is an arbitrary integer; this notation evidences even more clearly the 

total lack of information about the range boundary coordinates and the reference systems defining them. 

Appear clearer now the previous considerations about the reference systems: having defined V  and   via 

uncertainty ranges, all implications of the eqs (2,1) do not concern any reference system in particular. It it has been shown in 
[13,14] that n  plays the role of the quantum numbers; so the quantization of the eigenvalues is a fingerprint itself of the 

proposed definition of space time. Concurrently, just this makes indistinguishable all reference systems as a corollary, not by 
assumption: while preventing any information about the local dynamical variables, the quantum uncertainty waives a 
reference system specifically related and thus excludes in fact privileged reference systems to describe the physical laws. 

The requirement of relativistic covariancy is surrogated from the quantum standpoint by exploiting uniquely the 

aforesaid properties of the eqs (4,3), which hold identically regardless of how any physical law formulated in R  transforms 

in R ; this simply requires that all laws be anyway formulated via uncertainty ranges of the dynamical variables only, not via 
their local values. 

In the present model, therefore, the former only have physical meaning; the metric tensor defining lengths, 
distances, angles, geodesics and local curvature is unsuitable and thus worthless in the present context. 

Are evident direct quantum and relativistic consequences of this way of thinking, e.g.: on the one hand is relevant 
the quantum indistinguishability of identical particles, due to the fact that the present approach moves the physical concern 
from the dynamical variables of the particles delocalized within uncertainty ranges to the way the sizes of these latter govern 
the quantum numbers; on the other hand is relevant the lack of privileged reference systems, which in fact result 
conceptually indistinguishable. It is not surprising that the eqs (4,3) written in the form  

 (4,5).== tnhpx    

yield as corollaries the fundamental statements of both wave mechanics and relativity [15]. Note eventually that the classical 

physics simply follows putting 0=0x  and 0=0t , in which case x  and t  reduce to the local coordinates x  and 

t ; however the ranges are compliant with the Heisenberg principle by definition, the latter obviously do not. 

Moreover the agnostic character of the present model agrees with the idea that the coordinates are a human 
artifact to carry out calculations: in effect the eigenvalues of the quantum mechanics, when calculable without need of 
numerical solutions, are expressed via the fundamental constants and quantum numbers, which however can take any 
value likewise the definition of n  proposed here. 

The fact that eqs (4,5) exclude the chance of identifying one particular R  has expectedly further consequences, 
for instance the impossibility of calculating the local velocity. Determining the velocity requires indeed knowing the path 
between two fixed points traveled by a particle during an initial and final time, which however are both conceptually 

disregarded in the present model; in effect in the eqs (4,1) the component xv  has been formally expressed as ratio tx  /  

of uncertainty ranges. The only velocity specifiable is actually the light speed in the vacuum. Hence the eqs (4,5) leave out 
even the concept of accelerate or uniform reciprocal motion of different reference systems: it also implies removing the 
distinction between special and general relativity, as it will be shown for example in the next sections 5 and 9.2 and 13.2. 

Even the postulate requiring that two coordinate frames in reciprocal uniform motion must fulfill the Lorentz 
transformations is in principle superfluous in this conceptual frame; the transformation rules, whatever they might be, are 
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immaterial and skip any physical consequence once having disregarded both boundary coordinates of all ranges. Likewise, 
the same holds for the time reference system. Nevertheless, is just the eq (2,1) that requires by itself the Lorentz 
transformation. 

The synthesis of this section is that the position (1,1) is physically sensible, given that anyway the right hand side of 
the eq (2,1) is compliant with the corollaries of quantum uncertainty and Lorentz transformations. 

The aim of the present paper, to check all possible implications of the proposed definition of space time, is thus 
inherently based on the consequent statistical formulation of space time uncertainty; the eqs (4,5) are in fact the quantum 
equivalent of the relativistic covariancy. 

5 THE EHERGY IN THE SPACE TIME 

The physical dimensions of momentum and energy have been introduced in the previous section from the eq (2,1) 
contextually to the eqs (4,5) that require the quantization of the eigenvalues. Let us show now that also the explicit 
expressions of momentum, energy and energy density are in fact inherent the concept of space time. 

Multiply both sides of the eq (2,1) by  ; the resulting equation introduces the energy density   given by  

 
 

(5,1).===

2




 hE
V

E

G

c
 

Moreover, multiply and divide   by m ; one also obtains  

 (5,2).==== 2

020

0

0 mc
mG

V
VV

h





  

The relativistic rest energy 0  and Planck energy E  have been contextually inferred. Note that E  is the energy of a 

wave entirely characterized by its frequency  ; in lack of specific information, nothing hinders regarding   as the 

frequency of electromagnetic radiation. So, whatever the size of V  might be,   and E  are defined regardless of the 

concept of mass. Instead 0  is the energy of a corpuscle uniquely characterized by its mass m , regardless of typical 

concepts of wave propagation. Nevertheless both energies have a common root in the initial eq (2,1), from which they have 
been obtained via trivial manipulations. Three conclusions are evident: 

1) While introducing the mass in the energy field of the eq (5,1), the volume contextually changes from the initial 

value V  to the new 0V , the energy density being still  . The physical meaning of this statement, clearly due to the mass 

m , will be further concerned later; it is shortly anticipated here that the presence of mass deforms size, and expectedly 

geometry too, of the space time volume. Otherwise stated, the mass interacts with the space time and modifies its 
properties. 

2) Despite the formal way to infer the eqs (5,2) and (5,1), 0  must be related to the corresponding hE = : this 

conclusion introduces the corpuscle/wave dual behavior of matter. 

It is immediate to show how are linked the wavelength   of the wave and its propagation rate v . Divide side by 

side the third eqs (5,1) and (5,2); this yields  

 (5,3),====0
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having introduced the arbitrary velocity v  by dimensional reasons. Moreover, rewriting identically EvvmcE /=/ 2

0  and 

recalling that mv  is momentum according to the eq (4,1), the position pmv = , via the proportionality costant  , one 

also finds  

 (5,4).===n
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== 00
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v
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These equations evidence the aforesaid link between the corpuscle and wave features of matter: writing explicitly the 

second equation as chcv  /=/ 2
, the first equation reads  

 (5,5).==



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p  
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The first equation is nothing else but the De Broglie momentum equation, inferred as a corollary together with the 

characteristic Compton length C  of m . This equation evidences the subtle link between corpuscular and wave 

formulation of momentum: p  depends on m  via 0 ; as this latter appears as ratio E/0  equal to vc/ , which does not 

depend on m , the mass dependence turns into that of   dependence. 

3) The present approach merges typical quantum and relativistic concepts, i.e.: the dual behavior of matter, 
exemplified by the definitions of momentum of the eqs (4,1) and (5,5), and the space time/matter interaction together with the 
momentum eq ((5,4). 

On the one hand, is crucial that the chance of defining an energy density   corresponding to E  relies entirely in 

the frame of the proposed concept of space time only. On the other hand, the dual behavior of matter implies the position 

=x  i.e.   is related to its corresponding delocalization range: the fact that /h  is equivalent to xh / , i.e. the 

momentum expression is actually a way to rewrite the eqs (4,5), again emphasizes the link between De Broglie wavelength 

associated to the matter wave propagating throughout x  and quantum delocalization of the corresponding corpuscle in 

the uncertainty range x . 

Five remarks are useful on these conclusions: 

(i) 1>n , to be demonstrated in the next eq (7,3), requires VV >0 ; i.e. introducing the mass in V , a given   

implies a greater volume 0V . 

(ii) The eq (5,3) yields  

 (5,6);i.e.n= CcCc    

i.e.   and thus x  can be expressed as a function of the Compton length. 

(iii) An interesting corollary of the eq (5,1) is shortly inferred noting that 
2

0

222 =/)( vc   ; by dimensional 

reasons 0v  must be a constant velocity. Moreover put  /= 0v , being 0v  another constant velocity; one obtains in an 

analogous way 
4

0

212

0

2 =)(/)/( vvc   ; hence, via a proportionality constant k  such that kvv 4

0

2

0 =  , one finds  
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Multiply now both sides by 
44/  , being   and    arbitrary constants having physical dimensions of time ; then 

 lc =2
, being l  an appropriate length, whereas t =2 . In both cases the dynamical variables l  and t  are 

simply introduced via the initial arbitrary variable   times the dimensional constants 
2c  at numerator and 

2   at 

denominator. Operate in an analogous way at the right hand side; calling vlvc =/2   and xv  =/22  , the last 

equation reads  
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Hence follows the Dâ€™Alembert wave equation  

 (5,7).==== 22
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(iv) a further result can be inferred directly from the eqs (2,1) rewriting its right hand side as follows with the help of the eqs 
(5,3)  

 (5,8);==== 21
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the last position requires that the factor k  is arbitrary, as it relates x  to the well defined value of C . Owing to the eqs 
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(5,4) and (5,2), CkmGm  /n= 210  reads introducing arbitrary numbers 0>q  and 0>w   

 (5,9);
n

===T)(=T= 21
00

q

k
x

x

mm
GUwqwU C 


  

Now   is in general any energy, independent of the initial 0  because of the factor qw ; the same holds for T  

because of w . Also, x  is a new range still defined as a function of C  but in general different from x  because of 

the factor n/qk ; indeed 0< > , i.e. the system is bound or not, depending on whether qw >< . This result shows that the 

initial h  has been replaced by a new kind of energy governed by G . 

The physical meaning of the function U  will be clarified in the section 9.4. Note here the conceptual impossibility 

of determining whether 1m  or 2m  is the source of the gravitational field; clearly this means from a physical point of view 

that the concepts of inertial and gravitational mass are indistinguishable, i.e. they must necessarily coincide. 

Also note that size and analytical form of x  are arbitrary and unknown, whereas the definition of  h/=n 0  

prospects the possibility that )(n=n x  via  ; hence 1n   has in general the form of non-divergent series expansion 

like ...//1=n 2

21  xxxx  via appropriate coefficients ix . As constn  for x , the Newton law 

holds in the particular case of small gravity fields at large distances only. Considering x  or xqk )n/(  is physically 

irrelevant as concerns the ranges sizes themselves, which are in principle indefinable; it trivially means describing masses 

x  apart or x  apart. What is crucial instead is how U  depends on the mutual distance between 1m  and 2m , 

schematically summarized by the following chances  

 (5,10):)(=)(=)(= 111   xUUxUUxUU  

in the Newtonian classical approximation holds the simple dependence )(= 1xUU , being x  any local distance among 

that included in x , whereas in the quantum case the coordinate is replaced by its own uncertainty range. In the more 

general case, i.e. in a relativistic frame, this dependence is even more complex, as it appears from the series development of 

)(n x : by necessity )(= 1xUU  requires accounting for the space time deformation in the presence of m  

according to the eq (5,2). On the one hand this conclusion justifies the possibility of obtaining via the eqs (4,5) relevant 
results of the general relativity [17]; on the other hand this reasoning is further acknowledged considering the position 

mvp =  of the eq (4,1) here exploited. In the present context mv  is not a classical definition of momentum, because the 

velocity is actually not defined itself for the reasons previously emphasized; so nothing hinders regarding 

2)/(1/= cvvv  , i.e. expressing the arbitrary and unknown v  via another v  arbitrary and unknown as well. This 

more general form, actually required by the eq (3,1) [16], could be expressed as series expansion of v  around 0=v , 

which shows that the classical approximation vv   holds for cv <<  only and that the relativistic results correspond to 

and can be expressed by appropriate series expansions of non-relativistic outcomes. 

In general it is possible to write x  in a form that reduces to the plain classical range x  for weak fields, i.e. for 

x , and for c ; a typical form of series expansion fulfilling these requirements could be for example  

 (5,11).
))(/(1

=

1=

j

j

j

bxca

x
x







 

v) Write the eq (2,1) as 2/= chGV  and consider that according to the eq (5,2) it turns into 0

2

0 /= chGV  if mass is 

present in the space time. As the steady waves allowed in V  and in 0V  must have different wavelengths, because 

anyway their nodes must must be at the boundaries of the volume containing them, one infers that the volume size change 

due to the mass implies  >0 . This change involves both the wave frequency, because  VV =00  requires  <0

, and the length of the time range t  necessary to complete one wave cycle; indeed defining t/=  , the mass implies 

tt  >0 . So, one infers qualitatively that the presence of mass implies red shift of a wave and time dilation; this can be 

due to nothing else but the gravity field created by the mass. 
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To get quantitative information on these statements, note that the eq (5,9) suggests defining  

 
x

Gm

m

U


 1

2

==  

as the property of the gravitational mass of interest to describe the change 0VV  . Note that this definition of   holds 

regardless of the value of 2m ; hence it holds even for a photon moving in the gravitational field of 1m . In particular, 

expressing 2m  according to the eq (5,4) as 
2

2 /n= chm   and putting for simplicity 1=n , it possible to describe one 

photon moving in the vacuum in the gravitational field of 1m . Keeping the same notation, one finds  
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Since 
2

1 /cGm  is a length, put therefore  
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hence, differentiating   with respect to xâ , this expression reads  
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Note that because of dimensional reasons xhxU  /  is to be regarded as a frequency change; so  

 ,=
2 




c
 

i.e. xhxU  /=   is the sought frequency change related to 
2/c . 

This is the well known red shift of a photon moving in a gravitational field. 

In a completely analogous way is calculated also the time dilation tt  >0  related to VV >0  in the presence 

of 1m . 

6 THE ENERGY STATES 

Multiply both sides of the eq (2,1) by mh/ ; one finds /=/ 22 hmcGh , being of course Vm/= . Recalling 

the eqs (5,1), (5,2) and (5,5), this result reads  

 (6,1)
n

)(
=)(n=))((=

22
222 mc

hhmcGh   

and shows that h  and 
2mc  are in principle both compatible with negative values of m  and  , i.e. with the existence 

of negative energy states h  and 
2cm . In fact this conclusion does not conflict with the eqs (2,1), (2,2) and (4,5), 

provided that some specifications are made about m  and  . As concerns the eqs (2,1), is evident the requirement 

0>V . Therefore  3= xV   shows that the inequality is fulfilled simply changing xx   when   . On 

the other hand, according to the eqs (2,2) the second position requires simply tt  : indeed the sign of tx  

defining g  remains unchanged. More shortly, the first eq (2,2) is clearly unaffected changing the signs of both time and 

space ranges including them. As concerns the sign change inherent mm , it appears that the uncertainty equation 

xpx  is unaffected itself because m  implies negative local values of xp ; these values require being included in a 

negative uncertainty range xp , so that ))(( xx pxpx  . An analogous reasoning holds for the energy: 

negative energy states are included in a negative range  , which however yields the identity tt   ))((

. In conclusion the negative energy states consistent with the eq (6,1) require simply a backwards running time coordinate 
and a mirror space coordinate, which in practice merely exchanges left and right. Before considering a third condition, also 
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necessary, multiply both sides of the eq (2,1) by 
2/ xh  ; being 

3= xV  , are admissible both chances 

xhGxchG  =/)/( 2
 and )(=/)/( 2 xhGxchG   . Multiply again these equations by 

1
x : summing up first 

and subtracting next side by side the resulting equations, one finds respectively  hh =0  and 

 hhxGxchG  =/)/2( 2
. Since xGxchG  /)/( 2

 is in fact an energy, call it  , the conclusion is 

 2=hh   and 0= hh  . 

The implications of this result concern of course both 
2mc  and h . 

As regards the former, the chance of writing  

 (6,2)2=0=)(2= 2222

0

22 mccmmccmmcmmc    

means that the energy gap between positive and negative states   and   is 2  and that particles and antiparticles 

allowed to interact annihilate their mass releasing the energy 2 . The mass balance of the second equation is closely 

related to the energy balance of the third equation, the notations have an analogous physical meaning: the former 
emphasizes the annihilation of the masses, but hides the energy contextually released; the latter emphasizes energies and 
equivalent masses of particle and antiparticle explicitly introduced and individually regarded, but skips mentioning their 
mutual annihilation when interacting. According to the third equation, the antimatter is described by a separate class of 

antiparticles here symbolized by m . 

As regards h , rewrite the second eq (5,4) noting that 1>n  can be certainly expressed via the fine structure 

constant   as on=n , being on  an arbitrary number subjected to the condition 
1

on   only. In this way 

 /n=n 2

oeh , of course with  /= c , implies also  /n=n 2

oeh  . The minus sign is interpretable in two ways. It 

can be due to on  i.e. to a negative refraction index n , which in fact has been experimentally observed in particular 

metamaterials at selected light frequencies. Moreover it is also compatible with )/(n 2

o e , in agreement with the fact that 

the negative energy states require xx  . Eventually the sign even regards eee =2 . The last result is 

interesting because it suggests that the antimatter requires the position ee   for the charge; in this way, writing 
2e  or 

ee  does not change the absolute value or the sign of  . More shortly, all this appears considering 

322 /=/ cGechG ; since hlcG Pl /=/ 23
 by definition, one finds thus helhelchG PlPl /)(=/)(=/ 222 . Again the 

position (1,1) yields a positive value corresponding to a square quantity, where now appears the charge. Writing thus in 
summary  

(6,3),
n
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on the one hand one infers the Coulomb law with repulsive or attractive energies ee  or ee ; on the other hand 

either choice describes a charged or neutral system, because the total charge in V  corresponding to 
2e  is e2  whereas 

ee  implies a neutral system. To confirm this conclusion, implement the fact that the forbidden gap 2  can be overcome 

by interaction with photons of appropriate energy: the charge conservation during the annihilation of a possible couple of 
charged particles and antiparticles, requires opposite charges for these latter in agreement with the null total charge before 
and after their mutual annihilation. Of course has been waived here for brevity the fact that a third particle, e.g. a nucleus, 
must be also present to fulfill the conservation laws during the transition from negative to positive energy states: the opposite 
charges of particles and antiparticles are the crucial point to be emphasized. These considerations, based uniquely on the 
eqs (2,1) and (4,5), will be further implemented in this paper. 

The conclusion is that matter and antimatter can be regarded in an equivalent way, and thus their physics is 
indistinguishable under these three concurring changes, in agreement with the well known CPT theorem. The present 
reasoning, although well known, has been carried out merely to stress that even the negative energy states and the CPT 
theorem are compatible with and inferable from the eq (2,1). 

7 QUANTUM UNCERTAINTY AND DIFFERENTIAL CALCULUS 

So far preliminary results have been obtained via elementary manipulations of the eq (2,1) only, without need of 
differential calculus. As the mathematical approach requires taking into account the corollary eqs (4,5), i.e. that 
delocalization ranges of the dynamical variables systematically replace the respective local dynamical variables, this section 
concerns the way to regard the differential calculus in agreement with the agnostic concept of quantum uncertainty 
governing the space time: in a theoretical model disregarding the point coordinates, the concept of local increment of a 
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dynamical variable is useless because the new derived function would be undefinable itself in the incremental point likewise 
the original function. 

Nevertheless the definition (1,1) of space time was adequate to infer the gravity potential in the presence of mass 

even without introducing the local space time curvature, though with the conceptual limitation that )( xU   of the eqs (5,9) 

is actually not definable as a local value: the definition of potential energy at a given distance x  from the source, 

wherever it might be, is unavoidably replaced by that of potential energy field within an uncertainty range x  including all 

possible distances. Moreover appeared in the eq (5,1) the necessity of introducing the volume VV 0  when calculating in 

(5,2) the energy density   as a function of the corpuscle energy 
2mc  instead of the wave energy h : so even in this 

agnostic context still emerges the idea that the mass modifies the geometry of the space time. 

This is in effect the leading edge of the present approach: the physics of the events is essential, not its 
mathematical formalism. 

While in the present context the tensor calculus is in fact ineffective, the most intuitive way of defining differentials 
with the same features of the uncertainty ranges is to implement the ranges themselves: likewise as the eqs (4,5) waive 

specifying any particular reference system, even their ratios are disconnected from the choice of a particular R . So the 
concept of uncertainty in its most agnostic form introduces in general the derivatives as ratios of uncertainty ranges and thus 
in the frame of the eq (2,1) only. 

An example is xv  of the eq (2,2), which is a mere average quantity related to the time range t  necessary for 

any particle to travel the space range x . The consequence already emphasized is that xv  defined in this way is 

conceptually unknown and unknowable; details about its local value at any x  within x  and t  during t  are 

unaccessible. Nevertheless, valuable information is obtained even via this agnostic standpoint. Consider the eq (5,4); 

replacing txv  /=  one finds 
2/= cxtp   . This result is particularly significant in the case of a system consisting of 

several particles, for simplicity assumed non-interacting. With vector notation this result reads 
2/= crtp jjj    for the 

j -th particle. Summing over j , one finds thus jjj rptc   =2
. Normalizing both sides with respect to the total 

energy j , this equation defines  
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these are the relativistic equations of the center of mass of the system of particles. 

It has been highlighted that V  of the eq (2,1) is subjected to change as a function of time; this means that the size 

x  introduced in the eq (2,2) to define V  at an arbitrary time 0t  in fact changes at a later time 1t  by x . Of course 

the eqs (4,5) require that the conjugate range xp  changes by xp  too; it must be still true that 

nhppxx xx =))((   . As in fact xp  and x  are correlated, the connection between force field and 

space time deformation is immediately acknowledged: altering the extent of space delocalization of a hypothetical particle or 

wave during the time range increment t  means affecting all allowed local values xp  and thus the rising of a force field 

tpx   /  throughout xx   . The corresponding classical local force would be of course tpx  / . 

