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ABSTRACT 
 A new electromagnetism is still expected to be developed. Thus, under such a principle where nature works as a 

group, an electromagnetism beyond Maxwell is studied. It considers that light metric antecedes electric charge for 
founding the EM phenomena. Based on wholeness principle, Lorentz group and gauge invariance this electromagnetism 
sticked on light is proposed. Then, by electromagnetism it will be understood the physics derived from Lorentz group 
potential fields family (for simplicity other fields are not included). New electromagnetic fields, sectors, layers and regimes 

are developed. It yields a branch with transversal and longitudinal EM fields, granular and collective sectors, I -fields 
layers and four regimes (photonic, massive, neutral, charged) connected through a global photon. Their relationships are 
determined by a state equation identified as Global Maxwell equation. It contains new Gauss and Ampere laws, exclusive 
Faraday law for polarization and magnetization vectors, divergenceless magnetization vector having fields as sources, 
self-interacting photons mediated by a dimensionless coupling constant and other features. It is complemented by a 
Global Lorentz equation which besides the usual Lorentz force add forces depending on mass and on potential fields.  
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1  INTRODUCTION 

Different principles have been building up physics. Inertia, minimal action, wave-particle, gauge symmetry, 
grandunification, supersymmetry, strings and others have set out different directions and comprehension. However, none 
of them is comparable with light invariance. It is out of sense: creates an absolute for nature and makes the speed of light 
transfinite. 

Light invariance path is a challenge. In this work we shall explore a further aspect. We consider that its 
understanding is not complete and that there is still room for a new achievement on its track. After being developed 
through Maxwell equation [1], Relativity [2], Lorentz Group [3] we will investigate that there is a next step forward which 
will be called as Lorentz fields family. It identifies a kind of fields specie under light invariance. An interpretation where a 
given fields set under a common Lorentz group irreducible representation is considered as a primitive niche. 

The objective here is to achieve such next comprehension coming from light invariance. Our assumption for that 

is that given a )
2

1
,

2

1
(  Lorentz group representation, one should associate to it a fields set }{ IA  primordially than to just 

one field A . Yang-Mills theory makes an initial example of a model where fields work as a group }{
a

A . It considers 

vector fields working as a group in the adjoint representation by showing an a-fields association with a same coupling 
constant and with a diversity given through the group structure functions [4]. 

There is a fourth interpretation from light invariance relaying on a fields association physics. In order to support 
this thesis, our ad hoc is the wholeness principle [5]. Firstly, we would observe that it is in the nature mechanism. Our 
argument is that nature always moves in the wholeness direction. It is performed through conglomerates as particles, 
atoms, cells, bodies, ... galaxies. Then, by following this arrow of time the structure of this work will be to redefine the field 
theory understanding by mixing light invariance with wholeness. 

Nevertheless, in order to propose this path one should first meditate more deeply on the presence of this 
wholeness principle. There are different reasons to support this principle in nature, as evolution theory, but we will choose 
to advocate first through quark confinement. Quark confinement brings an enigma for physics. Although various features 
were traced, such as color symmetry, jets, structure functions, flavors, asymptotic freedom, quarks were not observed [6]. 
Over the past 40 years various attempts have been made for proving confinement. Perhaps, one could summarize that 
there are no convincing results [7]. So we consider that similarly to light invariance, confinement is not something to be 
proved, but interpreted. It opens up a new cognitive logic. Our viewpoint is that confinement must be considered as a 
turning point of a reductionist sequence. It introduces the concept where there is a whole meaning for describing 
phenomena. 

Our approach is that, instead of further looking for mathematical proof, the question may be raised how to 
interpret confinement. We consider it as a breakthrough in the reduction methodology that has been guiding physics 
during the last 2500 years. It states the reductionism fall. There is a new framework for physical interpretations. Rather 
than through the ultimate constituents of matter [8], perhaps physics should be calculated from another basic postulate: 
the notion of totality, or as we will call it, wholeness. Thus, a confinement interpretation is that the new abstraction is the 
whole. It says that being suppressed from the ultimate constituents physics should be understood under groupings. A view 
which move us from the ultimate constituents comprehension to a new origin based on the notion of fields grouping. 