Note that x  is identically definable as 0)(= xxxx    or )(= 0 xxxx   , which however imply 

a subtle but crucial physical difference. Suppose that 0x  is the coordinate defining the position of x  in R  at 0= tt : 

the former way to define x  with 0x  fixed means that x  is at rest in R , i.e. its deformation is obtained stretching or 

shrinking its upper boundary only; the latter way with mobile 0x  and fixed x  implies instead that actually x  deforms 

and displaces in R . These are the points of view of two observers sitting on 0x  and x . Since anyway x  during t  

implies xp , and thus the change of the conjugate momenta allowed to a particle delocalized in x , this means that are 

indistinguishable the situations where the momenta change because of a force interacting on the particle/wave or because 

x  merely accelerates in R . The full reasoning, described in [15] and omitted here for brevity, shows that one of the 

fundamental postulates of the general relativity is actually a corollary of the quantum uncertainty. It is of interest here that, 



I S S N  2 3 4 7 - 3 4 8 7  
V o l u m e  1 1  N u m b e r  6        

J o u r n a l  o f  A d v a n c e s  i n  P h y s i c s  

3419 | P a g e                 C o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  
M a r c h  2 0 1 6                         w w w . c i r w o r l d . c o m  

owing to the arbitrariness of x  and x , in general the incremental range size is independent on the initial range size. 

Nevertheless it is also possible to write xkx  =  and tkt  =  via the arbitrary and independent factors k  and 

k  . So  

 (7,1)==
k

k
k

t

x
k

t

x
















 

If in particular kk = , then txtx  /=/ ; thus the definition of velocity in the eqs (4,1) is a particular case of a more 

general definition txv   /= , while being anyway not specifiable v  and its pertinent R . By consequence integrating 

an equation means that the range sizes x  or x , both arbitrary by definition, are so small with respect to 0x  to be 

treated as a usual differential dx . However even this latter is actually a small sized uncertainty range, for which hold 

therefore all of the previous considerations. So appears more appropriate the notation 0= xxx   for an uncertainty 

range with xxx <<0  or 00 << xxx . 

For instance the eqs (4,5) yield 
2/= xxnhpx   , being by definition  

 (7,2).==
t

x
x

t

p
p x

x

















  

The eqs (7,1) have two interesting consequences, related to the physical dimensions of S  of the eqs (4,3) and to the eqs 

(7,2). 

(i) Calculate the change S  of S  during the time range change t ; putting 0>=/ AxV   and reasoning 

on the physical dimensions of S , one finds 
2//=S ttmAtAm   . Hence  

 ).(=2=
S

22
tAA

t

mA

t

Am

t





 






 

Regard A  as a dynamical variable. If it is constant or corresponds to a maximum/minimum as a function of t , the 

energy t /S  is negative because 0=/= tAA   vanishes; moreover, is expectable in general that 0/ tA   

even at values of 
§t  where 0=)( §tA  . This suggests that the function H=/S t  describes a bound system 

where the energy T=/2 2tAm   governed by the dynamical variable A  represents the kinetic term, whereas the 

energy UtmA =/ 2  governed by the dynamical variable A  represents the potential term. So the conclusion is  

 (7,3)T=H=
S

U
t





 

(ii) Owing to the eqs (4,5), the first eq (7,2) yields 
2/= xxnhF   . If in particular constx  = , then the last result 

reads 
2/= xconstF  , as the deformation of x  can be due in principle to its shrinking or stretching. For example 

21= eeconst  means that F  is related to repulsive or attractive force field between charges, as already found in the eq 

(6,3): F  at left hand side accounts for all possible local values of F  corresponding to each x  included in x . Only if 

x  is small sized, then F  takes the limit meaning of "quasi-local" force. As x  is in general not constant, it can be 

certainly written as series expansion of x ; e.g.  

 (7,4),
)(

=
j

j

j

bxaconst

c
x





  

being ja  and b  appropriate coefficients. In this way x  reduces to a constant for x , whereas F  takes in 

this particular case of weak field the standard form of the Coulomb force. Clearly hold also now all considerations made 
about the eqs (5,11) and (5,10), where the series expansion has an analogous physical meaning of relativistic 
generalization. 

From now on, the symbol   indicates the change of the concerned quantity; for brevity however in the following 
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the derivative will be sometime indicated with the usual notation  . The question that arises now is: are these positions 

physically verifiable and productive? The next two sections examine just this question. 

8 CLASSICAL COROLLARY OF THE SPACE TIME UNCERTAINTY 

An interesting corollary of the eqs (4,5) is easily inferred for n ; in this case 1= nnn  , even though still 

arbitrary integer positive by definition, can be regarded as a differential for n  tending to infinity. Differentiating the right 

hand side of the eqs (4,5), one finds nhtt  = ; moreover, replacing in this result   and t  via nh  

and squaring both sides, trivial manipulations yield 
222 /=)//( nntt   . Since 1n  is independent on 

the current n , i.e. any given n  can be obtained simply determining appropriately 1n , write 

22 1/)//( ntt    and thus  =//  tt  for n : here 0>:  is a value close to zero for 

large n  and tending to zero for n . Hence the last result reads  =)/(log)/(log 00  tt  and thus 

 =)/(log 00 tt , which requires 00>   tt : . If ht =00  , i.e. if it represents the minimum 

uncertainty consistent with the eqs (4,3), then  0  requires  

 (8,1);>> hpxht x ::    

indeed an identical reasoning holds considering x  and the conjugate xp . 

An interesting consequence of the first eq (8,1) is obtained multiplying both sides of the inequality by  ; being 

qt =  an arbitrary dimensionless number, one infers  hq :> . As the eq (2,1) implies two kinds of energy, h  

and 
2mc  of the eqs (5,1) and (5,2), it is sensible to regard this inequality as hmcq :>2 ; calling 0=  mmmq , 

the result hcmcm :>2

0

2

  reads thus  

 (8,2),>2 hcm  

valid for any m , unless mm  <<0  in which case still holds :> . So for matter holds 1>n , i.e. necessarily the matter 

particles move at rate cv < , as in effect it has been done in the eqs (5,2) and (5,5). Write in general the eq (8,2) as  

 (8,3)0,>=2   hhmc  

being    an arbitrary frequency for which hold of course the same considerations introduced in the eq (2,2) for  . 

In conclusion, this well known formulation of the uncertainty is nothing else but the classical limit of the more 
general statistical quantum formulation eq (4,5). There is however a crucial difference between the eqs (4,5) and (8,1): the 
former enable finding quantum eigenvalues and relativistic equations, the latter are useful as boundary conditions to help 
solving specific problems [18]. 

9 UNCERTAINTY AND GENERALIZED COORDINATES 

This section highlights that in the present theoretical context: (i) the uncertainty ranges play the same role of 
generalized coordinates, (ii) the space time is governed by quantum and relativistic laws, (iii) the concept of derivative is 
successfully regarded and expressed as mere ratio of uncertainty range sizes. 

The following four examples highlight shortly that these hints and their physical implications are direct 
consequences of the position (1,1). 

9.1 LAGRANGE EQUATIONS 

Implement the eqs (4,5) considering the chance that the range sizes change during a short time lapse t . Owing 

to the eqs (7,1) and (7,2) the uncertainty provides the following equivalent equations  

 (9,1).==== x
x

xx px
t

p
xxp

t

x
p  









   

The possibility of defining x  independently of x  and xp  independently of xp  allows inferring from the eqs (9,1) 

xpx  =/   and xpx  =/ : differentiating both sides, the former equation relates )/( x   to xp
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, the latter relates )/( x   to xp . Then dividing these changes by t , one finds  

 .=
t

p

xt

x









 












 

Despite its notation, 01= ttt   is not mere mathematical differential, but a small alteration of t ; it is thus a short time 

lapse, but still an uncertainty range, during which the quantity x  /  is allowed to change by )/( x  ; hold 

therefore for 1t  and 0t  all previous considerations about the eqs (4,5). Moreover, the second equation (9,1) yields  

 .=
t

p

x

x












 

Owing to the eq (7,1), put tptp xx   /=/  without loss of generality because of the arbitrariness of both xp  and 

its change xp . As an identical reasoning holds for t  and t  too, combining these equations the result is  

 (9,2).=
xxt 







 












 

Thinking the symbol   likewise as the usual  , this result is nothing else but the Lagrange equation as a function of the 

generalized coordinate ranges x  and x ; it is well known that this result is fulfilled specifying in particular 

U T== 12  , where of course T  and U  are now functions of x  and x  replacing local generalized 

coordinates and velocities. This point has been concerned in the eq (7,3). 

The chance of obtaining the Lagrange equations as straightforward corollary of the eqs (4,5) shows that the 
uncertainty ranges surrogate successfully the generalized dynamical variables of the classical mechanics: however the 
physical worth of this result is that the the former fulfill the Heisenberg principle by definition, the latter of course do not. For 
this reason the present conceptual frame moves the physical interest from the local dynamical variables, unknown and 
unknowable, to their uncertainty ranges, which are in fact related to the eigenvalues of quantum systems. 

This explains how to make consistent classical and quantum mechanics simply replacing the local dynamical 
variables with the respective uncertainty ranges. 

Of course nothing compels just this way only of defining  , which actually is not specifiable by definition; in 

agreement with the concept of uncertainty,   is a mere range in principle referable to and thus including any kind of local 

energy. Showing this point is just the purpose of the next example, where   is regarded and implemented in a different 

way; the aim is to highlight how an apparently different result can be once more obtained via the eq (2,1) and the corollary 
eqs (4,5) only. 

9.2 HYDROGENLIKE ATOMS AND LIGHT BEAM BENDING 

Consider a quantum system governed by a central potential having the attractive form r /  with 0> , 

where r  is the radial distance between the interacting partners at any assigned time. The classical Hamiltonian inferable 

from the eqs (9,2) reads rmp  //2= 2  , being now m  the reduced mass of the system; p  is the momentum 

change with respect to the state where the particles do not interact, e.g. when r . Write thus 

rrmmpr  //2M/2= 222  , which putting rnhpr  /=  reads identically  

 (9,3);
)2(2

M

2

2

2
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2

2

2

2
2

nh
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rmnh

m

m

pr 
 






















  

  results as the difference of two parts: the sum of the first two addends is certainly positive, the only negative energy 

term is the third that therefore represents the energy gain ensuring the stability of the system. So it is natural to regard 

bnb   = , where nb  includes all positive terms whereas b  is just the binding energy. Minimize the non-bonding 

part of   putting equal to zero the term in parenthesis; this means minimizing nb  with respect to all of the possible r  

included in r  to ensure the maximum stability of the bound state. The eqs (4,5) yield then  
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 (9,4).
)2(

=
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==
2
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nh
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





  

It is possible in particular that  

 (9,5)./==or= 22

21 cEGmmGmeZZ gg  

(i) If the potential has the Coulomb form, one recognizes in the last term (9,4) the energy 
242 )/2(nhmeZ  of the Bohr 

hydrogenlike atom with a nucleus of charge Ze , whereas mZenhr 22 /)(=  is just the Bohr radius; this confirms that 

effectively the number n  of allowed quantum states surrogates the hydrogenlike quantum number, which is indeed by 

definition an arbitrary and unspecifiable integer. As previously stated, the physical interest does not concern details of the 
motion of m , but the ranges allowed to its dynamical variables. It would be really trivial to prove that the residual positive 

term of the eq (9,3) leads to steady orbital radii if 
22 )(<M nh  and thus nl <  in order to have a negative energy 

balance [13]. 

(ii) Let   represent now the gravitational interaction between a central mass gm  and a moving mass m , which 

of course can be introduced via its equivalent energy according the the eq (5,4), to describe a gravitational quantum system 
still implementing the eqs (9,4) and (9,5). Write  

 
2

2
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/
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=
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
  

recalling the definition of Compton length. Put rnnn =2
; despite n  is arbitrary integer, n  and rn  are in general any 

real numbers. The last equation reads identically  

 .===
2 CCrr

r

g
nn

c

Gm

r










 

Likewise as in the eq (5,6), n  and rn  define the lengths   and r . Here m  does no longer appear explicitly; 

appear instead the central gravitational mass gm  and the characteristic length 
2/cGmg  only. So, owing to the physical 

meaning of r  defined in the previous example, this equation can describe even the behavior of a light beam under the 

gravitational field of gm : likewise as the electron is delocalized around the nucleus, let the photon be delocalized around 

gm . 

Consider an arbitrary point 0r  on a sphere of radius r  centered on gm , and let   be the distance traveled 

by the photon from 0r  along an arc  rs =  of circumference. If so, then it is necessary to put 

)()(=2= 00    rrs : the former addend corresponds to a clockwise displacement of the photon from 0r , 

the latter to a counterclockwise displacement. These displacements are indistinguishable and equiprobable, thus both 

concurring to s  compatibly with a unique travel distance  . So /2=  r  implies scaling appropriately r  as 

well. For this latter to be consistent with both symmetric displacements  , put /2= rr   in order that   be uniquely 

defined as rs /=   and as r  /=  too; both read indeed r/2  . Hence the previous equation becomes  

 (9,6).4=
2 rc

Gmg


  

Is clear now the notation:   concerns the angular displacement corresponding to  , whereas r  can be nothing else 

but the radial distance of the photon from gm . Indeed 0  for r , as it must be. 

It is worth noticing that is immaterial the size of r , which is an uncertainty range about which nothing in 

knowable; in effect it symbolizes arbitrary distances of the photon from gm  depending on its size. Instead the factor 4 is 
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physically essential: it introduces physical information about the indistinguishability of the situations where the photon 
coming from minus infinity goes to infinity after being deflected or comes from infinity and points to minus infinity. In this 

sense, writing r  or /4r  is profoundly different. 

Since the angular deviation   is equal to the angle between the tangents to the circle at the boundaries 0r  

and 0r  of s , this result yields the deflection angle of a light beam passing at distance r  from gm . This result is in 

principle approximate, as the trajectory of a photon in proximity of gm  is actually different from a circular section; in practice 

this approximation is the same as that characterizing the Einstein result, as it is evident since the final formula is identical. 
Yet the result is satisfactory, as it is well known, because any curve can be approximated by the osculating circle. This is 
especially true for small deflection angles. 

This well known result and the chance of inferring the equations of the gravitational waves too [19] confirm the 
validity of the positions in the eqs (9,4) and (9,5), suitable to calculate both the hydrogenlike energy levels and the light beam 
bending. 

9.3 MOMENTUM AND ENERGY OF A FREE PARTICLE 

Consider now the second eq (9,1) and implement the arbitrariness of all range sizes to consider in particular 

01= xxx   in the case where 0<< xx ; so x  can be regarded mathematically as a differential. Rewriting thus this 

equation with the usual notation xxx dpvdtdxdpd =/=  and integrating this expression, one finds  

 (9,7)).(=)(=)/(== xxxxxxxxxx vppvdvdvdpvdpv    

Define without loss of generality xx pf= , being )(= xx vff  a suitable function of xv  to be found. Without 

preliminary information on this function, it could be 
j

xjjx vaf =  or 
j

xjjx vaf = , being 0>ja  and 0>ja  

appropriate coefficients of the series. Both expansions are examined considering for simplicity the first order terms only, i.e. 
1

xv . Hence one obtains the chances  

 ./=or= xxxx vapvap    

These positions are easily acknowledged: the former corresponds to the classical 
2

xv  found to infer the eq (4,2), the 

latter to the relativistic eq (5,4). However it is instructive ignoring this information and proceed uniquely on the basis of either 

mathematical chance, i.e. simply guessing how in principle xp  might depend on xv  by integration of the eq (9,7). 

Replacing the former chance in the eq (9,7), one finds  

 ;))/((=)/(= 11

xxxxxxxxxx dvdvvadvdvdvdpvvpa    

these equations are integrable in closed form and yield  

 (9,8),== )1/(1)/(1 a

x

aa

xpx vCvCp
 

  

being pC  and C  the integration constants. 

Replacing next the second chance in the eq (9,7), one finds  

 ;))/((=)/(= 11

xxxxxxxxxx dvdvvadvdvdvdpvavp 
   

also these expressions are easily integrable in closed form, the solutions are  

 .==
2

*

2

*

av

C

av

vC
p

xx

xp

x



  

with 
*

pC  and 
*

C  new integration constants. To hold even in a reference system where 0=xv , let these constants be 

imaginary because 0>a . Putting thus aimCp =*
 and aimcC 2* = , these solutions read  



I S S N  2 3 4 7 - 3 4 8 7  
V o l u m e  1 1  N u m b e r  6        

J o u r n a l  o f  A d v a n c e s  i n  P h y s i c s  

3424 | P a g e                 C o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  
M a r c h  2 0 1 6                         w w w . c i r w o r l d . c o m  

 (9,9);
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x
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  

this also shows that xv  is upper bound. 

It would be trivial to demonstrate that the eqs (9,9) are the relativistic generalizations of the respective eqs (9,8) 

putting 0.5=a ; also, with the given choice of the integration constants, 
2mc  of the eq (5,2) is the expected limit of   

for 0xv . All this would also be inferable directly from the eq (3,1) [16]; for brevity these elementary considerations are 

here omitted, while emphasizing however once more the physical analogy between uncertainty ranges and generalized 
coordinates. 

9.4 THE GRAVITY FORCE 

The eqs (5,1) and (5,2) have shown that h  and c  of the eq (2,1) are linked to the energies h  and 
2mc , thus 

introducing the uncertainty eqs (4,5) and the Lagrange eqs (9,2) as well. It is sensible to expect that even G  could be 

related to an appropriate form of energy. This point is elucidated in the next example, aimed to show how the gravity force is 
introduced contextually to the previous results and to the eqs (5,9); this example is significant, as it confirms that the way of 

explaining the result 0VV   of the eq (5,2) is effectively correct. 

The connection between force field and space time deformation has been already acknowledged in the section 7, 

i.e. considering the size changes xp  and x  of the momentum and coordinate uncertainty ranges during the time 

range change t . It is easy to confirm that x  implies a force field by differentiating the eqs (4,5) and writing 
2/= xxnhF   , defined by tpF x   /=  and txx   /= . Note that x  has physical dimensions of 

velocity, i.e. it is the rate v  with which displace the boundaries of x  during t ; moreover, it is possible to replace h  

via the Planck mass GhcmPl /=2
. Hence, let us write this result as 

22 /= xcGvnmF Pl  , which reads more 

expressively as 
2

21 )/)(/(=  xcnvmcnvmGF PlPl  with vvv =21 . Regard first constv = . Since the 

number n  of states and the change rate x  of the space time uncertainty range x  are both arbitrary and of course 

independent each other, it is possible to write 11 =/ mcnvmPl  and 22 =/ mcnvmPl , being 1m  and 2m  two 

arbitrary masses. The result is thus 
2

21 /= xmGmF  , where F  is a force field including all local values 

2

21 /= xmGmF   implied by the mutual distances x  possible between 1m  and 2m  delocalized within x . This 

result shows that the gravity force is related to the deformation rate x  of the space time uncertainty range x , which 

necessarily involves xp  as well; yet, since nothing is known about x , it is impossible to relate the local force F  to the 

local curvature of the range x  or to any kind of its actual variation. Nevertheless, despite the lack of information about 

x  and its deformation, it is possible to guess intuitively that x  represents the stretching rate of a line initially on a plane 

to a geodesic on a surface curved by the mass. Two interesting consequences are: 

-Hold again for x  the considerations carried out to explain that the Newton law of the eq (5,9) is actually the 

approximate form of a more complex potential fulfilling the requirements of the general relativity. Indeed nothing is known 

about txvx   /= , so that it is reasonable to expect )(= xvv  ; since however cv  , is reasonable a 

non-divergent form of series expansion like ...)/(= 2

2

1

10   xxxxxcv  tending to the constant value 0/xc  for 

x . Clearly the series expansions affects F , which now results multiplied by ...2

2

1

10   xxxxx  

replacing the zero order constant term; as already found in the eqs (7,4) and (5,11), also here appears explicit the relativistic 

correction to the Newton law that becomes negligible for x  only. 

-The sign of F  is due to that of F : this range includes in fact negative values of force. This result, obtained 

and better explained in a previous paper [20], implicitly assumes 0>x ; yet there is no reason that actually this is the only 

chance. The initial size of x , whatever it might be, can change by stretching or shrinking; so that x , and thus F , can 

take in principle both signs during t . In effect the concept of anti-gravity has been already introduced in that paper 

depending on either sign allowed by the kind of deformation rate of x . In conclusion the last equality reveals that, as 

shown in the eq (5,8), h  of the eq (5,2) is equivalent to a different form of energy governed by G . 
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-The Newton law in its standard attractive form implies the potential energy U ; this is the reason why in the eq 

(5,9) it was preliminarily introduced with the negative sign. However the last conclusion on the existence of anti-gravity force, 
if experimentally verified, is compatible even with positive potential energy. 

Despite very shortly introduced, these examples emphasize some relevant evidences, i.e. there are no wave 
equations to be solved to find quantum results; moreover even relativistic results are contextually obtainable together with 
general equations of the particle mechanics, like the Lagrange equations. Eventually, the gravity enters in a natural way in 
the frame of quantum and relativistic results; yet these results introduce even the anti gravity in a natural way. The fact that 
specific problems of different character are compatible with typical outcomes of relativistic and quantum mechanics involving 
generalized coordinates, is not surprising; the paper [15] shows specifically that both theories are conceptually rooted in the 
eqs (4,5). In this context, both theories appear compatible with the initial assumption (1,1) even more fundamental than the 
space time uncertainty itself. 

10 ENERGY DENSITY AND PRESSURE 

The link between pressure and energy density is well known. Yet the next considerations are necessary not only to 
allow a self-contained exposition of the present model, but mostly to demonstrate that even this topic fits the properties of the 
space time still in the frame of the eqs (2,1). This is significant: the conclusions inferred below will elucidate in the next 
sections 14.3 and 15 further crucial topics, like the temperature of the cosmic background microwave radiation and the 
nature of dark matter and energy. 

The starting points are the eqs (5,1). As   has the same physical dimensions of a pressure, it is possible to write 

=P  via a dimensionless constant  ; this also yields  =P . So the existence of an internal pressure P  

related to the time dynamics of V , whatever its actual nature might be, is in principle self-consistent with the mere definition 

(2,1) of space time. 

Note that   depends intuitively on 
3x  in the case where E  is the energy of matter particles. In the case of a 

radiation field propagating at rate v  with wavelength  /= v  one expects 
3/= xhv  ; the existence of stationary 

waves having xnn  =  within V , i.e. the arbitrary number n  of higher harmonics with nodes at the boundaries of 

x , implies volume dependence of the radiation field energy density that follows the 
4 x  law. 

Recalling the eq (5,1),  /= c  implies  

 (10,1);3=3==

3

E

E

V

Vc
V

















 

in this result,   has been assumed uniquely defined in V . 

Let be in general V/=   due to the energy   in the volume V ; whatever   might be, to describe the 

expansion from the initial 
3= xV   to VV   write then  

 (10,2).=
V

V

P

P 




  

To find the link between P  and  , consider now 
3= xV   according to the eq (2,1) to calculate V . Introducing 

explicitly x  to express V , however, requires to account for the uncertainty: any given V  is compatible with the 

change of one size only, i.e. xxV  2

0= , or two sizes, i.e. 
2

0= xxV  , or all three sizes, i.e. 
3x . These ways of 

describing V  are identically possible and obviously indistinguishable; so they are concurrently admissible. It means that 

xxVV  /=/  , with 1,2,3=  respectively. 

Both ways to express VV/  must of course coincide: clearly this last result and the eq (10,1) concern the dual 

corpuscle/wave behavior of matter. Hence, taking their ratio side by side, one finds  

 1,2,3.==
3






x

E

x

E





 

The right hand side defines the average force F  in V ; if indeed xFE = , then xFE  = . As expected, 

F  is actually an average value because it represents the force field in the whole 
3x . Dividing both sides by the surface 
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2x , one finds  

 1,2,3.==
3

=i.e.=
3 323




x

E
P

x

F

x

Ek








 

The negative sign of P  is related to that of x ; having tacitly assumed 0>x  it means that 0<P  generated 

within V  pushes the boundary of V  outwards. A positive sign consistent with 0<x , identically possible, would 

mean of course that an external pressure tends to shrink V . Anyway, regardless of the sign, the possible relationships 

between pressure and energy density corresponding to the values of   are =P , /32= P  and /3=P , to which 

are expectedly related three ways of regarding E . 

It is known that /3=P  holds for light completely absorbed by the internal walls that delimit V , whereas 

/32= P  holds for particles or even for photons that are reflected by the walls and bounce back elastically inside V ; in 

this case the kinetic momentum transferred against the walls is obviously twice than before. Eventually the relationship 

/32= PV  introduces itself the third chance  =PV  as a function of the energy    defined by /23=   ; this in 

effect concerns a known result of the elementary kinetic theory of the ideal gases once identifying TkB=  . The concept 

of temperature will be introduced in a more fundamental way in the section 13.4. 

The present result deserves three comments. 

1) The coefficient   does not depend on the spin of the particles. 

2) Another significant case where =P  is the following. Put without loss of generality in the eq (5,1) 

/3= gg  , where g  is an arbitrary function of t . Recalling the eq (2,2) and replacing g  in the eq (5,1), one finds via 

the eq (2,1)  

 (10,3)).(==
3

1
=

3
=

2

2
2

2
2

2

2

txgg
gtc

e

Vhtc

e

Gh

c





























  

Next, putting  =/2 tce , the result  hVV /)/3(= 2  yields  

 ./3=/== 2 VPVhP  
  

This result introduces thus P  as radiation pressure with both signs; it is the geometric average of the energy densities   

and   and adds a further chance of calculating explicitly the negative pressure acting inside V  as a function of time. 

Indeed the eq (10,3) yields  

 (10,4).
9

=

22













t

c

G


  

3) An interesting consequence of the eq (10,2) is expressed as follows:  

 ,===
V

V
P

VV

V
P

V

P

V

V
P

V

PV
P























 


























  

whence, since  =P ,  

 (10,5).=
V

VP

V






 








  

To handle in general V/ , consider both cases of extensive and intensive energy fields in principle possible inside V . 

-The field fills uniformly the region V  of space time; so the total   available in V  increases proportionally to 

the extent of this latter, i.e. wV=  with w  proportionality constant. This typically occurs when the field is an intrinsic 

property of the space time. So  =/==/ VwV , whence   VVP /=)(=   . 
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-The field does not fill uniformly the region V . For instance, the average   decreases as a function of V  

allowed to particles interacting with strength proportional to their reciprocal square distance; if so, then the average   due 

to this kind of interaction decreases when larger and larger distances are allowed to the particles. Thus Vw/=  yields 

  =/=/=/ 2 VVwV , whence   VVP /=)(   . 

These results merge into the unique equation  

   (10,6);== 


 
V

V
P  

regardless of the value of  , is crucial the fact that at both sides appears  , which can be regarded more in general as 

an arbitrary energy density  . It is also interesting to rewrite this equation dividing both sides by an arbitrary time range 

t , during which    is allowed by the change x . This yields with the help of the eq (10,2) and (10,1) calculated 

with /c   

   (10,7).===
1

==3= 222

t

x
x

t
c

tx

x
HcPHc




























 


  

If   is a decreasing function of t , i.e. the space time volume expands, then 0>H . The conclusion of this paragraph 

is that even the existence of an internal pressure that accounts for the time dependence of V  is found as a corollary of the 

eq (5,1). These outcomes imply three remarks: 

(i)once more the electric charge is introduced into the concept of space time via  , i.e. through a further 

combination of fundamental constants; 

(ii) as no hypothesis has been made about in the eq (10,2), it is reasonable to expect that even the vacuum, in 
addition to the real matter or radiation field, can originate a pressure; 

(iii) the equations  

 (10,8)==  
P  

still represent a possible link between energy density and pressure; in this case P  merges two different kinds of energy 
densities via their geometric average, e.g. in the case of the quantum vacuum through which propagates a radiation field. 

Also now both signs appear possible for P . 

Till now no explicit reference has been made to the existence of matter, despite appears self-consistently justified 
the concept of energy density in the eq (5,2). The next sections concern just this point, especially in connection with another 
energy density field, i.e.that due to the quantum vacuum. 

11 THE FIRST LAW 

This section is shortened as much as possible, being mostly aimed to clarify the meaning of negative pressure; the 
considerations are reduced to the minimum necessary to show that even the first law is inferable in the conceptual context of 

the eq (2,1), i.e. as a corollary of the eq (10,2).As ))(/(= VPPVPV    reads PVPV  )/(=  whereas 

PV= , one finds  

 (11,1)).=(==)(= iiiii PPPPPV   

The subscript i  emphasizes that actually P  and P  concern the internal pressure and its change inside the space time 

region; indeed i  is by definition the energy change of the matter or radiation field within V . This equation, rewritten as 

UPVUi   )(= , yields  

 PVUPVU  =H)(H=   

If constP = , the first equation reads VPQU  = , whereas the enthalpy change H  reduces to Q . With an 

internal pressure 0<P  the second addend is positive, which suggests that an external pressure 0>P  makes negative 

the second addend; this is in fact the first principle, which is usually written as a function of the external pressure acting on a 
thermodynamic system. 
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It is also interesting to rewrite explicitly the eq (10,2) as a function of a possible external pressure eP  acting from 

the outside of V  against its external surface; in this case any change eP  reverts the action on V  with respect to that 

described by iP  in the eq (10,2). Whatever the physical reason of eP  might be, this means anyway that such an effect 

is described replacing V  with V  in the eq (10,2). Hence the eq (10,2) yields now VPPV  = , so that  

 ).,=(==2)(= VPPPPVPPV eeeee    

Since VPUPVUe  2)(=   reads VPQVPQe   )H(=H= , once having put 

VPUQ  = , it is possible to write  

 (11,2);==H== TSQTSPVUQGVPGe    

in effect it is known that GPV  =  at constT = , so that VPGe  = . The concept of entropy S  will be 

introduced in the next section 13.4. These results are the first law. 

Consider eventually Vie   =  subtracting side by side the eqs (11,1) and (11,2): it is clear that the limit 

0 ie   holds if ie PP  , in which case 0V  too. This is the well known concept of reversible process, 

which implies an infinitely slow change of the system under a near equilibrium difference between the internal and external 

pressures leading to a steady V  as a limit case. 

12 THE QUANTUM VACUUM 

The eq (6,3) has related /2e  to 
2mc  and to hn , both inferred as direct consequences of the eq (2,1); so it 

is reasonable to think that /2e  and /ee , although both formally introduced via  , must have their own physical 

meaning. This section concerns just this point. In the section 5 both sides of the eq (2,1) have been multiplied by the 
frequency   already inherent the definition of space time; the same operation is now repeated by implementing an arbitrary 

frequency  o , which yields  

 (12,1).==
2c

G

V

h o
ot


  

This position introduces the new quantity t  and energy oo hE =  formally similar to that of the eq (5,1), which reads  

 (12,2).=
2

G

Vc
h t

o


  

The eq (12,1) also defines the square energy th 

22 =  and the time range t  during which ht :> . Hence 

222 > ht :  yields  

 (12,3)).(=> 2 tt ttt  

:  

The eq (12,2) introduces the related energy density   and density   as follows  

 (12,4).===
2

GG

c

V

h tto 
 


  

The physical meaning of   is uniquely due to the physical dimensions of G ; the time dependence of V  upon )( t  

in the eqs (2,1) is now merged with that of t , whose physical meaning is further elucidated defining the volume  

 (12,5),=
2

t

lc
V




  

being l  an appropriate length to be determined. To highlight the physical meaning of l , note that it defines energy and 
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mass without introducing any particle, but simply implementing the physical dimensions of G   

 (12,6).==
24

G

lc
ml

G

c 
  

The eqs (12,4) depend explicitly on t  only, whereas the corresponding quantities of the eqs (12,6) depend on the length 

l  only. Since even these quantities are not related to V , which indeed does not appear explicitly, one infers the existence 

of an energy field pervading all volume of space time, whose amount per unit volume is just  . This field is due to charged 

virtual particles, assumed to exist in the space time in agreement with the eq (6,3) and with   of the eq (12,6) itself. 

To support this conclusion, note that replacing G  and V  in   via the eqs (2,1) one finds 

32 /)/(= xhlc   . As l  has physical dimensions of a velocity, it is possible to write qcl =  via an 

appropriate numerical coefficient q ; moreover, being /c  a length, it is also possible to regard 
2)/( c  as a surface A

. Hence this straightforward elaboration of   reveals the form  

 .=
3x

hc
q

A 


 

Is attracting the chance of expressing qq = , being q  a proportionality factor; in this way the last equation reads 

32/=/ xeqA 
 . So 

22 )//( xxe   at the right hand side shows that A/  is proportional to the energy/surface ratio 

of charged virtual particles. To get from this expression the force per unit surface, it is enough that 1/3=q : dividing both 

sides of /3/=/ 32 xeA   by x  one finds the expected form /3= P , being indeed V/=   and 

42/= xeP  . In conclusion with /3=q  the previous equation reads  

 ,
3

1
=

3
=

3

2

3 x

e

x

hc

A 
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where the factor 1/3 specifies that the energy density corresponds to wave-like pressure. According to the eq (6,3), however, 

an analogous result can be obtained from Vxee )//(   i.e. multiplying by hcee /= : this implies xF   /=  : in 

the former case the force is repulsive, in the latter case attractive while the vacuum results neutral according to the 
considerations of the section 6. In this latter case the pressure is due to couples of virtual charges and anti-charges that form 
and annihilate releasing the concerned energy, which is thus is identifiable with the Casimir force. In effect, the numerical 

value of the coefficient /3hc  fits well that 240)/(32 c  reported in the literature, whereas the physical meaning of 

this force is easily explainable in terms of selected virtual charges existing in the quantum vacuum between two plates of 

surface A  put x  apart. 

The distance x  between the surfaces A  selects the vacuum waves allowed inside 
3x , i.e. steady waves 

with nodes at both surfaces A : the number of vacuum frequencies allowed between these surfaces is smaller than that 

allowed in the free vacuum. Just the reduced number residual waves causes the attractive force corresponding to  , as it 

is inferable from the coefficient 1/3: the attractive effect is nothing else but the "richer" vacuum that squeezes the "poorer" 
vacuum. 

This confirms that the quantities with the subscript   are due to virtual particles and antiparticles that 
characterize the quantum vacuum. 

After having introduced density and volume together with energy and energy density of a virtual world inherent the 
space time, whose physical properties in fact do not involve real masses or radiation, is deducible their connection with the 
real world previously introduced. 

Multiply both sides of the eqs (2,1) by 
3c  and note that Vc3

 has the same physical dimensions of 
3

0 )/( mh , 

being 0m  an arbitrary mass; hence, assuming Vc3
 proportional to 

3

0 )/( mh , the eq (2,1) yields  3

00 )/(= mhhcG

, where 0  is a dimensionless proportionality constant. Owing to the initial definition of )/(= 32 xchG  , one finds  
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The first equation is the Compton length 0x  of the mass 0m , already introduced in the eqs (5,3), which results here 

proportional to 
1/3

0)/( V  via the factor 0 . Hence 0 , expectedly 1> , is the scale factor between the macroscopic 

volume V  of space time of the eqs (2,1) and the local size 0V  around the mass 0m . Also,  

 (12,8):=
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the second equation is inferred from 
22)(=  VhcG , guessed by dimensional reasons, replacing 0/= VV   in 

accordance with the eq (12,7) and t  =2
 via the further proportionality constant  . Formally 0  and   could be 

merged into one multiplicative factor only; yet the proposed notation better emphasizes that the former refer to the space 

scale, the latter to the time scale. Note that now 0m  is not a mere multiplicative factor introduced at both sizes of an 

equation, as done for instance in inferring the eq (4,1) of the section 4; here the mass is an actual physical entity explicitly 

introduced and defined by the Compton length and the energy 
2

0cm  via the Planck time Plt , as it appears in the eq 

(12,8). Just these results link hcG  and the early definition 
2/chG  of space time; i.e., since V  is still that of the eq (2,1), 

the second eq (12,8) reads  

 (12,9).=

2

0

2 








 



 t

c

hG
hcG  

The eq (12,9) highlights the sought form of hcG  and provides the expected link between 0  and    

 (12,10);=i.e.= 00
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On the one hand the eqs (12,10) and (12,8) yield  
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on the other hand, for t  to fulfill the condition (12,3), the second eq (12,12) requires  

 (12,13).<
2

0 G
V

tm 
:  

The second eq (12,12) equals via the factor   the mass densities Vm /0  and Gt / , having clearly different physical 

meaning. Whatever the values of 0m  and V  might be, the former is the usual density defined by a real mass and a real 

volume; the latter is a virtual density defined by the physical dimensions of t  and G  only, thus not attributable to any 

volume or amount of matter actually existing in the space time. As m  and   are proportional via the length l  to the 

characteristic fundamental units that define the space time as a whole, this remark confirms that to the properties of the 
space time concur also virtual particles, whose mass and energy and respective densities are nonetheless still definable 
likewise that of the ordinary matter. Thus, despite their different physical properties, it is reasonable to expect that their 

energy density concurs to the total pressure acting inside V . Is important the chance of defining the total energy density in 
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the space time volume due to the virtual particles plus that due to the possible presence of ordinary matter; according to the 
second eq (12,12), it is given by  

 (12,14).2=2== 00

V

m

GV

m
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tt
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
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



 

Here is the sought result: via the proportionality factor  , vacuum and matter are at the equilibrium. 

A further property of t  of interest is inferred from the inequality (12,3). Introduce an appropriate length r  

such that 
1</ 

  trc : ; multiplying side by side this inequality and (12,3), r  is defined in order that  

 (12,15);=3

tc

r
t




 


 

The conclusions of this simple reasoning are  

 (12,16).
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The next sections highlight the implications of the groundwork hitherto exposed. 

13 SOME PHYSICAL COROLLARIES 

After having concerned physical properties directly implied by the eq (2,1), this section elaborates some among the 
results so far introduced to highlight additional features of the space time. 

13.1 THE FREE PARTICLE 

Let us show that the Compton length C  of m  given by the eq (5,3) can be also inferred via n  of the eq (5,4) 

noting that this equation yields mchv /=  , so that  

 (13,1).==
n/

=
n 1

mc

hvc
c

 






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To implement further n  via the eqs (4,5), define next )n(/=n Enht   and Enht  /= , with the same number n  

of allowed states; then EE  >)n( , due to 1>n  according to the eq (8,2), compels tt  <n . Introduce thus a 

velocity v  such that tvtc  =n ; so, EcEv  =)n(  yields  
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and thus  

 (13,2).
)/n(

=
 

c
v  

This result, written in differential form in the limit  , i.e. for very small range sizes, takes the familiar form  

 .
)/n(

=
 

c
v  

The mass does not appear explicitly in this result, which therefore holds for 0m  and even for 0=m ; the former case 

implies that m  moves at the rate we call group velocity of the particle, in the second case v  describes a packet of light 

waves moving at the slower group rate in a dispersive medium with refraction index 1>n . An important consequence 

follows from this result for n  constant, 0n=n : the eq (13,2) reads )/n(/  cc  and then thanks to the eq (5,5)  

 (13,3),
)(1/

=
n

=
0

*







c
v  
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which is the fundamental equation of the quantum mechanics together with the De Broglie momentum. 

Consider now the eq (8,3); squaring both sides, one obtains 
22222 2)()(=)( mchhmch   . Next, 

putting by definition   /= c , so that cph  = , this equation reads 
22222 )()(=2)( cpmccpmch   

according to the eq (5,5); the prime symbol emphasizes the link with   . Note that with    defined in this way via c , the 

right hand side is an invariant; so at the left hand side appears an invariant square energy. Put now 
2= qmch   via the 

factor 1<q ; this position is reasonable because )(1= 2 qmch   of the eq (8,2) agrees with 
2< mch  of the eq 

(5,4). Hence qcpcpmc /)2(=2 22  . Consider a boundary condition for the eq (8,3): holds the limit   hmc2
 for 

0h , in which case 1q ; this means that the value of q  is related to that of h . Put therefore hcmq o /= 2

, being om  an arbitrary constant mass introduced by dimensional reasons: in this way 0om  for 0h  is 

consistent with the finite limit of q  and thus with 0 . So the result is omphcpmch /)2()()(=)( 22222   . 

Since   and    are arbitrary, this equation reads in general  

 (13,4).)(2/)()(= 22222 pmpcmc o    

This equation, which compels modifying the rest term in the standard relativistic energy equation, is a well known feature of 
the quantum gravity; it solves the three cosmological paradoxes emphasized in [21]. 

13.2 THE BLACK HOLE LENGTH 

Rewrite the eq (2,1) as 
22 /=/ cmGhmV  ; the right hand side describes a length characterized by m  only, 

which therefore represents a physical property of m . Replacing h  with  vcp /2
 via the eqs (A09) and (9,9) and 

expressing without loss of generality  2)/(= cV  via an appropriate length  , the result is  

   (13,5)1,)/(1==
1/22

2



cv

mv
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c

mG

mv
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







  

where the equality holds in the limit 0v . The dimensionless ratio  vp m/ , in principle arbitrary, implies important 

consequences for 0=v  or for particular values of 0v . If 0v , then in general the eq (13,5) is simply a way to 

express   in 
2/cmG  units via arbitrary values of the ratio  mvp / . Yet, two particular values of this ratio deserve 

attention. These cases are separately concerned. 