Complexity is another field that antagonizes the reductionism performance [9]. Complex system is considered as 
that one whose properties are not fully explained by an understanding of its parts. Its basic properties like correlation, 
cooperation, self-organization, order do not have a reductionist nature. So complexity joins confinement in order to say 
that physical laws should have antireductionist character. These two subjects are calling for a whole physics. The parts 
can not be seen isolately says confinement, the relationships between the parts are complex says complexity. 
Consequently, by stipulating the whole as the fundamental unity, instead of considering atomic Lagrangians being defined 
in terms of ultimate constituents of matter (as quarks and leptons), one should look for a type of Lagrangian which involves 
a diversity of fields organized through an integral model. We will identify them as „whole Lagrangians‟, i.e. Lagrangians 
classified by the principle of wholeness. 

Thus confinement and complexity lead us to identify the meaning of wholeness in physics. Another possible 
illustration of the idea of wholeness is through Quantum Mechanics [10]. The indeterminism and the probabilistic nature of 
quantum-mechanical measurements are implemented through the introduction of ensembles: a system is probed by 
means of an ensemble that reproduces a number of copies of the system itself. Results of measurements are statistical 
and observables are measured through expectation values, which means repetition of the measurement on a large 
number of copies of the system under observation. In short, Quantum Mechanics does not deal with an isolated system; it 
rather treats a collection of systems. The cosmology of universe expansion also works as another argument for the whole 
conception [11]. 

Nevertheless we have to take care of the meaning of grouping. Based on symmetry principle, physics can not 
treat every particle alone. By grouping may be interpreted: phenomenologically, as fields under common quantum 
numbers as Gell-Mann Eightfold Way [12] or as crystalline arrays in condensed matter [13]; theoretically, as sharing a 
multiplet [14] or a same Lorentz irreducible representation [15]. However, the question is how far these different 
arrangements consider that nature works as a group or not. Physically, the importance is: are they producing a whole or 
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an isolated parts dynamics? The answer comes through two natures of symmetry: reductionist and antireductionist. For 
this, first observe that grandunification symmetry, it reductionistically associates quarks and leptons by incorporating them 
under a same SU(5) multiplet [16]-[17]; second, consider leptonic families where the lepton and its correspondent neutrino 

are associated as },{ LL , and given neutrino oscillations, it yields a complete interlaced leptonic family where every 

lepton become associated to each other, and so, the resulting grouping should be related through an antireductionist 
symmetry. Therefore, although multiplets and Lorentz group irreducible representations are both structures candidate to 
relate parts, at moment of doing physics, it will be important to define on which approach (reductionist/antireductionist) our 
model will be driven. 

Our view is to assume that nature is a collective construction. We observe that there is an inevitable context 
introducing the meaning of wholeness in nature. Cosmology, biology, confinement, complexity, quantum mechanics, 
statistical mechanics, symmetry, unification are supporting that nature works as group. Under this concert of facts instead 
of searching only to the ultimate constituents physics one should also consider on the whole physics. An antireductionist 
physics is required. The challenge moves on how to interpret this antireductionist approach as beginning. Be able to 
define what is a fundamental grouping. Then, for supporting this line of thought, that nature acts as group, we have to do 
two enlargements. First, introduce a fourth light invariance interpretation saying that first than be considered through 
multiplets such fields primitive set should be encountered at each Lorentz group irreducible representation [18]. Second, 
modify the symmetry default between grouping and gauge theories which states that the number of potential fields must 
be equal to the number of group generators [19]. 