1) The limit 0v  concerns in particular 
2

0 /= cmG . Multiplying both sides by an arbitrary mass 1m , 

according to the eq (5,9) this equation describes a gravitational system of two masses m  and 1m  a distance 0  apart:  

 

0

12

1 =


mm
Gcm   

It is easy to find the Newtonian limit of the virial theorem for a gravitational system of two masses, since this result suggests 

a possible connection with the eqs (5,9) according which UmGm =/ 01  ; it implies a rest mass 1m , e.g. fixed at the 

origin of an arbitrary system of coordinates, and a mass m  orbiting circularly 0  apart, whose potential energy 0<  

corresponds to the attractive gravitational field of 1m . Hence, 
2

1cm  must account for the binding energy 0<b  of the 

whole system and for the kinetic energy kin  of m . Clearly kin  is lower and upper bound by the condition 

2

10 cmkin   , without which m  would escape from the gravitational field of 1m . On average therefore 

/2= 2

1cmkin , whereas UU =  yields /2= Ukin  ; also, /2=UUkin   yields bcm =/22

1 , 

where at the right hand side appears of course the average binding energy. In conclusion  

 (13,6).=/2= bkin U    
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The Newtonian approximation is clearly due to the way of defining kin  via the rest term of the eq (9,9) only, which holds for 

cv <<  only, instead of implementing the series expansion of the eq (5,9) to generalize the eq (13,6). This generalization, 

requiring a longer discussion, is omitted for sake of brevity; it is far beyond the purposes of the present paper, merely aimed 
to show that sensible results are obtainable from the eq (2,1). 

2) Rewrite identically the eqs (13,5) as follows  
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owing to the chance of writing vc n= , eq (5,4), this equation reads  
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being by dimensional reasons || M  the modulus of the angular momentum of m  orbiting at the distance n  from m

. Multiplying both sides by 
2)/( vc , one finds  
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this result confirms once again that necessarily vc > . Moreover note that the terms at right hand sides of the eq (13,7) can 

be regarded as probabilities, whose sum yields the certainty; trusting therefore on the probabilistic character of this equation, 

cv <  implies by necessity rcMrmGm  /</ , where r  is the average orbiting distance of m  from m . It 

means that the second addend yields the probability of finding m  in an arc r  of its orbit. So this probability reads 

 /2=/2 rr  . Note that v  is the modulus of a vector having space components that point towards three 

orthogonal directions, one of which only is of interest here: the one pointing along the tangent to the arc of orbit defined by 

r . So, since nothing is known about v  for the reasons previously introduced, the probability of displacement of m  

just along   is actually 1/3 of /2 . Hence  

 .=
6
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cM
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The eqs (5,10) and (5,11) explain and motivate this conclusion, which concerns the well known perihelion displacement of 

orbiting bodies simply regarding r  as average distance of the elliptic orbit of m  around m . It is known that the 

classical form of gravitational potential does not account correctly for the perihelion precession of orbiting bodies, an 

additional term 
2* /= rU   would be necessary [22]; unfortunately, however, the classical physics does not justify such an 

ancillary term. Yet here the Einstein result has been obtained via a probabilistic reasoning correspondingly to the necessity 

of considering )( 1xU  instead of the plain Newtonian )( 1xU , as emphasized in the positions (5,10); this term 

appears in a natural way and justifies the relativistic effect found here. 

3) Is also interesting one specific value of the ratio  vp / , such that   takes the particular physical meaning of 

space range where is confined m . Being /= hp , this condition requires that even the longest steady wavelength of the 

momentum wave be entirely included in 
2/cmG , otherwise m  could not be actually confined therein. Let bh  be the 

sought wavelength; as any steady wave has nodes at the boundaries of 
2/cmG , the corresponding bh  must be twice the 

size of this latter. Otherwise stated, bh  consists of two half-wavelengths each one of which is equal to 
2/cmG . This 

identifies the particular value 2=/ nmvp  of interest to describe the confinement of m , i.e.  
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This first equation is confirmed considering directly the corpuscle velocity xv . Putting )(= xxx mvmvp  , the identity 

nhpxx x/
2  also reads according to the eqs (4,1) nhmvxx x/2 2 : it means that regarding m  in an arbitrary 

point 0x  of the space time, the momentum range corresponding to its total displacement x  around 0x  is in fact 

compatible with both components xv  and xv  of velocity along the x  axis. The reasoning is identical to that already 

introduced to infer the eq (9,6). Put then xvx = , where   describes the frequency with which the corpuscle bounces 

back and forth throughout x ; the last identity reads nhmxx /2 3   and thus, according to the eqs (2,1), 
2/2 ncmGx  . Since 1=n  identifies the maximum range size consistent with this condition, bhnx =1=  is the 

maximum length crossable by the particle whatever its velocity might be; as the velocity does not appear explicitly in defining 

x , the result holds even for the light speed. The reasoning carried out for m  holds identically for any particle moving 

inside x , which is a physical property of m . This allows concluding that no particle can escape beyond the boundary 

defined by the range size 1=nx . 

The size of bh  containing all momentum steady wavelengths of m , is thus the diameter of a "no escape 

hypersphere" centered on m . This is in fact the meaning of the factor 2, which doubles the half longest momentum 

wavelength and corresponds to the total range accessible to delocalize m . Note that the orientation of the range 
2/2 cmG  

in the space time, along which run the momentum wavelengths, is not definable if the space time is homogeneous and 

isotropic; so, thinking fixed one boundary of bh , the mobile boundary describes a larger hypersphere centered on the fixed 

boundary. The hyperspherical volume of radius 
2/2 cmG , i.e. defined by all orientations of bh  in the space time, is the 

event horizon of m . So, event horizon of m  and confinement range outside which m  does not escape are here different 

concepts. 

The factor 2 is interesting for at least three reasons. 

(i) Replace bh =  to define  h  of the eq (8,3), as done to infer the eq (13,4); one finds in agreement with 

the eq (13,8)  
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which yields  
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1
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c
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This result further clarifies the meaning of the inequality (8,2), which together with the eq (8,3) implies 1>n  and thus 

vc >  in the eq (5,4) simply because of the uncertainty: the reason is the existence of the zero point energy, which in effect 

is a quantum property hidden into the inequality hmc >2
. 

(ii) Replacing 
2/2= cGml H  in the eq (12,5), one finds tHGmV  /2= ; moreover the eq (12,2) reads 

22= cmh Ho , i.e.  

 (13,11).
2

1
=2

oH hcm   

The physical meaning of HV  and Hl  leading to this result will be described next below. It is anticipated here that the virtual 

charges behave as oscillators with their own zero point energy. 

(iii) To highlight the physical meaning of 0 , note that the eq (12,12) yields with the help of the eq (13,8)  
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which can be regarded in two ways. 

On the one hand, assuming in particular an hyper-spherical geometry of radius bh , one finds  
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On the other hand, owing to the eq (12,6), 
2

0  is proportional to the ratio of two energies  
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The eq (13,12) concerns the boundary of a stationary hyper-spherical black hole having surface A ; the fact that it is also 
proportional to the ratio of two energies, recalls the classical concept of dimensionless entropy compatible with the energy 

ratio TkQ B/ . In effect 
2

0  is proportional to the Hawking-Beckenstein entropy 
2/4 PllA  [23] of a stationary black hole 

via a constant factor 
1)(4  ; note however that the present result would coincide with that of HB waiving the 

hyper-spherical geometry, i.e. putting simply 
2= bhA  . 

As a final remark, the eqs (13,5) and (5,6) show that the arbitrariness of the respective values of v  and n  allow 

the chance of describing any length l  via the 
2/cmG  and mch/ , whence the positions  
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of course 
*

bhn  and 
*

Cn  are arbitrary real numbers, whose subscripts emphasize their reference to the respective 

fundamental lengths, the last equality implements the eq (13,1). This remark is not trivial, because of the different mass 
dependence of either reference length: the former increases with m , whereas the latter decreases. Although in principle 

both ways to describe any length via the respective numerical coefficients are equivalent, the next section 14.1 will show that 
this formal equivalence is not so obvious from a physical standpoint in describing the size evolution of the space time. 

13.3 RED SHIFT AND GRAVITATIONAL BINDING ENERGY 

A further corollary of the eq (13,8) is inferred implementing either eq (3,1). Put for instance in the second eq (3,1) 
2/2= cmGl , which is possible in principle because the quantities at both sides are invariant; of course this replacement 

requires specifying accordingly l  too. Since l  is not required to be invariant itself, let be 
22 = rql  , with 

tcr  =  and 1<q  arbitrary constant; this yields then qrcmG  1=)/(2 2
. The left hand side must have the 

form 
2)/( cv  because rmG /2  has physical dimensions of square velocity; so q  must be such that 

2)/(=1 cvq

, i.e. 
4)/(1= cvq  , in agreement with the fact that 

22 )(< tcl  . Hence 
22 )/(=)/(2 cvrcmG   yields 

    1/221/22 )/(1=)/(21


 cvrcmG . The right hand side represents the Lorentz contraction factor between two 

lengths in reference systems in reciprocal motion, as it is easily inferable from the interval invariance itself [16]; so the left 

hand side yields in particular the red shift of a proper wavelength e  emitted by a light source moving at rate v  with 

respect to an observer along its sight line. This latter records instead a wavelength obs  given by  

 (13,15)1=
2

1

1
=

2

z

rc

mGe

obs 







 

which defines the red shift z . 

Note that this expression reads identically  
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 (13,16),=
/3

/(2/3)
=

/1

1
=

2

2

00 e

obs

obs

ebe

beobs

e hc

hcmc

rGm















 


 

where the subscript be  stands for binding energy. The interest of these results is due to the ratio 0/be
 . It is known that 

the gravitational binding energy of a homogeneous spherical body of matter of radius r  is obtained classically 

considering the gravitational interaction between a core mass /34 3r  and an external shell mass drr  24  of the 

body; integrating their product times 
1r  over rdr 0  according to the eq (5,9), the result is rGmcl

be  /0.6= 2
. Regard here  

 
r

Gm
bebe




2

3

2
==   

as the classical gravitational binding energy of a spherical body formed by a system of particles: 2/3 fits well the coefficient 

0.6 affected by the approximation inherent the classical Newtonian potential 
1r , whereas the eq (13,16) to infer be  

waives instead any reference to the analytical form of gravitational potential. 

Also, 
2mc  is the energy of the total mass of the system, whose particles are initially supposed at the infinity and 

thus non-interacting. 

The physical meaning of the ratios 0/be  and obse  /  is then inferred as follows. 

(i) Write the former as 00 /=/  bebe : to obtain this result be  and 0  have been ideally divided by an 

arbitrary reference volume refV , which can even coincide with that of the whole homogeneous body, to calculate the 

respective energy densities. Since hmc n=2
 according to the eq (5,4), the second eq (13,16) reads  

 
 

.=
/n(1/3)

//(2/3)
=

2

0

bebe

ref

refbe

Vh

VrGm








  

Hence, putting GcVh ref /)(=/n 22  
 whatever refV  might be via the proportionality factor   that includes n , 

one finds  

 (13,17):
3

2
=

)(

3

1
==

22
2

0 rV

Gm
P

G

c
P

P

P

ref

mat

be

rad

rad

mat

bebe










 

The positive 
mat

beP  is related to the attractive gravitational energy density of the matter, which tends to shrink the system 

enclosed by refV ; the negative 
radP  is related to a form of pressure necessarily negative also concurring in the reference 

volume, which tends to swell the system. The notation emphasizes the assumption of radiation pressure with reference to 

the eq (5,1) and to the coefficient 1/3, i.e. due to the whole radiation field surely existing within refVV =  in agreement with 

  and acting against the internal surface of V  that is thus pushed outwards. 

(ii) Since obse    is the non relativistic limit of e  for c , regard reasonably obse  /  as the ratio of 

e

rel

be  =  and obs

cl

be  =  via an appropriate proportionality factor  : the aim is to define obs  in order that 

obsh  represents 
cl

be  and e  in order that eh  represents 
rel

be . Then the first eq (13,16) reads  

 (13,18).
3

2
=

/21
=

2

2 r

Gm

rcmG

cl

be

cl

berel

be








  

For 1<</= 2 rcmGy   the first equation reduces to )/(10.66 yy  , whereas an analogous literature result is 

/2)/(10.6 yy   with rcmGy 2/=  [24]: despite the literature result concerns a hot dense supernova star of mass m , 

whereas here 
rel

be  considers the total mass m  of several corpuscles regarded as a whole gravitational system, for 
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1<<y  both expressions are reasonably comparable. 

A corollary of the eq (13,18) is the link between the relativistic gravitational energy gain due to the mass m  of a 

system of particles and the energy necessary to create a higher amount of mass mM > . Note preliminarily that the 

physical conclusions of the following reasoning would be in principle expectable also with the quoted literature equation; 
regardless of a possible small difference of numerical values of calculations carried out with the eq (13,18) or with the 
literature formula, the essential point is to use the relativistic binding energy and not the classical one. Implementing the eq 
(13,18) as follows  

 (13,19),==
21

(2/3)
==

2

2
2 mmM

rc

mG
y

y

ymc
Mcrel

be



  

the gravitational binding energy at the right hand side appears adequate to account not only for its own mass m  but also for 

the equivalent mass of any energy field possibly associated to the outwards pushing or inwards shrinking effects; this 

additional field is related to and symbolized by the equivalent mass m . Note that the eq (13,19) admits a solution: for 

1/2y , i.e. Grcm /22 , the right hand sides diverges, so in principle the equation can be solved whatever the 

additional m  might be. Hence even a small value of Mm <<  is in principle compatible with the occurring of a large 

extra-amount of mass/energy generically denoted here as m . Eventually let us emphasize a final remark about the eqs 

(13,15) and (13,16). In the particular case of hyper-spherical geometry of space time where is distributed the gravitational 

mass m , i.e. /34= 3rV  , the eq (13,17) reads  

 (13,20),==
3

8
=

3

8
=

21
=

2

2

22 V

m

r

c
H

H

G

c

r

V

mG

rc

mG

P

P
rad

mat

be 






 






 


 

being H  a new function with physical dimensions 
1time . It is clear that V  expands or shrinks or is at rest depending 

on the force balance of the gravity driven contraction pressure 
mat

beP  and the internal radiation driven pushing effect 
radP  

acting on its boundary: in this way the inwards or outwards effect depends on whether 1/ ><
radmat

be PP . In effect the last 

term of the chain of equations is a well known result, reported in the literature as  , obtained solving the Friedman 
equations. 

13.4 THERMODYNAMIC SYSTEMS OF PARTICLES 

Let us multiply the eq (2,1) by m  in order to introduce the vector  

 ,=
2

m
c

hG
L   

whose modulus has the same physical dimensions as h . This means considering a complex system of masses jm  such 

that jj
mm = , whose mutual positions are compatible with the existence of mass density gradients. The global gradient 

0m  introduces the concept of non-equilibrium configuration possible for the mass existing in the space time. Let 

2

0 = cm jj  be the particular value of energy related to the j -th mass of the system. Writing identically 

)/)(/(= 4

000 chGL    and specifying this expression for each particular mass element, 

4

00 /)log(= chGL jjj    yields thus  

 (13,21)=)(=log= 2

0

00

4
cmtUU

UUc

UhG
L jj

jj

j 










  

being U  a time dependent energy to be defined; so U  is compatible with the possible time dependence of jm . 

Rewrite the right hand side of the first equation as  

    
U

t
j

jjjjjjjj

0
=)(=loglog=log


  
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and define via the first eq (13,21) the scalar  

     (13,22)loglog===S
44 jjjjjjj uu

c

UhG
mu

c

UhG
uL   

that introduces the function S  having the physical dimensions of h  through a dimensionless arbitrary unit vector u . As 

this result holds for any j -th mass of the system, let U , not yet specified, be such that j  takes the meaning of a 

probability; e.g. this interpretation could be satisfied putting 1=jj
  by definition and jj

fU 0=  , where 

)(= tff   is an appropriate function accounting for the time dependence of U . Summing both sides over j , this result 

takes the form  

  (13,23)S==Sloglog=
S

444 j

j

j

j

jj

j

jj

j

mu
c

hGU
u

c

UG
u

c

UG

h
   

Note that rcUGu =/ 4
 has physical dimensions of a vector length and that the summation of the first addend can be 

rewritten as  
jjj

r   log ; hence it is possible to rewrite the last equation as  

   (13,24).=)(=loglog=
S

4
u

c

UG
trrrr

h
jj

j

jj

j

   

As S  has the physical dimensions of h , the second addend of the eq (13,24) can be obtained by nothing else but the 

scalar product of r  and an arbitrary momentum hp/ . This equation reads thus more conveniently  

 (13,25).log=log==
S

jj

j

jj

j h

p

h

pr
r

h



   

The reason of this notation is that 0<log j  because by definition 1<<0 j ; in this way   and p  are thus 

positive. Are evident three relevant results. 

(i) The chance of defining a function S  proportional to   via a constant Bk , i.e.  

   .(13,26)log== jj

j

BB kkS    

(ii) According to the Euler homogeneous function theorem,  =r  if the function   is a first degree homogeneous 

function of zyx ,, ; so the eq (13,25) reads prh =S . Eventually, note that the eq (Y3Y) allows to find 

)/(log= 12 VVRS  for the isothermal expansion of an ideal gas and that this result is identically inferable also directly 

from the eq (13,26). The conclusion is that   is a dimensionless entropy and thus it should be the ratio of two arbitrary 

energies /E . In effect, being th =  according to the eqs (4,5), one finds thh E=)/E(=  . So one finds  

 (13,27).E=S prt   

Note that the physical dimensions of S  of the eq (13,23) are equal to that of the eqs (4,3); hence holds also now the eq 

(7,3). 

(iii) Noting that jjdd  log1=/ , one finds  

 ;log= jjj

j

j 






 

summing over j , the second equation yields by definition the average value of j/   

 1,=1== j

jj

j

j







  







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which yields eventually  

 (13,28)1.=






  

The sum of two terms equal to 1 means that these terms regard two probabilities whose sum yields the certainty. This 
suggests that  

 (13,29)==1= 



disorderorderdisorderorder


  

The entropic term measures the degree of disorder; since any thermodynamic system is characterized by its internal 
degrees of order and disorder, the second addend is reasonably related to the degree of order. If the former addend 
increases for an isolated term, the second term must be a decreasing function. A system with one particle only is an ordered 
system, as there is one accessible configuration only. Note that these results have been inferred via the eq (2,1) simply 

implementing the idea of non-equilibrium configuration inherent 0m . 

13.5 THE SECOND AND THIRD LAW 

Start from the eq (13,26) and the concurrent boundary condition 1=jj
  to calculate the quantity a  , 

where the subscript stands for additive; the notation emphasizes that 0>a  is a dimensionless entropy additive to  . 

Hence a  is not necessarily constant; like  , it is however required not to depend on the dummy index j  by definition. 

As such, a  represents the evolution of the whole system, not that of some allowed states. As 

jajjjja    log= , trivial algebraic steps yield  

 (13,30)).(exp=log)(exp= ajjjj

j

aa     

Since jj  < , in principle j  is still consistent with the meaning of probability; note that the entropy increase implies 

a number j  of j  states necessarily greater than that initially introduced for  . The entropy increase is expressed as 

a function of the value of a new entropy     

 (13,31).log=)(exp= jj

j

aa    

Calculate now the entropy change   due to an ideal modification of the state of the system from an initial configuration 

0  to a final configuration fin . Let 0=  fin  be expressed without loss of generality as 

)()(= 0 aafin   , i.e. as a function of    only. So   1)(exp= a : even the amount 

a 0  of entropy added or subtracted has been still expressed as a function of    via an arbitrary coefficient 
1 , 

correspondingly to either chance a <0  or a >0  in principle possible. The linear combination emphasizes that the 

transition from 0  to fin , whatever they might be, is consistent in general with an increase or decrease of the initial 

entropy. Write then  

 (13,32).)(exp== 1   a  

Given that 0>a  and being 0>  and 0>  by definition, either sign of   depends on   only: e.g. if this 

latter is positive and tending to zero, then it is possible that 0< . Consider thus separately the two cases. 

i) 0< . In this case the eq (13,32) reads  

 (13,33)0.<=  
  

Clearly   governed by 
1)(exp=   a  concerns the case where an appropriate thermodynamic process 



I S S N  2 3 4 7 - 3 4 8 7  
V o l u m e  1 1  N u m b e r  6        

J o u r n a l  o f  A d v a n c e s  i n  P h y s i c s  

3440 | P a g e                 C o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  
M a r c h  2 0 1 6                         w w w . c i r w o r l d . c o m  

subtracts the amount of entropy  1
 from a system initially described by  )(exp a . 

ii) 0> . Let us write first the eq (13,32) as follows  

 (13,34).log=
1)(exp

=
1

== 











aa

a

FB

FB

n
n

 

So 0>FBn  regardless of the   sign via an appropriate choice of a  and  ; now  

 (13,35)0.>  

The crucial difference between the eqs (13,33) and (13,35) is that 0<  can be obtained only subtracting a suitable 

amount of entropy controlled by the parameter   from the former term, whereas instead 0>  is naturally obtained 

even without subtracting or adding anything. Hence the latter is an isolated system characterized by its natural tendency to 

increase the entropy, the former does not: the necessity of subtracting  1
 to get 0<  indicates that part of its 

previous entropy was removed by interaction with another system. This is the second law. 

A possible understanding of the eq (13,34) is that FBn  represents the number of particles possible in a given state 

of the system, in which case the change   is proportional to the initial entropy of each one of them; moreover the sign   

suggests that exist two different statistical distribution of particles between the allowed quantum states. At least in principle 

this is acceptable: being   still an entropy, it simply indicates its extensive property, and agrees with the eq (13,32): the 

positive coefficient 
1

FBn  allows jjj
 log  to represent entropy change of all particles. Three remarks are 

necessary at this point. 

-The eq (13,31) shows that actually the entropy is defined an additive arbitrary constant apart; indeed the reasoning 

about a  surely holds even for a constant term o . Moreover in this case it is possible that 0<o ; being o  

arbitrary, in principle it can be defined in agreement with the condition 1<)(expmax

oj   even for the largest one 

among the various j , in order to ensure according to the eq (13,30) that all j  are still compliant with the meaning of 

probability. Under this constrain o   is still an entropy change, whereas the first eq (13,31) reads  

 .)(exp= oo    

-The eq (13,30) shows that jj   < ; being anyway 1== jjjj
  

, then jj >  ensures that the entropy 

increases along with the number of quantum states accessible to the concerned thermodynamic system. Hence any 
configuration of allowed quantum states is the evolution of a previous one with a lower number of quantum states and thus 
with a smaller entropy. Going back towards simpler and simpler configurations, one infers that the most fundamental 

configuration is that with 1=j , with one quantum state only, whose entropy is zero or equal to the constant o . This is 

the third law. 

-Since a  has been introduced with the physical meaning of entropy it must have a form related to TkQ Brev/ , 

as it has been shown in the previous section. Hence it most general form is reasonably that of linear combination 

21 / aTkdQa Brev  , which can be also rewritten as TkB)/( 12    merging the coefficient 2a  with )(log  . So  

 .
1)/(exp

=
 Tk

n
B

FB



 

This is the well known form of the BE and FD statistical distributions: the ways to occupy the quantum states result 

examining the trend of the respective statistical distributions of particles as a function of T . Examining the trend of BFn , 

one infers "a posteriori" the different character of either statistical distribution. In this way, coherently with the purposes of the 
present model, the existence of fermions and bosons comes from the eq (2,1), from which has been inferred the eq (13,26) 
here implemented, instead of being purposely hypothesized via either kind of occupancy of quantum states to explain 
specific topics. The spin of particles, however, has not yet been introduced in the frame of the eq (2,1). This point is 
examined in the next section. 
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13.6 THE SPIN 

This section aims to show that even the spin of quantum particles and the related statistics are inferable in the 
present conceptual frame based on the eq (2,1). Start to this purpose from the eqs (4,5) and write  

 (13,36)==)()(== 121221122211 pppxxxpxpxpxpxnhpx   

to describe a particle delocalized in x  whose kinetic momentum p  falls in the range p  of local values; 1x  and 2x  

are any boundary coordinates, arbitrary likewise as 1p  and 2p . Regard the quantities at the right hand side as x  

components of a new vector, call it M  in agreement with the eq (13,7) by dimensional reasons. Being both signs possible 

for the components of any vector along an arbitrary direction, the eq (13,36) reads  

 (13,37).=M=M=M|=MM||M| 1221211222112112 pxpxpxpxnh xxxxxx   

Both 12M x  and 21M x  are mere quantum properties: they vanish if the uncertainty ranges reduce to the respective 

classical dynamical variables. E.g. putting 0=2x  and 0=2p  results instead 0=M 11 pxx ; the same holds of 

course putting 0=1x  and 0=1p , which imply 0=M 22 pxx . Moreover it can also be 0=Mx  for 

2211 = pxpx   while being 0)/(=MM 1

2

2

2

122112  pppxxx  since 21 pp   by definition. Hence: (i) 12M x  and 

21M x  have a physical meaning analogous, but different from that of xM ; (ii) all of them are nevertheless components of 

angular momentum. Thus not only 0M x  and 0=M 2112 xxM   but also 0=Mx  and 0M 2112  xxM  

must be satisfiable together with the chance of both terms equal to zero or different from zero, because there is no physical 

reason to exclude anyone of them; for this reason the moduli |M| x  and |MM| 2112 xx   have been considered 

separately. Moreover the point (i) also suggests that |M|=|M| 2112 xx  : this position makes indeed 2112 MM xx   

compatible with both 122112 M2=)MM( xxx   and 0=)MM( 2112 xx  , so that the addends at the left hand 

side of the eq (13,37) take the expected forms hnorx |=M|   and hnspx |=M|2 12 . The notation expresses that orn  

and spn  are in principle independent whole sets of arbitrary integers likewise n , in agreement with the concept of 

uncertainty. Split then the first eq (13,37) as  

 nnnhnhn sporspxorx =1)(|=M|21)(|=M| 12   

The reason of these positions is that 1n , likewise 1orn  and 1spn  even simultaneously, whereas instead it is 

possible that 0|=M| x  and 0|=M| 12x  too. The chance that 0|=M| 12x  compels writing 1spn  and thus 

1orn  as well, which in turn is compatible with 0|=M| x . 

As concerns the given component of M , it is worth summarizing the possible chances  

 0.0
2

=M=M 12  spinorbitspinxorbitx nn
h

nhn  

The quantum properties of M  have been inferred considering one of its components only, actually without specifying 

anything; just this entails the integer and half integer quantizations that appear merged in /2= spinorbitx nnj   according 

to the usual notation in h  units. Clearly orbitn  and spinn  are independent each other: the fact that the latter is a mere 

quantum property that vanishes considering the local coordinates only, indicates that the former is the quantum property 
corresponding to the classical angular momentum. The spin is thus an intrinsic and distinctive property of the quantum 
particles. 

It is evident that if spinn  is even, then the total angular momentum component of N  particles 

/2= spinorbittot NnNnN   is an integer number of h  units; hence, being orbitn  arbitrary, the angular momentum a 

quantum system with N  particles is indistinguishable from that with a different number NN   of particles. Instead for 

spinn  odd, the system jumps from half integer to integer values after the addition of a new particle, i.e. the quantum states of 

the system are distinguishable upon addition of each particle. It is clear that this is nothing else but a different formulation of 
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the Pauli principle. This result has been also found in [12]. The reasoning here carried out for one component of M  cannot 
be repeated for another component: this would trivially mean changing the notation of the component with a unique physical 
information only. Otherwise stated this means that in lack of a new physical information, actually non existing, one 

component only of M  is knowable. So in a homogeneous and isotropic space it is reasonable to expect 

>M>=<M>=<M< 222

zyx : the square averages waive the signs of each component. Summing 
2

ij  from arbitrary 

J  to J  yields 1)/31)(2(=2 
JJJji

J

J
. Hence one finds 

223

1=

2 1)(>=M<=M hJJii
  as average 

value of 12 J  states including 0, with one thi  component given by /2= spinorbiti nnj  . 

13.7 THE BLACK BODY 

In the section 10 the change of the energy density V/=   was assumed due to V  and to   inside V ; 

the frequency   of the eq (2,1) was implicitly assumed changing only because of transformations occurring inside V , e.g. 

because of quantum fluctuations of the space time itself, but not dissipated outside V . In lack of specific hypotheses, 

however, losses of energy outside V  cannot be excluded. Admit therefore the chance that   is due just to the 

irradiation of energy h  around the space time volume V , now assumed constant, and consider the eq (5,1) to infer that 

Gc /2=/ 2 ; replacing Gc /2
 via the eq (2,1) one finds Vh/2=/ . Assuming that the energy irradiated is 

very small with respect to h , let us express the volume as 
3)/(= cV , i.e. as a function of   itself, to find how the 

energy density of steady radiation waves still inside V  changes because of the radiation loss; one finds thus 

3)/(2=/ ch  . Suppose also that the small amount of energy irradiated does not perturb appreciably the equilibrium 

conditions inside V : then the uniform distribution of radiation present in V  produces a homogeneous front of energy 

irradiated in any element of solid angle d  around the surface of V . Hence, integrating the uniform energy irradiation all 

around V , means regarding /  as a constant; so one finds 
3)/(8=/ ch

tot
 . Eventually the energy 

irradiated at any   depends reasonably on the number n  of oscillators actually present in V  at the given frequency. 

So the energy loss escaping from the space times has the form  nch 3)/(8 . Obviously BFnn   is given in this case 

by the statistical distribution of bosons, already concerned in the previous section: so the result is nothing else but the well 
known Planck distribution function. 

Is interesting the fact that the multiplicative factor of the Bose distribution in the Planck formula is the fingerprint of 
the definition of space time, eq (2,1). 

14 NUMERICAL ESTIMATES 

Some results hitherto exposed are well known and thus self-validated; it is useful therefore to examine the results 
that require numerical estimates to be fully assessed. In this respect, particular attention will be payed to the self-consistency 
of these outcomes. This section aims to link the features of the space time inferred as corollaries of the initial position (2,1) to 
that of our universe experimentally observed or at least estimated. The most intuitive approach to this purpose is to evaluate 
the formulas previously introduced with the current estimates representing our knowledge of the today universe and analyze 
the results. The key values resulting from the definitions of space time, eqs (2,1) and (12,9), are  

 (14,1).sm101.3==sm104.9== 4635

2

1361

2

 






 
 hcG

V

c

hG
V t




  

The key values that surrogate size, age, and visible matter contained in the region V  of the space time are the estimates of 

radius ur , age ut  and visible mass um  available in the literature of the current cosmology:  

 (14,2).Kg103=s104.35=m104.35= 521726  uuu mtr  

The subscript u  stands for "universe" and emphasizes just the cosmological meaning of these test values. 

Replacing the variables present in the various equations with these data that describe the today universe, actually 
means regarding the space time as a "statistical mirror" of the universe. The hope of inferring physical information on the 
latter investigating the physical features of the former is justified by the fact of having already obtained a sensible 
background of known physical laws of the nature. 
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14.1 VOLUME AND MASS 

The section 5 has shown tight correlation in the space time between volume increase and amount of matter: the 
formation of matter in a previously massless space time implies its volume increase. The problem arises now about how the 
volume progresses along with the amount of mass already formed. Examine the properties of the space time considering 
length units that do not implement conventional measure standards, but invariant physical lengths; this means considering 
that the lengths provide a natural way to describe the correlation between volume and mass. The model has introduced in 
the eqs (5,3) and (13,8) the Compton length and the black hole length, which have two important features: (i) they depend on 

the mass only and (ii) they coincide for Plmm = , being both equal to the Planck length Pll . For Plmm >  however C  

is a decreasing function of m , i.e. it is suitable to describe a space time shrinking around the first seed of matter initially 

formed; bh  is instead an increasing function of m , i.e. it describes an expanding space time with increasing mass inside. 

Consider now the chance of expressing the space time volume via these lengths, e.g. 
3*= CCnV   or 

3*= bhbhnV   or even 

3/2** )(= bhCbhCnnV  ; of course )(= ** tnn CC   and )(= ** tnn bhbh   and are arbitrary real numbers allowing in 

principle to describe any value of V  as a function of t . The dependence of V  on m  results to be respectively 

)(= 3mVV  or )(= 3mVV , while being also possible V  independent on m ; e.g. 
3/2)( bhC  would describe 

evolution of space time independent of mass and thus in principle a possible universe without matter, filled by an appropriate 
radiation field only; the section 12 has in effect shown that is possible a space time characterized by virtual mass and 

charges only. Also, 
3

CV   would describe a space time with average density   increasing like 
4m , whereas 

3

bhV   would imply 
2m . This is more than a formal approach. In a sense the Planck mass is the watershed 

between the elementary particles of the quantum physics and the large masses of the relativistic physics: it is sufficiently 
high to be regarded as the upper boundary of the former and sufficiently small to be the lower boundary of the latter. 
Consider indeed the eqs (5,3) and (13,8): as both equations depend on the mass only, one finds  

 (14,3).=
2

==
22 t

m
mm

c

G

t
m

cm

h

t

bhC




 










  

Moreover, the time dependence of V  and   on m  reads  

 (14,4).== 34 mmm
mt

mmm
m

V

t

V
 





















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 (14,5)== 22 mmm
mt

mmm
m

V

t

V
 




 














 

For Plmm =  both C  and bh  coincide with the Planck length, crossing point in the fig 1, whereas at increasing length 

the mass has opposite behavior: i.e. it splits along curves with decreasing and increasing values. In other words bh  

describes the ability of the space time to expand and form locally huge aggregates of several particles, C  describes the 

ability of the space time to shrink locally and form single particles. In fact one expects that the size of the quantum particles 

should reasonably of the order of magnitude of their Compton length; for example, the radius pr  of an isolated proton is 

estimated in the range 0.84-0.87 fm; the mass Kg101.672 27  yields in effect the size 1.3 fm, i.e. about pr2 . Moreover 

Dirac has estimated the radius of an isolated electron of the order of its reduced Compton length. For this reason the region 

characterizing the quantum particles has been qualitatively sketched around the C  curve, whereas that leading to the 

large matter structures must be intended as an extrapolation of the bh  curve.  
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 Fig 1: plot of C  and bh  as a function of m . The symbols along the respective curves represent the region 

within which quantum particles are formed at appropriate values of Planck length and Planck mass; the picture represents 
the formation of cosmic objects at large values of mass and length. 

The common sense suggests that the tendency to form dense matter aggregates is a local feature of the space 
time; the large regions of vacuum between the matter islands suggest instead a black hole like behavior of the whole space 

time. Multiply both sides of the eq (9,2) by ch/  and then by 
2/cG ; recalling the eqs (13,14), x/  turns into 

)/(/ * mchnC  and )/(/ 2* cmGnbh . Regard the length coefficients 
*

Cn  and 
*

bhn  as constants: this means that the 

lengths change as a function of m  only. So one obtains two new Lagrange equations, one coming from C  and another 

from bh , i.e. respectively  

 (14,6),=
1

==
mmtm

m
mmt

r

rr 





















 





 
 

which shows that m  and its reciprocal rm  are readable as generalized coordinates likewise as the respective bh  and 

C . Therefore not only these lengths but also the masses have physical meaning of generalized coordinates and thus 

should be expectedly suitable to describe the time evolution of the space time. 

It is easy to show two examples of how can be implemented the eqs (14,6) to find important laws of the space time. 

1) The ratios m/  and m/  have physical dimensions /tl2
 and 

2v  respectively; put then 

Dm =/   and 
2=/ xvm , so that the second Lagrange eq (14,6) reads 

2=/ xvtD  , being xv  the velocity 

component along an arbitrary x -axis. The double sign means that both components are expectedly allowed. As 

txvx   /= , write thus 
11 =)/(   tvxtD x , having omitted the double sign by simplicity of notation. Multiply 

then both sides of this equation by the mass change m ; being 12= DDD   by definition, one obtains  

 .= 12
x

m
Dmv

x

m
D x




 







 

Multiply both sides by 
1

oV , being oV  a constant volume; as xxx vmmvmv  )(= , this result reads  

 .=)(= 12

o

xx
V

m
CvC

x

C
DCv

x

C
D 















 

Since all quantities just introduced are arbitrary, split this equation as follows:  
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 .=0== 12 CvJvC
x

C
DJ

x

C
D xxxx 












 

Appears in this result the physical meaning of mass flux component xJ ; also, with the minus sign of xv  the first result 

yields the Fick diffusion law, whereas the initial position m/  is to be regarded as the definition of diffusion coefficient 

D . This result is important as it accounts for several physical gradient laws, e.g. the charge and heat transfer laws of Ohm 
and Fourier. 

The second equation reads 1/=)/(log DvxC x  , i.e. with vector notation  

 ,log=
1

==
1













oC

C
v

D

u



  

being   an arbitrary length, oC  a constant density and u  a unit vector arbitrary and dimensionless defined by v . 

Multiply by TkB  both sides of the first equation: as the right hand side has the dimensions of a force, it is possible to write  

 .log===
1













o

B
B

C

C
Tkv

D
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FF   

So one also finds the chemical potential   of m , whereas the second equation is the famous Einstein equation linking 

mobility forcevelocity/=  and D  via TkB . The second Fick law is a trivial consequence of the first one with the 

help of the continuity equation as a boundary condition. 

The definition of diffusion coefficient mD /=  does not exclude in principle even 0<D ; as it is known, 

0>D  describes the homogenization of a heterogeneous system (Fick laws), 0<D  implies phase separation (e.g. 

spinodal decomposition). 

2) Consider now the first eq (14,6) and put  

 rro m
t

a
m

t

a
2

2

=













   

where o  is a constant and a  is a function having physical dimensions of a square length that by definition depends 

neither on rm  nor on rm . This position is acceptable: replaced on the eq (14,6) one finds the identity 

2222 // tata   . Moreover putting reasonably vxt /=   , with v  constant velocity, one finds  
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i.e. again the Dâ€™Alembert wave equation (OXQ). Both results show that the proposed definition of   is sensible. 

Write now   explicitly as a function of m ; being 
2/= mmmr

  , one finds  
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Note first that being   an uncertainty range, its size is not essential; so writing    or   is physically irrelevant, as 

repeatedly shown. Is instead relevant the sign of the quantity in parenthesis, which necessarily has physical dimension of 

square momentum p . Since no hypothesis has been made on m  and m , is particularly interesting the case where this 

sign is positive, in which case it is possible to write  

 0>
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having introduced the proportionality factor k  to define the corresponding momentum p . As kmip /=   reads 
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kip /=  , because  m  has physical dimensions of momentum range xnh  /= , one finds  

 .==
k

n

x
ihp 







 

The notation 12=    emphasizes that, as repeatedly stated, n  symbolizes a set of values and not a single 

specific value; so the arbitrary range   of values of   is necessary to account for the arbitrary range of values of n  

corresponding to  . The inequality simply remarks the condition consistent with ip . Also now, as done to infer the eq 

(13,2), the limit 0  yields the momentum operator of the wave mechanics. Appears clear once again why the range 

size    is irrelevant by implementing the eqs (4,5). 

14.2 MICRO- AND MACRO-SPACE TIME 

Owing to the eqs (13,8) and (12,7), rewrite the eq (2,1) as  

 (14,7);
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this means that the space time volume is also expressible via the fundamental lengths C  and bh  of the mass m , with 

the help of a further characteristic wavelength  . Since there is no reason to reject physical meaning and implications of 

either length, according to the eqs (14,6) the conclusion is that both must be accepted: there is an expanding macro space 

time described by bh  and a shrinking micro space time described by C . To this purpose, being   arbitrary, it is 

possible at least in principle that, depending on m , is verified either condition: 
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in which case V  is governed by the eq (5,3) only, or  
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in which case V  is governed by the eq (13,8) only. 

Nothing excludes therefore that in fact the space time as a whole grows as supermassive black hole. This feature, 
in principle not required, worths attention: it promotes the growth of the space time as it implies that neither mass nor energy 

escape outside V . 

On the one hand, invoking the effective occurrence of black hole behavior of V  means acknowledging the best 

growth condition of the space time. 

On the other hand, this boundary condition requires internal mass continuously created through the energy existing 

in V  as long as its size is allowed to grow. 

Eventually it is also reasonable to suppose that the successful growth of the space time volume till to the internal 
formation of huge and complex matter structures is subordinate to the arising of an energy trigger sufficient to generate a first 
nucleus of gravitational mass in an initial massless space time. 

Having shown that the eq (2,1) entails by itself the existence of energy density   inherent the definition (1,1) of 

space time, suppose that an energy quantum fluctuation is allowed to occur at an arbitrary time 0t  in V  where 0= : 

let the time profile of   ramp up till to the time maxt , after which it ramps down till to vanish at the time endt . It is necessary 

that during the time range 0ttend  , the amount of energy created by the fluctuation enables the conversion 

Vct /2

0
   of energy density into mass density sufficient to fulfill the black hole condition: whatever the specific 

mechanism of mass creation might be, e.g. the gamma-gamma process [25], this is indeed the most advantageous 

prerequisite for the further growth and evolution of V . 
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With the initial black hole condition the boundary of the early universe would intuitively be a sharp interface between 

an empty region external to V  and an internal region V  related to 
0

t  and filled with matter, radiation and virtual 

particles of quantum vacuum created and soon annihilating; the attractive action of the self-gravity makes this boundary well 
defined and unsurmountable. 

Without the initial black hole condition, the sharp boundary would be instead an extended diffusion region through 

which virtual particles, radiation and matter escape and diffuse outside V ; hold in this respect the considerations of the 

section 13.7 and 14.1. In the presence of losses, the residual fluctuation energy could be inadequate to prevent valuable 

mass/energy escaping outside V , which therefore could even stop expanding. 

An early energy sufficient to trigger the black hole condition, therefore, is required for the space time to start its 
growth process even after the successive ramp down of the fluctuation energy: without this condition, the growth evolution 
would abort as a mere perturbation transient with a sterile time profile. 

All this does not require hypotheses additional to the eq (2,1): the eqs (5,2) and (5,1) show that the definition of 
space time contains all basic ingredients useful to support this point of view, simply implementing the quantum concept of 

fluctuation energy. Indeed   implies the possible existence of higher harmonics nn  defined by an integer number n  of 

shorter wavelengths still contained in the volume V . 

The longest steady wavelength allowed in V  is x2=max ; as stated in the section 13.2, it is made of two half 

wavelengths with nodes at the boundaries of x . Moreover shorter steady wavelengths nx/  are also possible, 

because with n  integer even these latter have nodes at the boundaries of x . So, whatever the propagation rate v  of 

the wave in x  might be, the possible frequencies are /2=/2=/ max  xvv   and n  with xv /= . Hence the 

energy expectable in 
3x  is hn 1/2)(  , different from zero even for 0=n . In fact this result is expectable according 

to the eqs (8,3), (13,9) and (13,10). Clearly all 0>n  correspond to the allowed frequencies describing the quantum 

fluctuation, whereas the zero point energy and the higher harmonic energies are intrinsic features of the space time and its 
uncertainty corollary (4,5) described by the frequency   early introduced in the eq (2,1). 