In this way, under this new cognitive logic, a next step shall be to introduce the „whole question‟ through gauge 
symmetry. We should formulate on fields associations through gauge parameter. There is a whole physics to be tuned 
from light invariance and gauge symmetry stating that instead of ultimate constituents physics should be based on fields 
agglutinations. Searching for such a non-reductionist approach through a gauge model a possibility is to consider an initial 
set of fields transforming under a common gauge group as  

 
11 .=)()(   UU

g

i
UAUxAxA III   (1) 

 where NI 1,...,=  [20]. Eq. (1) is considered as a linear antireductionistic gauge symmetry. There are another 

antireductionist approaches based on polynomial and systemic gauge transformations [21]. These different possibilities 

are ways for associating different I -potential fields through a common gauge parameter. 

The hypothesis here is that a whole primordial notion will be configured from Eq. (1). There is a new approach for 
physics phenomena to be understood. Something that introduces the possibility for enfolded fields and particles. However 
for developing this assumption a first necessary clause is to prove the existence of Eq. (1). Different origins based on 
Kaluza-Klein, supersymmetry, fibre bundle,  -model formulations have already been studied [22]-[29]. 

The approach for extending gauge-field theories through the association of two or more gauge potentials 
transforming under a single Abelian or simple Lie group may be consistently justified in a Kaluza-Klein scenario. Starting 
off from a higher-dimensional gravity-matter theory and fine-tuning parameters so as to guarantee a spontaneous 
compactification, it can be shown [22], [23] that, once one performs a reduction on a coset space, G/H, the effective 4-
dimensional theory that comes out exhibits 2 gauge fields that transform under the gauge group G. One can geometrically 
justify the independence of the vector fields by means of an existing torsion in the higher-dimensional original model. Also, 
based on ideas of supersymmetry, it has been shown [24], [25], [26], [27], that, upon the relaxation of the conventional 
constraint in the algebra of simple supersymmetry covariant derivatives, gauge supermultiplets appear that are 
independent and carry different gauge fields amongst their components. These gauge fields transform under the action of 
a common simple group. 

In the framework of a fibre bundle formulation for gauge models, such an extension to gauge theories has 
already been discussed [28] and a precise geometrical meaning has been assigned to the various vector potentials that 
transform under the same group. One finds out that there is room for a single connection on the principal fibre bundle. The 
role of such a connection is played by the combination of vector potentials that transform inhomogeneously under the 
action of the gauge group. The other independent linear combinations of the potentials that transform homogeneously are 
interpreted as vectors of a vector bundle defined on the basis Minkowski space. Also, models formulated in terms of 
complex scalars coupled to gauge potentials that transform according to Eq. (1) have been discussed in [29], and it has 
been shown that the dynamics of these gauge vectors may, under certain circumstances, dynamically induce the 

appearance of 
nCP -like nonlinear  -models. 

Our thesis is that nature contains a fundamental principle which is to be manifested through wholeness. It moves 
by taking the set as fundamental unity. Our line of thought is to study these fields associations through Eq. (1). There are 
different reasons for supporting Eq. (1) mathematically, and so, the next challenge becomes whether it really provides the 
whole features. Despite the possibility of taking different potential fields in a same group receive differently supports 
coming from geometry, superspace and  -models, the main aspect is to understand how far it is able to accommodate 

the expected whole meaning. For this, it will be necessary to deduce integral mechanisms from Eq. (1). There is a 
systemic bridge between the part an the whole to be understood. Then, our research is that the principle of wholeness 
should be configured through the manifestation of properties as set, diversity, integration derived from a Lagrangian. 
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Considering this context, a fourth light invariance interpretation is taken and a new perspective emerges for 
analyzing the physical phenomena. Recapitulating, we have assumed here that there are confinement, complexity and 
others topics in opposition to the reductionism category, and so, instead of the reductionist sense where particles are the 
essential building blocks, now the whole becomes the fundamental unity. Maxwell will be the first choice of study. This 

because it already carries an association between BE


  fields, a fact suggesting that one should explore on this 

systemic behaviour first through the )
2

1
,

2

1
(  Lorentz family. The meaning of enfolded particles is expected [30]. 

Therefore, given Eq. (1), one expects to develop an abelian whole gauge model where the corresponding physical entities, 
laws and numbers will be expressing a non-reductionist behavior. Its challenge is to perform a relationship between the 
simple and complex. Generate the passage from reductionist view to an antireductionist view through a Global Maxwell 
equation. 

The paper organizes such fourth light invariance interpretation as follows. In section 2, the wholeness principle is 
introduced through an abelian global gauge model. Following the development of Eq. (1), one notices the appearance of 
antireductionistic equations supported by global variables and global coefficients. These features allow the model be 
analyzed in terms of the non-reductionist approach. Then, at next section a set determinism is studied. It shows the 

presence of directive and circumstance symmetries controlling these 72 N  antireductionistic equations. Following that, 

the expected Global Maxwell equation is obtained and written in terms of new observables and introducing new EM 
regimes. It yields a state equation carrying whole properties like fields set, directive, circumstance, network. From it, a 
physical interpretation for potential fields in terms of lines of force emerges at section 5. At section 6, conservation laws 
are studied with the presence of different sources than electric charge. At section 7, a Global Lorentz force is derived 
showing potential fields and masses acting as forces. These sections introduce the idea that, this fourth interpretation 
leads to a global photon not necessarily depending on electric charge. 

A Global Maxwell equation is configured based on the principle of wholeness. It introduces an EM beyond electric 

charge, potential fields as physical agents, global photon and set determinism. The corresponding )
2

1
,

2

1
(  EM features 

are analyzed at section 8, a new dispersion relation is obtained at section 9 and a macroelectromagnetism is analyzed at 
section 10. Then, at section 11, this antireductionist gauge symmetry is correlated to the Lorentz symmetry determining 
the photon singularity. Concluding, one figures out that this fourth light invariance interpretation leads to a singular-active-
global photon producing a network EM physics with four interlaced regimes (photonic, massive, neutral, electric charged). 
Light turns candidate for a new energy source. 

2  ABELIAN GLOBAL GAUGE MODEL 

 Eq. (1) allows for the existence of a gauge model involving different potential fields. Considering the abelian case 
and that these fields satisfy the Borscher‟s theorem [31], one can redefine them. To get a better transparency on 

symmetry, one should write the model,  II AA =' , in terms of the },{ iXD  basis, where D  is defined as 

II
AD  = , with   DDD ' = , and where iX   are potential fields: 211 =  AAX  , , 

NN AAX   11)( = , which are obviously gauge invariant, Ni ,2,=  . Geometrically, the potential fields 
iX   

arise from the torsion tensor of the higher-dimensional manifold that spontaneously compactify to 
kBM 4

, where 
4M  

is the Minkowski space-time and 
kB  some k -dimensional internal space. Thus the origin of the potential fields can be 

traced back to the vielbein, spin-connection and Yang-Mills fields of higher-dimensional gravity-matter coupled theory 
spontaneously compactified on an internal space with torsion. 

Thus, },{ iXD  is called the constructor basis due to the fact that, under this field-referential, the gauge 

invariance origin for the Lagrangian terms becomes more immediate. Notice that D  is a genuine gauge field, while iX   

correspond to a type of „dark vector fields‟, in the sense that they exist (generate quanta) but are not detected by a gauge 

transformation. Working out the lagrangian in },{ iXD  basis, we get  

 .
~

= .

2

fg

ji

ij LXXmZZZZL  






   (2) 

 where this candidate for an abelian antireductionist Lagrangian contains contributions from three sectors which are the 
antisymmetric, symmetric and semi-topological sectors [32]. Stability restricts Eq. (2) to a square shape [33]. 

There is a global field strength Z , which can be written as )(][=  ZZZ  , with  

 ,= ][][

ji

ij

i

i XXXDdZ     (3) 
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ji

ij

ji

ij

i

i

i

i XXgXXgZ 




  )()()( =   (4) 

 where the basic field strengths are  

 ,=,=,=
iiiiii

XXXXXDDD    (5) 

 

Notice that the coefficients d , i , ][ij , i , i , )(ij , )(ij , ijm  which are originated from gauge and 

Lorentz invariances. They are identified as the free coefficients of theory because they can take any value without the 
involved symmetries being broken. The total number of free coefficients carried by Eq. (2) is 

8)12138(3
4

1 234  NNNN  as Appendix A shows. Besides that, one needs the gauge fixing term considering 

that there is only one gauge parameter which means only one gauge fixing term expressed as 

  2.