To find how V  grows contextually with the increasing of n , are necessary two equations linking   and V . 

The first equation links directly   to V  via the eqs (5,1) written as a function of V ; i.e. VcGhh 22 /=  yields  
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The second equation links this result with the eqs (10,4) and (5,1); i.e.  
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reads  
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This equation is significant as   shows equal chances of   or   i.e., according to the eq (6,1), of forming matter and 

antimatter during the evolution of the space time; in lack of further information, one must conclude that matter and antimatter 
form with the same probability. Hold all considerations carried out in the section 6, in particular the fact that the negative 

frequency implies negative t  according to the CPT theorem. 

The eq (10,4) describes the progressive decrease of energy density as a function of time and calculates the 
temperature at various times. Indeed  
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where   is the black body constant. This is particularly interesting, not only to verify the validity of the eq (10,4) but also 

because the temperature is the fingerprint of the processes occurring in the universe at various stages of its life. An example 

is the formation of matter structures: since the chemical binding energy is of the order of some eV , it is clear that neither 
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chemical compound nor solid matter are stable at K10> 5T . An analogous reasoning holds for nuclear constituents like 

neutrons and protons; the T  profile elucidates the steps through which the universe evolved till today. 

The eq (14,12) can be immediately verified even without need of further data. Consider t  at the present time, 

i.e. ut  seconds after the "big bang". Introducing utt  =  of the eqs (14,2), one finds  
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the notation stresses that this energy density does not refer to any mass, as it in effect appears in the eq (10,4), but 
reasonably to the radiation field. This is just the well known temperature corresponding to the measured CMBR. 

At the beginning, say at the Planck time, let be 0=n : the space time is in its own ground state of zero point 

energy 
0

t  of density Gct /2)(= 2

0
 . Next, the energy fluctuation rises n  to values different from zero. Since 

according to the eq (5,4) hmc >2
, the creation of mass requires at least /2=2  hhmc   taking into account just 

the zero point energy; so the eq (14,10) requires 1n . Hence the matter era was allowed to occur after the radiation era, 

when the quantum fluctuation had already provided trigger energy additional to the zero point energy of the early radiation 
field. Thereafter just n  provides the conditions for the space time mass and volume growths. 

The next subsections highlight these introductory remarks; the formulas describing the evolution of the space time 
will be calculated with parameters characterizing our universe at various times to which correspond pertinent values of n . 

The numerical outcomes of the next sections aim to assess the results obtainable from the propositions just introduced. 

14.3 THE PLANCK TIME 0=n  

The early size of the space time at the beginning of the Planck era should expectedly be of the order of the Planck 

length. Is interesting the fact that in effect the frequency defined by V  of the eq (2,1) corresponds to a steady wavelength 

of the same order of magnitude of the size Pllx =  defining the initial PlV : replacing 
3/23)/(= chGVPl  in the eq (2,1) 

yields 
13/232 =)/)/(/(= 

PlPl tchGchG . At this time the eq (5,1) calculates  
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The temperature and pressure are of the order of  
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At this high radiation density it is reasonable to expect the refraction index 1>n ; this suggests that the related radiation 

wavelength consistent with 
1= 

PlPl t  and PlV  inferred from the eq (2,1) at 0=n , reads actually PlPlv vtv =/=  . 

The equivalent mass of the radiation energy field compatible with 0=n  results to be /2Plm . It is worth noticing 

that calculating the eq (13,8) with this mass one finds bhPl lcGm =//2)2( 2
, i.e. bhl  is just the size of the Planck length 

Pll . The fact that the black hole condition is fulfilled is not surprising, considering that the radiation field just introduced is 

entirely confined within the available PlV ; indeed, even admitting cv , the result would be that v  tends to the upper 

limit of the Planck length Plct  defining the initial volume PlV  of the space time. Thus, whatever cv <  might be, this 

result is compatible with unsteady early wavelengths v , which however run anyway within PlV : this confirms that no 

wave escapes outside PlV . Replacing  /= v  in the eq (14,11) and taking for brevity one sign only, one finds  
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considering in particular a steady zero point wave consistent with v , i.e. a half wave with nodes at the boundaries of PlV , 

this expression reads  

 (14,15).
9

8
=2= 

c

v
lPlv  

Combine the eqs (13,8) and (12,12) replacing m  of the former with 0m  of the latter; one obtains 
2/2= cV tbh  . 

Moreover, owing to the eq (12,4), this result reads 
2/2= cVGbh  ; so 

2/2= cGmbh   , being Vm  = . 

Recalling the eqs (6,3), put now  
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noting that by definition hlcG Pl /=/ 23
, one finds thus 

222 /2= hlem Plbh  . Hence  
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also, considering the Compton length PlC lcmh =/=   of the virtual particle of mass m , this result reads  
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At the left hand side, appears the Coulomb interaction of one couple of virtual charges; here this energy also emphasizes 
that it is effectively related to one half equivalent Planck mass previously introduced. This result supports the position 

(14,16), which must be regarded as due to ee  in a Planck volume electrically neutral. In effect after having found that the 

size of V  at 0=n  is compatible with the Planck length, it is natural to expect C  related to Pll . 

These results can be obtained directly from the eq (14,9), as   yields  

 .
8

=
2

=
23

4

Gm

hcc


  

Expressing without loss of generality m  as a function of the Planck mass as Plqmm =  via an arbitrary dimensionless 

coefficient q , the result is 
13 )(8= 

Pltq . If in particular /2= Plmm  i.e. 1/2=q , one finds again 
1

0= = 

Pln t  and 

thus the other results as well; this confirms the first position of the eq (14,15) and the eq (14,16). 

14.4 1=n  

The eq (14,10) yields  
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so that, expressing   as a function of Plt  via a proportionality factor  , one finds thanks to the eq (13,8)  
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For 1=n , expectedly soon after the Planck time, Plt3<  means that Plt:> , so that by consequence PlVV :>  and 

/2> Plmm : . The space time at Pltt :>  is basically similar to that at 0=n . Analogous considerations hold for 2=n  

and 3=n . 

14.5 3>n  

Let us calculate n  necessary to create one full Planck mass. As PlPl mGcl =/22
 by definition, the third eq 

(14,17) reads PlPl lcGm 1/32 =/2   and yields 2=1/3 ; in turn 8=  requires 4=n  and Plt8= . Also, with 

38= PllV  and Pllx 2= , the eq (14,10) yields 
311127 J/m105.2=)/(1289= hGc , one order of magnitude 

smaller than that at 0=n . All this happens at the time given by the eq (10,4), i.e. s108 37m ; the subscript stands 

for "matter". 

The beginning of the matter era is assumed in the present model as the time where one Planck mass was allowed 
to form. The reason is that the Planck units define the fundamental quantities that constitute the physical laws regardless of 
conventional measure standards, which are actually formal agreements between humans only; the concept of Planck mass 
is on the contrary inherent itself the eq (2,1), being by definition  
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The fact that the Planck mass appears here as that of matter and antimatter, in agreement with   and   of the eq 

(14,11), deserves attention. The symbol m  has been formally introduced in the early eqs (4,1) that specify the physical 

dimensions of momentum and energy; moreover m , latently hidden in h  and G , has been extracted in the section 3 first 

and in the sections 5 and 12 next from the Compton length, without hypotheses "ad hoc" but also without explicit reference to 

the real world around us. Also, the mass could be even defined as vpm
v

/lim=
0

 via the first eq (5,4). Actually, however, 

the concept of mass becomes explicitly inherent the definition of space time (1,1) via the Planck mass only; this justifies the 
idea that the first occurring of matter in the space time having physical significance coincides with the presence of one full 

Planck mass, defined uniquely by the constants present in the position (1,1) coherently with both expected chances Plm  

and Plm . 

On the one hand, this idea clarifies the physical meaning of the result /20m  previously found: one half Planck 

mass, and its increasing value subsequently allowed until m , can be related to nothing else but that of virtual particles. 

On the other hand, being the Planck mass very large with respect to that of the elementary particles, one Plm  

implies actually the formation of several real quantum particles concurrently formed at the threshold time m  and 

disseminated throughout the space time volume, according to the quantum curve C  of the figure 1. 

It is not surprising therefore that, according to the eq (5,2), the presence of one Planck mass has an important 
consequence: the sudden volume expansion simply because of the presence of mass originated from the radiation field, 

already emphasized as 0VV   in that equation. This is not exactly a superluminal expansion: rather with the presence of 

mass the space time changes its properties and turns into a new space time with different size and geometry, as it is further 
shown in the next subsection. This is not even a "change of state", unless one intends with this ambiguous terminology the 
formation of a "dual phase" system, real plus virtual particles, replacing a "single-phase" system of early virtual particles only.  

Anyway it is possible to calculate the entity of this change knowing n . 

Reasoning as before, put again 4=n  and  /= v  with PlPl ll 4=2= 1/3  in analogy with the eq (14,15); 

the eqs (14,11) and (5,2) yield  
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so vc/=n  implies a very high volume increase VV /0  of the order of 
410  according to the eq (5,4). With the formation 

of one Planck mass at the time Plt8=  starts the inflationary era, at the temperature given by the eq (14,12): 
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K102= 27T . The inflationary epoch is reported in the literature at estimated time s10 36
 after the big bang. At this 

time the universe was surely opaque because of the high refraction index due to Planck mass equivalent particles of matter 

crowding the small space time volume, of the order of 
38 Pll . At increasing times, the energy density decreased 

correspondingly to the increase of V . 

14.6 THE TIME LINE OF THE SPACE TIME 

 

   

 Fig 2: log log plot of the eq (14,12): tT /=  is calculated as a function of t  with 
1/422 )/9(=  Gc

. The time t  is expressed in seconds. The circles represent the literature estimates reported in [26]. 

The eq (10,4) preliminarily tested in the eq (14,13) is now more systematically assessed at some particular time 

values significant for their implications. First at the Planck era: the value obtained at 0=n  is well acknowledged. Next at 

the time of formation of matter, estimated in the literature in the range K1010 2827  ; also this range of temperatures 

agrees with the value just calculated. 

Consider then the grand unification time, estimated in the interval s1010 3643   ; the equation calculates 

s10= 38t  at the typical temperature of GeV1015
; also, the electroweak symmetry breaking and the quark epoch are 

estimated in the time interval s1010 612   ; the model calculates s104 8  at the typical temperature of GeV1 . 

These sensible values are better assessed through a global standpoint thanks to the data summarized in the 
Fermilab Photograph 85-138CN [26]; these data concern the whole universe time line rather than estimated time intervals 
characterizing single events. The result is the log log plot of the fig 2, showing that effectively the eq (14,12) represents well 
the temperature evolution and thus the energy density itself as a function of time. It is crucial at this point to explain why the 
quantum fluctuation was in fact able to trigger the subsequent self-sustained evolution of the universe. 

14.7 THE MATTER ERA 

To follow the evolution of the space time, the previous considerations suggest a sustainable hint: the fact that the 

primordial zero point radiation energy at 0=n  was confined in the Planck space time region, is compatible with energy 

field and mass still confined inside V  at any subsequent time. This allows calculating V  as a function of time via the eq 

(13,8) only, which introduces the total amount of mass uM  compatible with the radius ur  fulfilling the black hole 

requisite. In this way the whole space time is in fact a super-massive black hole and thus an isolated system, whose internal 

pressure is consistent with the condition that neither matter nor electromagnetic energy can escape outside V : the 

boundary of the space time behaves in fact as a self gravity driven barrier for any internal particle. As done to infer the eq 

(14,15), replace once more ubh r2=  in the eq (13,8) calculated with the values of the eqs (14,2); so 
2/= cmGr  

yields  
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This value of uM  provides a first way to estimate the volume uV  at the present time ut  via the eq (5,1): putting 

bhbh c  /==  in this equation, one finds GcVcM bhuuu /)(=/= 22  . Trivial manipulations yield  
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and thus, thanks to the eq (5,1),  
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Compare these values with that calculated implementing directly ur   
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and  
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Note two implicit and independent assumptions made to infer these results: uV  has been calculated in the eq (14,21) 

putting ubh rc /2= , i.e. a refraction index 1=n , whereas it has been calculated in the eq (14,23) via a hyper spherical 

geometry of the space time. The agreement shows that these assumptions, clearly independent each other, are both 
fulfilled. In particular: 

-The matter and radiation energy density of the space time at the time ut  justifies the propagation rate of light 

equal to c . 

-The Planck volume, before the inflationary era, was calculated as 
3

Pll ; the change of geometry inherent a space 

time containing mass with respect to that containing radiation only, already remarked when introducing the eq (5,2), is 
confirmed here. 

-The distinctive factor /34 , in principle not required and necessarily introduced here to fit the two results, has a 

simple explanation: the matter curves the space time. 

-The curvature is such to justify the Euclidean value of   here implemented. 

-The total energy due to the presence of the CMBR field calculated with the eq (14,13) is J101.6= 67ucmbrV

. 

Is interesting in this respect a third independent way to calculate again uV . 

Implement the eqs (12,12) and (12,13) replacing uMm =0 ; the former equation yields  

 (14,24),101.1== 61
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whereas the latter with the positions uVV =  and utt   =  yields 0.02=/2

0 uVGtm   and implies 0.02< : . In 

effect the eq (14,16) has already shown that actually   coincides with the fine structure constant   at the Planck time; 

being   by definition a constant, its initial value still holds also at the present time. So, owing to the eq (14,16), the second 

eq (12,12) yields the values  

 (14,25)s101.5= 235 t  

still compatible with the respective uncertainty inequalities. This result is significant, as it implies 
1> 

 tt : : in effect 
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1.7.=tut   It is significant the chance of verifying once more the eq (12,15); replacing again t  and r  with 

ut  and ur , one finds via t   
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which agrees well with the estimated value (14,2) and thus confirms the aforesaid equation. These results legitimate the 
strategy of calculating the previous equations with the estimates (14,2). Is remarkable the fact that replacing the value of 

t  and  =  in the eq (12,12), the value of 0m  put equal to uM  of the eq (14,20) yields  

 (14,27).m103.67== 380
t

u
u
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
 

Also this value, calculated regardless of ur , agrees with that calculated directly via the eq (14,20), without requiring any 

assumption on the geometry of the space time. Clearly here the values of ut  and uV  have been inferred via the 

formulas of the quantum vacuum. 

The consistency of the eq (14,21), (14,22) and (14,27), in principle not required, is encouraging: the black hole 
condition (13,8) inherent the eq (14,20) is a mere linear relationship between mass and length, so it has no direct link with the 

assumption of spherical space time independently asserted in the eqs (14,22) and (14,27). Moreover this value of V  fulfills 

also the condition (12,13), since 0.02=/< 2

uuu VGtM : ; this supports the volume geometry implemented in the eq 

(13,12), i.e. the physical meaning of 0 , and links the next results with the eqs (13,20). 

The value of u  fits that of one mass unit per unit volume, which includes of course the visible mass, i.e. the 

stars, plus other possible forms of ordinary matter, e.g. dust or black holes; all masses concur to attain the density value 
consistent with the black hole boundary condition, crucial for a lossless growth of the space time. 

Note that the value of uM  is about twenty times that estimated via um  accounting for the visible mass only, 

which is in fact about 5 %  of the total uM  only. 

All this reveals however that even considering 
3122 J/m107.3=/  Vcmucmbr , the energy density hitherto 

introduced is still much smaller than u . This evidence and the fact that uu mM >> , deserve a careful explanation. 

First of all, the chance of writing identically )2(2 uuuu mMmM   suggests splitting the density equation 

(14,21) into the sum of two terms uuu  = ; splitting accordingly 
2)/( urc   as well, one finds  
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The second equation shows that u   refers to the visible gravitational mass only. So, with the further position  
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where E  has the physical dimensions of t , the result is  
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In this way the first equation agrees with the eq (13,20) putting 
2= q  and coincides with the first Friedman equation 
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including the Einstein cosmological constant E . Moreover, even without hypotheses on q  and q , in principle 

qq 1  can be expectedly positive or negative; so it is easy to recognize this factor as the relativistic coefficient k  of 

2)/( ack , reported in the literature with 10,= k . Eventually the physical meaning of urc /  is proportional via q  to the 

Hubble function aaH /=  , which shows that the uncertainty range ur  plays the role of the scale length a  reported in 

the literature. So, replacing again r  with ur  in the first eq (12,16) as done previously, one finds urcH /> :  and 

thus  

 ;<
1

< 1


Ht
t

H u

u

::  

the time inequality Htu 1/< :  of the Hubble constant with respect to the age of the universe, also well known, appears in 

fact to be nothing else but the fingerprint of the uncertainty. The first eq (10,7) previously found is instead the second 

Friedman equation, where however the pressure appears with the   sign. It appears therefore that both Friedman 
equations account only partially for the the picture here inferred. 

Despite hold in principle all considerations about the chance of an expanding or shrinking space time depending on 

the values of the mass um  and H , a simple reasoning shows however that in fact is correct the former chance. According 

to the eq (14,21), uu V /  yields uuuuuu VVMM  )//(=  ; as shown in the section 10, the corresponding 

pressure change uP  results respectively positive or negative like the sign of u , i.e. depending on whether 

uuu VM  >  or uuu VM  < . As  

 (14,29),
3

1
==

u

u

u

u

u

u

V

V

r

r

M

M 




 

then uuuu VV /32=    shows that a negative pressure inside the space time tends to push outwards the boundary 

and to increase uV . Despite these results justify the way of splitting uM  as in the eq (14,28), the implications of this 

position will appear more clearly in the next subsection 14.8. Yet, let us remark: 

(i) The inequality (12,13) legitimates the eq (14,16) that identifies   . 

(ii) The eq (12,14) yields  

 (14,30):
m

J
104.0=2=

3

8
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G

ct
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owing to the considerations about the eq (12,14), this means that inside any unit volume of the space time contributing to 

uV  there is the energy field  

 (14,31)GeV252=J104= 8H  

pervading uniformly all space time volume; indeed no space coordinate appears in these equations, whose physical 
meaning will be highlighted below. 

14.8 TIME AVERAGES AND GROWTH RATE 

The first part of this section concerns the growth rate of the mass allowed to form in the space time; then the 
volume, density and energy density of the space time are also described. 

1) The most intuitive definition of average rate M  with which new mass progressively forms in the space time, 

is  

 (14,32).
s
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This value is proportional to uu tr  /  according to the eq (14,20) and agrees with that provided by the eq (14,29), which 
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reads uuu MV  3= ; multiplying both sides by urc /  and implementing the eq (14,20), 

uuuuu rcMrVc  /3=/  yields  

 (14,33).
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The agreement is not accidental: it shows that effectively uM  and ur  increase as a function of t  in order to fulfill the 

eq (13,8); in principle M  does not reveal explicitly this requirement, as instead the eq (14,33) does. Is not surprising the 

fact that the increment uu V  of mass pertinent to the increase uV  of space time volume is proportional, but not equal, 

to uM : the eq (13,8) relates indeed uM  to ur , whereas the mass production is a volume process that scales with 

3

ur  and not linearly with ur . It is evident that the factor 3 agrees with the Euler homogeneous function theorem. The 

calculation carried out with um , i.e. considering the visible mass only, would have given both average results an order of 

magnitude lower than that inferred via the fundamental constants. 

A linear process with respect to uM  is instead the average production rate of total energy 
2cMu , as indeed the 

first eq (14,20) yields 
3/=/ cGMcr uu ; so the equation obtained multiplying both sides by the Planck power Gc /5

 

yields 
25 =)/)(/( cMcrGc uu , which is nothing else but the eq (14,20) itself. Hence the average energy growth rate is  

 (14,34).== 22
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In the case where V  of the eq (2,1) describes the size scale of the whole space time, the pertinent mass and time imply 

expectedly large values of M  to allow uM  after the radiation era; in fact uu mM >>  shows that the space time must 

create ordinary matter um  plus some additional equivalent mass, much more relevant than um  itself, that will be 

concerned in the next section. 

Consider now the mass growth scale of a single particle moving throughout the quantum vacuum. If the mass 

creation rate concerns one particle only, multiplying both sides of the eq (2,1) by m  one finds  

 (14,35);=n==
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the physical dimensions of   are timemass/ . As expected, the space scale of the local mass production process is 

controlled by the Compton length of m . Multiply both sides of the eq (14,35) by 
2x ; since x  yields a velocity xv  

one finds 
2= xxvm x   , whence hx :>2  because hxvm x :>)(  . For instance the order of magnitude 

s/Kg1  yields m10 17x , to which correspond 
125s10   and Kg10 25m , i.e. GeV502 cm . 

These results highlight the orders of magnitude of   and time range  /ht   expectable when the mass 

scale is that of an elementary particle; yet a more careful analysis is necessary to find the correct value of the microscopic 

mass production rate  . To this purpose are useful the eqs (5,1) and (5,5) that yield   hcm n== 2
 with 1>n ; 

then  

 (14,36),
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= 22
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The local value of mass production rate in the space time depends therefore on  , or analogously on the time length t  
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during which the mass m  is allowed to form from the quantum vacuum; also,  

 (14,37).GeVn48=   m  

To find the scale factor between the eqs (14,32) and the eq (14,35), consider that in the eq (14,35) the sought mass 

production rate at left hand side is controlled by the characteristic length 
2

  only; this suggests that just this square length 

is the sought scale factor. To correlate the eqs (14,32) and (14,35), write then  
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The right hand side is the concerned mn ; at the left hand side appears the ratio 
2)/( refl  times M , being refl  a 

reference length. The scale law is therefore such that for refl=  the left hand side yields again the eq (14,32) and the 

right hand side the corresponding  ; so, it is useful to define mlref 1=  in order that for refl  the left hand side 

takes the meaning of the eq (14,35). Hence, one finds the reasonable values  

.s101.5=GeV264=J104.2=Kg/s30=nm104.7= 26818     tm  

The last equation yields the interaction time range; the value of   is reasonably close to that of the quantum vacuum 

energy field of the eq (14,31). 

In the eqs (5,5) and following equations, n  played the role of refraction index whose effect was to slow down the 
propagation rate of the electromagnetic waves in a medium with respect to c . Here its physical meaning is conceptually 

similar: as increasing n  means decreasing v  and increasing  , it follows that n  controls the energy field associated 

to the mass creation rate. In particular, appears once again the necessity of 1>n  to allow the formation of mass in 

agreement with the eqs (5,2), (5,1) and (5,4). Anyway, whenever 0m  implies the production of mass, there is a 

non-null product mn  times the rate   associated to the energy   and to the velocity of the particles involved by the 

mass creation process itself. This is explained admitting the interaction of the particle with the energy field   via n . 

2) The simplest and most intuitive definition of volume growth rate is the average value of uu tV / , calculated at 

the time ut  neglecting the initial Planck tiny volume. With the help of the eq (14,27) one finds  
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Differentiating the eqs (14,20), one finds with the help of the eq (14,29)  
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The first result is found more shortly differentiating the eq (14,21): this yields 

uuuuu rGVcrrGc   )/2(=/)/4(6= 232  , so that uuuu rrcc  /2= 22    according to the eq (14,20). 

However this last way of inferring u  does not emphasize the two contributions concurring to u : one positive due to the 

increase of uM  and one negative due to the increase of uV . It appears that, owing to the sign of u , the latter 

contribution overcomes the former. An interesting result is found calculating M  directly via the eq (13,8); with 

uu rGcM  )/(= 2
, the first equation yields  
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In effect the calculated value of ur  agrees reasonably with the estimate inferred from the eqs (14,2). Other average 

quantities are  
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whose values calculated with the help of the estimates (14,2) are  
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Note that the second eq (14,40) calculates an energy density loss  
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sm

J
105.9=

3

282 cu  

formally due to the fact that the increase of uV  as a function of time overcomes the energy increase in uV , so that the net 

result is a time decrease of energy density. 

The crucial point is now to understand what this loss actually means: on the one hand the black hole feature of the 

space time excludes any chance of mass and energy escaping outside V , on the other hand just the expansion of the 

space time promoted by this advantageous feature causes the rarefaction of energy/matter contained in each elementary 

unit volume forming the whole uV . In other words, the problem is to explain why the formation of new mass sufficient to 

ensure the eq (13,8) at any time, implies however the dilution effect described by the eq (13,8) itself. The next two sections 
will show how to explain this apparent oxymoron, while also explaining what actually "loss" does mean. 

14.9 THE GRAVITATIONAL BINDING ENERGY 

The position of the eq (14,20) is now implemented noting that  

 (14,41),==
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which implies 0>/0.6 22

uuu rGMcM  . So the classical binding energy 
cl

be  of the eq (13,18) calculated with 

uMM =  and urr  =  is insufficient to balance 
2cMu  and thus to justify the mass uM  itself. Size and mass of the 

space time need an additional amount of energy to fulfill the eq (13,8), which could be for example that coming from the initial 
quantum energy fluctuation previously concerned. This is hypothetically possible, once being sure that no energy anyhow 

created within V  is dissipated outwards. However the early peak power should be exceedingly high: during the very short 

time transient compatible with the quantum uncertainty driven violation of the energy conservation, should be generated at 

least the missing amount 
20.4 cMu  of energy at the time ut . But, being J1020.4 702 cMu , an uncertainty time 

lapse of the order of 
2/0.4 cMh u , much shorter than the Planck time, is unreasonable. More sensible appears 

nevertheless the chance prospected by the relativistic binding energy equation 
rel

be  of the eq (13,19), which modifies 

favorably the classical conclusion. The condition  

 (14,42)0=2 rel

beucM   

prospects the chance of gravitational binding energy compatible with uu mM >  required by the eq (14,20) to allow the 

black hole feature of the space time: otherwise stated, the quantum fluctuation is required to provide not the total energy of 
the eq (14,42) but an initial seed of mass only, after which the gravitational binding energy starts acting. In this respect, the 
eqs (13,18) yields  

 (14,43)...;=
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i.e. an appropriate value of mass m  in the whole space time volume described by ur  makes this equation compatible 

with uM , which of course includes m  itself. Whatever the dots stand for, the equivalent mass exceeding m  is due to the 
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binding gravitational effect defined by the solution of this equation. Calling dmm  this solution, the result is  

 (14,44).Kg102.8= 53dmm  

However: if dmm  accounts for the arising of total gravitational binding energy 
2cMu  necessary to balance that of the 

eq (14,20), what else justifies dmm  itself ? Let us suppose now that dmm  consists of the masses of particles and 

antiparticles formed with equal proportions in the space time; so assume dmdmdm mmm = , being obviously 

/2== dmdmdm mmm  . The physical meaning of dmm  is highlighted implementing again the eq (13,18) to calculate first 

which mass m   is related to dmm . The same equation, aimed now simply to evaluate the expression  
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yields an interesting result: umm =Kg103.2= 52 . So the mass dmm  is consistent with a numerical value of m   

that reasonably represents the visible mass um  of the eqs (14,2). This also suggests that dmm  would have given the 

antimatter partner um  of the visible mass um  contextually formed according to the eqs (14,11) and (14,18). The eq 

(14,45) written more expressively as  
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clarifies the link between dmm  and uM  via um : 

the total dmm  accounts for dmu mM > , i.e. for the full energy 
2cMu  required by the eq (13,8) once 

implementing the mere literature estimate of ur ; the smaller dmm  and dmm  separately account for the formation of the 

estimated visible mass dmu mm <  and its corresponding dmu mm < . On the one hand this result is due to the form of the 

eq (13,18), which allows increasing values of M  as long as 1/2y ; on the other hand this result confirms that um , 

which we are made of, consists actually of ordinary matter only. 

Even so, however, the total mass balance in the space time is still incomplete because  

 (14,47):Kg102.5== 53 balubaldmdmuu mMmmmmm  

i.e. a further ancillary mass balm  is still necessary to get uM  in addition to um  and dmm  plus their respective 

antiparticles just introduced. Here the mass balance is expressed with the notation of the third eq (6,2); of course balm  is 

uniquely defined even writing the last equation as  

 ,=)()( ubaldmdmuu Mmmmmm   

which emphasizes the possible interaction and annihilation of the concerned matter and antimatter with release of the 
corresponding energy gap. In effect, the problem is just this: no stable matter structures are possible if matter and antimatter 
are allowed to interact. A possible way to account for the presence of stable structures of either kind is to separate them to 
prevent their interaction. In effect the mechanism through which matter and antimatter disconnect each other has been 
already described in a previous paper [27], although not intentionally aimed to the present purposes. It is worth summarizing 
this mechanism here not only for completeness, but mostly to show that even its explanation is still included in the frame of 

the eq (2,1); moreover this point answers the priority questions about where are um  and dmm  and why the bulk of the 

space time appears consisting of matter only. 

14.10 MATTER AND ANTIMATTER 

The starting point is the value 
310J/m101.5= u  of energy density calculated in the eq (14,23), showing that 

each unit volume element 0V  of space time, say 
3

0 m1=V , contains one mass unit Kg101.6= 27pm . As any 0V  
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is a statistical micro-scale mirror of uV , by definition u  of the eq (14,23) includes even the possible interactions between 

the various mass elements concurring to pm  in their respective 0V , e.g. their Coulomb interaction. Despite the global 

charge in any local region of uV  is statistically null, in general each 0V  could contain charges of both signs plus particles 

and respective antiparticles mutually interacting: in short, everything contributes to u . Consider thus one 0V  among the 

many 0/= VVn utot  in any core point of the space time: all actual particles concurring to pm  are statistically regarded as 

a unique composite body of matter. Specific details about the actual particle/antiparticle content of 0V  are not influential for 

the present reasoning; is crucial instead the concept of quantum delocalization, according which pm , whatever it might be 

made of, could actually be in any place of uV . In particular, it could be even gravitationally stuck just at the external 

boundary of the space time region consistently with the black hole behavior of uV . Then the Newton shell theorem shows 

that all mass uM  acts on such external pm  as if it would be concentrated at the geometrical center of the hyperspherical 

uV , i.e. at distance ur  from the boundary. This appears in fact also here, i.e. the result  

 (14,48)J101.5= 10
 u

pu

r

mM
G  

could have been expected: the left hand side is by definition nothing else but 
2cmp , which multiplied by totn  yields just 

2cMu , whereas the right hand side times totn  is of course the numerical value of the eq (14,20). Note that it is not 

necessary to think pm  physically moving throughout the space time volume; according to the quantum character of the 

present model, any 0V  and its energy content is actually delocalized everywhere in uV , thus even at its outermost 

boundary from which however it cannot escape. So the eq (14,48) shows that pm  could be displaced from any bulk state 

bV0  to any surface state sV0  of the space time without gravitational energy change with respect to the result (14,23). 

The existence of surface states sV0  occupied indifferently by pm  or pm  according to the eq (14,48) has 

several implications, e.g. this conclusion is related to the growth of uV : indeed pm  and pm  in these surface states 

replicate the bulk structure of the space time at its boundaries. Hence the increase of uV  does not mean simply swelling; 

rather the delocalization affects the growth process via the progressive formation of new external layers replicating the 

internal structure of V  outside its boundary [27]. 

In other words, the space time clones itself at the boundary without cost of gravitational energy thanks to the bulk
boundary quantum delocalization, while new core mass structures are also continuously created at the expense of the 

gravitational binding energy already existing. The initial trigger of this continuously renewing creative process was the early 

quantum fluctuation energy in the space time at the Planck era. These considerations suggest that 0V  is not a mere 

statistical parameter, rather it has a relevant physical meaning. 

The plain energy balance of masses in V , eq (14,47), waives the fact that totu nm /  and totu nm /  reasonably 

contributing to pm  and pm  and coexisting in the same 0V  cannot account for the formation of stable matter structures. 

Is however evident the link between pm  and pm  with the respective addends of the eq (14,47), noting that /2ptotmn  

and /2ptotmn  are separated just by the energy gap uptot Mmn =/2)2( ; nothing thus excludes that the elementary 

volumes 0V  consist actually of 0V  and 0V  having physical meaning of allowed states for particles in positive or negative 

energy levels, whereas 
2cMu  corresponds to the energy gap between matter and antimatter content in the 0V  and 0V  

states. Moreover if 0V  and 0V  are randomly distributed throughout uV , it remains still true that the space time is 

statistically homogeneous and isotropic on large scale, despite the different ways of energy level occupation in the 
respective volume elements. To highlight the formation of matter structures of either kind, rewrite therefore the eq (14,47) 
identically, but in a different form and with a different physical meaning, as  
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   (14,49):/2/2==)( ptotptotudebaldmudedmu mnmnMmmmmmmm   

the two addends at left hand side of the eq (14,49) define now the energy gap at the right hand side. This form emphasizes 

the idea that each volume element of the space time contains either one pm  or one pm , regarding the two addends at the 

left hand side as referred to particles and antiparticles occupying their respective 0V  or 0V . To this purpose balm  has 

been split into quantities, dem  and debal mm  , involving separately matter and antimatter via the new equivalent mass 

dem , thus presumably with debal mm <  in order to have in the second addend negative energy states only. Clearly all bulk 

states of the space time are by definition occupied, since they result just averaging the total energy 
2cMu  in the whole uV

. Eventually, regard the eq (14,49) as follows  

 (14,50).<<0== udebaldmuudedmu MmmmmMmmm    

Here the equivalent mass  , whatever its numerical value might be, takes the physical meaning of an energy subtracted to 

the total energy 
2cMu  at right hand side, whereas at the left hand side appear positive energy states only; the third 

position is self evident because the residual energy cannot be greater than the total available energy uM .  

This reasoning suggests an interesting interpretation of the eq (14,50), i.e. the chance that part of the total energy 
2cMu  is utilized to excite 

2cmu  or 
2cmdm

  from negative energy states to ordinary matter state. The result  

 1=




u

dedmu

M

mmm
 

calculates the relative proportions of the three terms contributing to the residual energy uM  once knowing dem . To 

this purpose it is necessary to describe what happens when part of the total energy excites the antimatter from its negative 
energy state to the positive energy state of ordinary matter. Three remarks are useful in this respect. 

(i) The reasoning underlying the Dirac sea prospects the chance that um  and dmm , once excited, leave behind 

the respective holes of antimatter. On the one hand, is missing in the present model the weird requirement of an infinite 

number of negative states of the Dirac sea; the freshly formed um  and dmm  occupy 0V  previously containing the 

respective antiparticles. On the other hand, however, just for this reason the holes contextually formed have no empty core 
cells to be occupied; so the only chance for these antimatter holes is to occupy surface negative energy states at the outer 

boundary ur  of the space time; this transfer, occurring at zero cost of gravitational energy as previously seen, is in fact 

nothing else but the mere quantum delocalization of particles and antiparticles looking for empty states to be occupied. In 
conclusion: with this mechanism of relocation and reorganization implied by the chance of segregation of holes at the 

surface of uV , the antimatter is progressively detached from the matter and expelled outwards at the boundaries of the 

space time. Hence neither um  nor dmm  appear longer at the left hand side of the eq (14,50), they simply concur to 

determine the value of the excitation term  . 

(ii) According to the eqs (14,46), if 0=um , then 0=dmm  too, because their gravitational effects are mutually 

linked. Of course this does not mean that the antiparticles disappear from the space time, in fact they are simply displaced, 
but that if is missing the gravitational binding energy of the former because of the shell theorem, then is also missing the 
analogous effect of the latter: the Newton theorem predicts that an external shell of matter does not affect the gravitational 
behavior of the internal shells of mass where is located our measurement point. As the antimatter at the surface states does 
not concur to the gravitational binding energy, it comprehensibly does not appear in the eqs (14,45) and (14,43); so it is 

enough to assume that um2=  only. 

It is worth noticing that actually this is not the only chance possible, i.e. in principle this statement could be reverted 

asserting that 0=um  as a consequence of having excited dmm  to the state of ordinary dark matter; yet exciting um  to 

the state of ordinary matter requires less energy, 
22 cmu  instead of 

22 cmdm
 , so the chance uu mM 2  seems 

preferable to dmu mM 2 . In effect the assumption of minimum excitation energy of antimatter states is easily confirmed 

recalling the eqs (14,39). 

(iii) It is clear now the physical meaning of density loss concerned in the eq (14,39): as expected there is no mass 
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loss outside uV , but simply equivalent mass spent to trigger the mechanism that excites the antimatter to the state of 

ordinary matter. Otherwise stated, the negative value of u  due to the space time expansion rate corresponds to the loss 

of equivalent mass um2  necessary to decouple the antimatter from the matter. Implement thus the eqs (14,39) and (14,50) 

to demonstrate that really the energy balance implied by the excitation mechanism is synchronized with and allowed by the 

expansion rate; it is thus necessary to show that um2= . The first eq (14,39) reads uuuu rr  /2=   . The factor 

u2  suggests that the density change uuu t    at the time ut  corresponds to the dilution of the total mass 

present in uV , which implies an analogous effect for that in both 0V  and 0V  cells occupied by matter in positive and 

negative energy states. If however the lost density of the eq (14,50) corresponds to the antiparticles promoted to the positive 

energy states only, then the amount of equivalent mass transferred reads uuuu rtr  / , i.e. /2u  only. So  

 
2

= uu

u

u t

V

M 


  
 

yields uuuu Vt /2)(=    . In effect the eqs (14,23), (14,22) and (14,40) yield Kg106.1= 52 , i.e. just um2 . 

In conclusion: this mechanism of hole segregation at the surface of uV  splits progressively the antimatter to the 

boundaries of the space time; it has gravitational effect null on the core space time, whereas its probability of destructive 

interaction with ordinary matter is also averted. Therefore the values of ur  and uM  as a function of ut  fit the idea of 

a well controlled evolution of the space time, where the energy balance proceeds according to the best growth condition and 
in order to ensure a growth rate allowing the contextual separation of matter and antimatter necessary for the formation of 
stable aggregates of matter. 

But there is more. It is enough to recall the first eq (14,39), that reads uuuu rrcc  /2= 22    because 

uu rMGc /=/2
 according to the eq (14,20). Differentiate with respect to time the eq (14,20); being 

2/= cGMr uu
 , 

one finds )/(2=2

uuuuu trGMc    according to the eq (14,32). Multiply now both sides of this result by uV  and 

write the energy loss at left hand side as tVc uu  /=2   by dimensional reasons; one finds thus  

 

uu

uu
uuu

rt

VM
GVc

t 








2== 2  

Note that the eq (14,20) allows expressing uV  both as /34 3

ur  and identically as /3)/(4 32cGMu  via the total 

mass. Rewrite therefore the last equation replacing /3)/(4= 3

uuu rM   and /3)/(4= 32cGMV uu  . One finds  

 
4

322 )/(
2=

uu

uu

rt

cGMM
G

t 





 

Apparently all this seems a trivial way to rewrite the first eq (14,39) implementing the eq (14,20). It is not so. Write in general 
23= rMG   being   an arbitrary frequency, as it is evident by mere dimensional reasons; in particular, it is known 

that the arbitrary parameters r  and   determine the length a frequency scale of an orbiting system, in which case M  

is clearly the reduced mass of a gravitational system with the center of mass at rest, as it could be rigorously demonstrated 
via the Lagrange equations (9,3). Rewrite thus the last equation via this result also in the case of the space time expansion; 

replacing urr  = , the eqs (14,40) yield  

 .3.3=
2

=
5

642

uu
uu

u

u tcr
c

rM
G

tc

r

t





















 
 

Note that according to the estimates (14,2) the coefficient 6.6 resulting in parenthesis of the formula is very close to literature 
value 32/5 reported in the classical relativity for the energy loss due to the generation of gravitational waves. This result has 

been obtained reasoning on macroscopic quantities like u  and uV  and respective time changes. A more accurate 

analysis on quantum basis shows however that the energy lost from gravitational systems via gravitational waves is 
quantized [19]. Yet this result shows that the gravitational waves are generated not only by bound orbiting systems, but also 
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by the expansion itself of the space time; here   is not related to the orbital period, it is the frequency related to the mere 

energy density loss during the expansion of the space time. Comparing these results one finds urc /= , i.e.   is 

about one third the Hubble parameter. 

Consider then the residual amount of energy 
22 2 cmcM uu   still available after having excited the content of the 

antimatter cells 0V , whatever they might be made of, from the negative energy state to the ordinary state. This term is that 

introduced to make the eq (14,28) compliant with the eq (13,20); now are clearer the considerations of the section 14.4. 
Rewrite the eq (M03) including however the masses gravitationally active only, i.e. the masses at the left hand side; one 
finds thus  

 debaldmuu

uu

dedmu mmmmm
mM

mmm





=21=

2
 

The second equation allows calculating dem  with the help of the eqs (14,47), (14,45), (14,44) and (14,2):  

 ,Kg103.6== 53 udmbalde mmmm  

whereas the first equation yields the relative abundance ratios  

 (14,51)0.69;=
2

0.26=
2

0.05=
2 uu

de

uu

dm

uu

u

mM

m

mM

m

mM

m






 

These results agree with the well known abundance ratios of the so called dark matter and dark energy with respect to the 
visible mass in the universe. The eqs (14,51) yield also  
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and  

 (14,52).J103.2=J101.3=J102.7= 702702692  cmcmcm dedmu  

Refer these energies to the common volume uV  containing them; one finds  

 (14,53).
m

J
108.7=

m

J
103.5=

m
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15 DARK MATTER AND DARK ENERGY 

The eqs (14,53) suggest the chance of correlating the dark quantities and the pressures introduced in the eqs 
(13,20) and (13,17). Multiply tentatively the two energy densities of the ordinary and dark matter by 2/3, and the dark energy 
density by 1/3; so  

 .Pa102.9=Pa102.3=Pa104.9= 111112   dedmm PPP  

Note that  

 ,Pa102.9= 11 dmm PP  

i.e. with the multiplicative coefficients proposed here the sum of matter pressures is very close to the dark energy pressure 

deP . The results of the section 10 show how to regard these pressures, i.e. according to the eqs (13,17) and (13,18) leading 

to the reasonable eq (13,20): on the one hand the dark energy determines the negative pressure of light acting inside the 
space time volume against its boundary, which therefore tends to swell; on the other hand the matter, visible and dark, 

determines the gravitational pressure tending to contract the size of V . In the former case the active source justifying deP  

is the photon energy density udede VU /= . Nevertheless the results of the section 14.4 show that actually the former 

slightly overcomes the latter. Thus one could even suppose that the exceeding swelling effect could be due to the CMBR: the 

eq (14,13) has calculated 
314J/m104.2= cmbr  and thus Pa101.4=/3 14cmbr , which is anyway radiation 

pressure and thus a swelling pressure. More realistically, the fact that the absolute values of the pressures deP  and 
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dmm PP   result almost equal suggests three remarks: 

(i) the dark and ordinary quantities are near the thermodynamic equilibrium, so it is difficult to affirm that 

decmbr PP <<  is surely the decisive unbalancing effect responsible of the expansion; 

(ii) the dark quantities satisfy the same pressure/energy density relationships as the ordinary matter and 
electromagnetic radiation; 

(iii) despite this similarity with the ordinary radiation and matter, peculiar properties characterize the dark matter 
and energy and make the latter physically different from the former. 

Trusting that the agreement between the values of pressure is not accidental and collecting this preliminary 
information, examine more closely the tentative link in fact introduced by assigning the coefficients 1/3 and 2/3 to the energy 
densities of the eqs (14,53). As concerns the radiation existing in the space time, regard the dark energy basically as an 

electromagnetic radiation field in a black body cavity of volume uV ; in fact the energy density of the microwave background 

field and its temperature have been calculated correctly just implementing the hypothesis of black body radiation field. This 
attempt is sensible thanks to the results of the section 13.7 that introduce in the frame of the eq (2,1) the physics of a photon 
gas in a cavity: the CMBR concerns the residual fossil field originated in the early stages of the space time life, whereas the 

data of the eqs (14,53) concern the today dark radiation field in the space time. Let therefore deU  be the total average 

energy of the photon gas in a cavity of volume uV : thus udeu VU /=  and udede VUP /3= . The problem is how to 

implement these data considering the well known thermodynamics of the photon gas in equilibrium with the walls of a cavity. 

Implementing the results of the section 13.7, one finds that the photon density due to the number deN  of photons 

in uV  and the related internal energy density due to deU  are given by the well known formulas  

 ,
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being 1.202=(2,2)  the Riemann function and deT  the average temperature of the photon gas. Equating ude VU /  to 

de  according to the present assumption, one finds  
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The value of deBTk  allows calculating the number density phN  and total number uph

tot

ph VNN =  of photons with the 

help of the eq (14,21)  

 (15,1);104.8=m101.3== 91311   tot

ph

u

de
ph N

V

N
N  

the average energy per photon is  

 (15,2).
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Hence deBph TkE 3 , as if each photon would be a classical oscillator with kinetic and potential energy in a crystal lattice 

instead of an ideal gas of free photons. 

On the one hand is recognizable a physical interpretation underlying these results, on the other hand just this 
peculiar conclusion could be the key to understand the physical difference between ordinary and dark quantities. 

Try to investigate the idea of a structure formed by photons trapped by dark matter particles to explain why the dark 
energy behaves like photons without being however visible, whereas the dark matter becomes invisible itself despite its 
basic similarly to the ordinary matter. Otherwise stated, the peculiarity of the dark quantities seems not due to the exotic 
nature of unknown particles constituting them, but to the peculiar arrangement of known particles. 

This suggests the formation of gravitational mircro/nano systems disseminated throughout the space time volume 
and formed by a core of dark matter particle surrounded by a cloud of photons; the chance of binding a photon cloud is 
provided by the mass of the core particle, regarded like a nucleation site on which cluster the photons via gravitational effect. 
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In effect an orbiting system formed by photons curling around a matter core is possible [17]; this result has been 
inferred as a limit case of the light beam bending as a consequence of the quantum uncertainty. This point is so crucial, that 
it is considered here implementing again the eqs (9,4) and (9,5). 

Let 
o

dmm  be the mass of each dark particle concurring to the total mass dmm  calculated in the eqs (14,45) and 

(14,44): now 
o

dmg mm   is the source of gravitational field, whereas the electron orbiting mass m  is replaced by the 

equivalent mass 
2/cE  of the photons trapped by 

o

dmm . Owing to the eq (13,8), it is easy to show that the same equation 

(9,3) leading to the Bohr atom and to the light beam bending is also compatible with the quantum gravitational levels of the 

system dark particle/photons; the Bohr radius takes the physical meaning of orbiting distance r  such that 
2/2< cGmr o

dm
 . If this condition is fulfilled, then the photons around 

o

dmm  do no longer behave as a free gas, they form 

a bound system having potential and kinetic energies governed by the gravitational field of 
o

dmm . Write thus the black hole 

condition as  

 1,<
2

=
)(

i.e.
2

<
)( 2

2

2

2

2

2

2

q
c

Gmq

mGm

nh

c

Gm

m

nh o

dm

o

dm

o

dm







 

where 1<2q  is the parameter ensuring the initial inequality necessary to describe the trapping of photons in the 

gravitational field of 
o

dmm ; expectedly 1=n  represents the most favorable choice to fulfill the inequality, yet for 

completeness keep explicitly n . The second equation yields  
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Now replace m  with the energy 
2/|| cE  of the photons in this last result and in the energy equation (9,4). The former 

substitution yields  
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the latter substitution yields  
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whose solution is  
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The subscript tr  stands for trapped, with reference to the structure of the "trapped photon/dark matter" system; the given 

value of q  fulfills the initial inequality required for a photon bound state and determines uniquely E  of the eqs (15,4) and 

(15,5). The equalities of r  express the orbital photon distance from 
o

dmm  via both eqs (9,4) and (13,8), which of course 

coincide: indeed replacing Gm o

dm
  with mZe /2

 according to the eq (9,5) and 
2

trE  with 
22 )(mc , obviously r  yields 

the Bohr radius. This check confirms that r  is the distance between 
o

dmm  and the photons. As every particle of dark 

mass 
o

dmm  traps one or more non-interacting photons, trE  is the energy of all trN  photons forming the cloud around 

o

dmm ; it is simply phtrtr ENE = . 

It is possible to summarize these results in two equations for trE  and r  as follows  

 1.=
2

=
2

=
4

2 n
r

hc
E

G

cr
cm tr

o

dm





  
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Having two equations for three unknowns, a guess is necessary: 

if 2/= Pllr , then one finds /2=2

Pl

o

dmcm  , whereas PlPltr lhcE  =/= . The number mdN   of dark 

particles determining the value of dmm , eq (14,45), is thus according to the eqs (14,52)  

 .105.1=
2

= 60
2




Pl

dm
dm

cm
N


 

The factor 2 indicates that this number includes both dmm  and dmm  according to the eqs (14,45) and (14,46). One half of 

dmN  is however effective as concerns the gravitational binding energy; so it is easy to link this result to the previous 

equations. In particular: 

(i) the fact that Pllr <  means that even for 0=n  there is within the Planck volume 
3

Pll  a trapped structure; 

in effect, the energy balance 0=/2 2

tr

o

dmPl Ecm  . In lack of an appropriate trigger, thanks to the assumed 

configuration of dark matter and photon, the state of Planck space time is that of global energy equal to zero, like that of the 
eq (14,42); the quantum fluctuation perturbs this situation, as previously explained. 

(ii) according to the eq (15,2) the number of photons trapped in each cloud is 
30106=/ phtr EE , which is 

reasonably consistent with the number of 
o

dmm  particles and with the eq (15,1): indeed 

916030 103.1=)10(5.1)10(6   fits well the total number of photons 
tot

phN  constituting the dark trapped energy. 

Owing to the fact that /2=2

Pl

o

dmcm   whereas PlE = , it was found in the section 14.4 that the side of V  

was Pll1/3 , eq (14,17); thinking 2=1/3 , which fulfills the inequality 3<23/2
, one infers that the size of the 

photon/dark mass structure is also compatible with the volume existing at 1=n . 

16 DISCUSSION 

The invariance of c  is one among the pillars of the relativity. Pillar of the present model is instead the invariance of 

a group of constants merged in the position (1,1). The model, which has "ab initio" character because it starts from this 
unique position, has shown that the Planck units are not mere numerical inputs alternative to the conventional measure 
standards, useful to carry out calculations only; appropriate combinations of these units account for known physical laws and 
introduce new ideas. The space time is more than a fundamental concept of the modern physics; it is a real entity 
expressible through a formula: the particular combination (1,1) of units exemplifies a possible way to reveal its own physical 
properties. All previous considerations have been implemented via elementary algebraic steps to provide information on the 
features of the universe. The strategy to this purpose was in principle simple: to extract as much information as possible form 
the eq (2,1). The final goal was to understand as a consequence of this unique initial intuition how the space time evolves to 
form energy and matter aggregates starting from an initial energy field. Most important is the chance of having inferred from 
the definition of space time two straightforward corollaries, the Lorentz invariance and the statistical formulation of space 
time uncertainty, on which are rooted the quantum and relativistic theories, as previous papers have shown [15]. Common 
root means that in fact quantum mechanics and relativity simply diversify their formalism implementing a unique idea; so 
their diversity is apparent only, being mostly a methodological issue rather than a conceptual conflict. The eq (4,4) highlights 
that the formulation of physical problems is possible without concerning specific reference systems, so the uncertainty in its 
most agnostic proposition is the quantum equivalent of the concept of covariancy. Moreover there is no necessity of tensor 
calculus, because the local coordinates are conceptually disregarded in the present theoretical frame; but just for this reason 
all reference systems are indistinguishable and thus equivalent in any physical problem. 

The fact that several results here exposed were already found implementing the eqs (4,5) only [15,28] is not 
surprising, as the latter are the most straightforward consequence of the eq (2,1). Hence the model proposed in this paper 
represents a step even more fundamental than the quantum uncertainty itself: the eqs (4,5), formerly postulated as a basic 
principle of the nature, actually appear to be a corollary of an even more general concept, the physical definition of space 
time. From the space time standpoint the quantum uncertainty is a necessity, not a successful postulate. It is interesting that 
the evolution of the universe governed by the uncertainty shows actually an inherent synchronism between mass formation, 
size growth and time running evidenced in the sections 14.7 and 14.8. 

No hypothesis "ad hoc" has been made in the model; everything was based on the position (1,1) and its 
dimensional root only: inferring the Lagrange equations, the concept of action and that of entropy together with the laws of 
thermodynamics means having reached the foundations of the modern physics, i.e. the conceptual frame from which 
everything follows. 

Is attracting the idea of a unique conceptual root that underlies both quantum physics and relativity, yet this idea 



I S S N  2 3 4 7 - 3 4 8 7  
V o l u m e  1 1  N u m b e r  6        

J o u r n a l  o f  A d v a n c e s  i n  P h y s i c s  

3466 | P a g e                 C o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  
M a r c h  2 0 1 6                         w w w . c i r w o r l d . c o m  

requires modifying the concept of interval: it must be compliant with the Heisenberg principle, which in turn makes the 
relativity based on such intervals compliant the quantum physics in a natural way. 

In effect the uncertainty ranges provide typical outcomes not only of quantum physics, like the dual behavior of 
matter and the De Broglie momentum, but also of general relativity; e.g. the gravitational waves [19], the light beam bending, 
the red shift and the perihelion precession in the same conceptual frame based on the eqs (9,4) and (9,5) apparently 
pertinent to the Bohr atom only. 

The idea of searching appropriate combinations of Planck constants is fruitful; further information on the features of 
the space time are obtained involving even  , which introduces the electric charge into the physical arena: in combination 

with the (1,1) it introduces the electromagnetism and thus the weak interactions and eventually the strong interactions as 
well [28]. A few remarks clarify this point. 

Regard =/2 hce  likewise as VchG =/ 2
, despite the physical definition at the left hand side corresponds 

now to one numerical constant at the right hand side only; the reasoning is in principle identical to that leading to the eq (5,1) 
and (6,3), which is now further commented. 

Start with the identity rrhce  /=)/(2  , so that rhcre  /=/2
 with /= rr   whatever the 

reference system defining r  might be; plugging the numerical value of   into the new length r , results defined the 

energy rhc /  whose physical meaning is however nothing else but the Coulomb interaction. The eqs (6,3) generalize 

this result: the repulsive energy re /2
 between similar charges implies also the attractive energy ree  /  between 

opposite charges, which leads to the CPT theorem. 

The section 9.2 has clearly shown that the range sizes are inessential as concerns quantum eigenvalues and 
typical relativistic consequences like the light beam bending: so is inessential the fact of having defined the interaction 

between charges r  apart via the the concept of energy implementing another range r ; what is crucial is the analytical 
form resulting at the left hand side for the given interaction and its physical meaning of energy at the right hand side. 

Otherwise stated, in any problem involving interacting charges is relevant the 
1r  energy dependence, not the size of 

r  itself or that of r  merely defining this energy. This is also evident, for example, putting r  and rp  in the eq 

(9,3): the result would be identical because anyway rpr   would be replaced by hn , however with nn   for the 

reasons explained in the section 4. 

To highlight further this concept, write according to the eqs (4,5) npcre r /=/2   as eFctrne /=)/(  , 

having put tpF rr  /= . It is immediate to recognize that this result reads in general riB  /|||| , where tnei /|=|  

is the current due to the flow of ne  electric charges and || B  the modulus of a new field defined by eFB r /|=|  . This is 

nothing else but the Biot-Savart law. 

Combine the eqs (5,1) and (6,3); it is possible to write GVcee /)(=/)(=/ 2322  , because in principle 
3  

identifies a volume. The fact that both V  and   are arbitrary, allows writing GcVe /)(=)( 22  ; so with the help of 

the eq (2,1) one finds  

 ,= G
c

h
e   

where the double sign shows that the relationship holds for charges of both signs. Consider now the particular case where 

  is the Compton length introduced in the eq (5,3); then this equation reads Gme =/ . Hence Gmmee 2121 =  , 

being 1e  and 2e  two different amounts of charges to which correspond two different masses 1m  and 2m  [28]; the 

double sign depends on that of the charges. Now it is possible to divide both sizes of this last equation by the arbitrary length 

x  defined in the eqs (5,10) and (5,11) to infer  

 .== 2121

x

mm
GU

x

ee





 

On the one hand this result remarks once more the analogy between the expressions of the Coulomb and Newton 
expressions; on the other hand, recalling the considerations of the sections 5 and 9.4, it also takes into account the 
relativistic corrections necessary for the plain classical expressions of Newton and Coulomb. Eventually it also confirms the 

possibility of the anti-gravity correspondingly to both signs well known for the Coulomb law only. This suggests that e  

must have a particular importance just for C = . Consider thus e  and e  with C  corresponding to the 
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respective signs; since cGhee /2=   , it is possible to define cGheee /=)/2(=/2    . In effect  

 
mc

eh
B

2
=  

is the well known Bohr magneton, whose magnetic dipole character appears clearly in this derivation. 

Another example is carried out multiplying the energy density   of the eq (5,1) by  ; one finds with the help of 

the eq (2,1) )/()(=)/()(= 322  VcechcGec . Also, multiplying both sides by 2/3 and recalling the results of the 

sections 10 and 5, )/(3)2(==/32 32 VcecP   reads 
322 /32== cveVP   ; this is because c  has 

the physical dimensions of an acceleration here implemented for brevity, i.e. it can be written as v  of the particle carrying 

the charge e . The numerical value of   has been merged into that of P  and  , likewise as in the previous example 

it was merged in r ; also now, since both P  and   are arbitrary, the new quantities including   are still arbitrary 

values of pressure and energy without loss of generality. So, being the subscripts mere inessential notation, the result is the 

well known Larmor equation describing the energy loss or gain rate ||W  by an accelerating charge  

 .
3

2
|=|

3

22

c

ve
W


 

The result describes both energy gain of a charge accelerated by an external field, in which case W  has positive sign, or 

energy loss by irradiation, in which case W  has negative sign. Of course this is a non-relativistic result because of the 

simplified way of defining the acceleration; however the result previously exposed to express explicitly x  as shown for 

instance in the eqs (7,4) and (5,11), indicates the way to generalize easily the calculation of x  to correct appropriately 

and generalize the Larmor equation. Clearly this is not the main point to be concerned here; rather is crucial to emphasize 
the simplicity of the steps necessary to get this result. 

Shortness and straightforwardness are not "per se" requirements of a physical model; however, a direct pathway to 
reach the result of interest certainly indicates that physical intuition and mathematical approach are adequate to fit the real 
essence of the problem. This point of view, already exemplified in the section to infer the black body formula, has been in fact 
followed throughout the development of the present model. 

The paper could be stopped at the end of the section 13: to show the validity of the eq (2,1) would have been 
enough the corollary of wave/corpuscle behavior of the matter. The dual nature of the particles is so weird that obtaining it as 
a corollary of the apparently vague and naive position (1,1) is a crucial test to validate the basic motivation of the paper. 
Particular attention has been however payed also to the cosmological implications of the model: trusting on the chance of 
regarding the space time as "statistical mirror" of the universe is a further crucial check of the present model, in the frame of 
which also relativistic results have been inferred without additional hypotheses, see for instance the eqs (5,1) and (13,8) and 
(9,6) among the others. 

But the model provides more than the simple comparison with basic concepts well acknowledged. Consider the two 
slit diffraction experiment, where the electron seems to pass simultaneously through both of them; the explanation, 
incompatible with the mere corpuscular nature of the electron, forced to postulate the wave nature of the electron as well, 
consistently with the wavelike diffraction pattern. It is interesting to see what the present way of reasoning contributes to this 
important result. 

Once having acknowledged that the quantum uncertainty excludes local coordinates, look at the eqs (4,4) and 
consider what the concurrent lack of a specific reference system means for this experiment where the electron moves 
through slits at rest. The experiment must clearly hold in any reference system. The position of the electron depends on the 

reference system, e.g. the electron could be on the origin of one of them, R , but in general anywhere in another of them, 

R . Yet R  and R  must be not only equivalent, but also physically indistinguishable: likewise as it is impossible to think 

electron 1 and electron 2 in a many electron system, it is also impossible to distinguish the reference systems R  and R  
with an analogous quantum motivation. This statement is more compelling than their simple equivalence, which excludes 

one privileged reference system while acknowledging however that R  and R  are different. The quantum uncertainty, 

instead, rules out even the chance of regarding the electron at the origin of R  and elsewhere in R  just because the 
concept of distance is excluded once having disregarded the local coordinates. 

The only chance is that the electron must be everywhere with respect to the former, and thus identically everywhere 
with respect to the latter as well. 

This is the most agnostic physical meaning of indistinguishable reference systems: from the fact that the concept of 
delocalization is synonym of "everywhere" in the allowed range, follows by necessity also the concept of "wavelike 
corpuscle" evidenced via simple algebraic manipulations as a corollary of the definition of space time. It also follows that the 
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so called EPR paradox is actually due to an unphysical statement: without the concept of distance is meaningless to 
distinguish two particles at "superluminal" or "relativistic" distances; an analogous explanation holds for the Aharonov-Bohm 
effect, whose "here and/or there" must be replaced by "everywhere". 

An interesting remark concerns the transformation of xpx  in R  into xpx   in R . Suppose that x  is 

introduced in R  as length 
22)(= xtcl   wherever it appears in the formulation of any physical problem of 

special relativity. So in R  holds ll   and thus ll pp  . It means that the momenta allowed by lp  in R  

remain unchanged in R , whereas the respective numbers of allowed states are unchanged as well. This statement is 

stronger than the mere fact that in general xpx  and xpx   are indistinguishable whatever their specific numbers of 

states might be; otherwise stated 
2222 )(=)( xtcxtc   implies that even though x  changes for any 

reason, the momenta of the system of particles remain actually unchanged in R  and R . This is clearly a momentum 
symmetry of the system with respect to the coordinates; the changes of these latter, whatever they might be, leave 

unaffected the conjugate momenta. The same reasoning and conclusion hold also for t  and  . These considerations 

fulfill the Noether theorem: in the present model condition necessary but not sufficient for its validity is that the numbers of 
states characterizing the eigenvalues of a system remain unchanged. 

One could inquire at this point about the numerical values of the fundamental constants, e.g. to hypothesize how 
new exotic universes with different values of these constants could be made. The exercise of simulating the properties of 
these universes is in principle simple: it is enough to carry out the same calculations via new values of the light speed or 
gravity constant, while replacing the Planck constant in the eq (4,2) as well. This would allow following the behavior and the 
evolution of a universe grown on a different kind of space time. But this attempt would actually be an ineffective curiosity not 
experimentally verifiable, thus a useless and hopeless effort. What is however crucial is that another universe could in 
principle exist, as nothing compels that the respective values of fundamental constants are necessarily the ones we know: all 
concepts hitherto exposed, e.g. the black hole length or the space time interaction with matter or the dual behavior of matter, 
identically hold regardless of the specific numerical values of these constants. 

17 CONCLUSION 

The paper has described the physical laws that govern the space time starting uniquely from a combination of 
fundamental constants describing space and time coordinates. The theoretical model has been developed mostly through a 
deductive analytical approach. The part of mere calculation has been limited to the minimum necessary to compare basic 
ideas inferred "ab initio" and cosmological properties. Most of the results hold in principle regardless of the specific numerical 
values of the fundamental constants, primarily important the uncertainty and the quantization. The universe we know 
appears to be simply the one, among those possible, characterized just by the given values of these constants. 
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