1
= i

ifg XpDL 



  [34]. 

A fundamental property on such fields set physics is that one can work under different fields referential systems 
[35]. Although Borscher‟s theorem guarantees that physics must be independent under fields re-parametrizations, the 

},{ iXD  basis is not the physical basis. For this, one has to diagonalize the transversal sector. Then, one gets that 

physical fields are those which diagonalize the equations of motion (the physical masses are the poles of two-point Green 
functions). It is in terms of these fields that the corresponding measurable entities of the model must be defined, as the 
corresponding electric and magnetic fields. 

Thus in order to diagonalize the transverse sector we have to introduce a matrix  . The physical basis }{ IG  is 

defined as  

 
I

iIi

I

I GXGD   =,= 1  (6) 

 where the   matrix is a function of these free coefficients [36]. 

Writing down the gauge transformation in terms of physical fields, one gets  

 )()(=)()( 1

1 xxGxGxG II

'

II   
 (7) 

 where every field transformation is specified by a weight 
1

1

 I  factor. 

Eq. (6) yields the following transverse diagonalized gauge invariant Lagrangian  

   JI

IJ

II

II GGGGmZZZZZZGL 















   2)(

)(

][

][

~
=)(  (8) 

 where the corresponding field strengths can be written in terms of more fundamental gauge invariant terms  

 
)

()()(][][ =,=






  wgzSgSzGbZ
I

I

I

I

I

I   (9) 

 with  

 ,=,=
IIIIII

GGGGG    

 .=,=,= )()()()(][][

JI

IJ

JI

IJ

JI

IJ GGwGGzGGz    (10) 

 

L  is parametrized by global free coefficients expressed as  

 ,=,=,= ][][1 I
i

iIJ
j

I
i

ijIJI
i

iII db    

 .=,=,= )()()()( J
j

I
i

ijIJJ
j

I
i

ijIJI
i

iI    (11) 

 The relevance here is that field equations appear parametrized through global coefficients and with global variables as 
Eqs. (7) and (11) are showing. The terminology global assigned to the coefficients turns out to be appropriate because 
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although being associated to a given flavor index I , their expression shows a global mix between the original free 
coefficients defined at Eq. (2). They mean a first indication of the existence of the totality conjecture. Notice that their 
expressions are depending on the number of involved fields. For the one-gauge fixing term, one gets 

 J
j

I
i

jiJI
i

iJ
i

IiJIIJ pppp  11111
=


 , which yields a global gauge fixing expression. Fields 

normalization condition is IJJI bbb = . 

The corresponding N-equations of motion for IG  fields are  

 )(=
2

1 2][ GJGmZb IIII


   (12) 

 where  

 ][][

)

()(

)(

)(

][

][=)( 









  ZGEZGZGZGGJ

J

IJ

J

IJ

J

IJ

J

IJI   

 ][

)

(

)(







  zEbZZ III   (13) 

 which yields a system with N-coupled equations. It contains a complex system. As a new fact, dynamically it also relates 
an individual-collective dynamics [37]. 

The fundamental gauge invariance property for the whole abelian physical model is obtained from the   matrix 
invertibility condition  

 .=1

IJKJIK   (14) 

 Notice that Eqs. (7) and (14) are enough for any proof on gauge invariance. They are able to show that field strengths 
IG , 

I

I S
 , ][z , )(z , )(  are gauge invariant and that the N-currents involved in Eq. (13) are neutral 

A relevant result is on a gauge invariant mass term. Since 1938 with Stueckelberg [38], different efforts have 
been made in literature for introducing mass in physics. It is fundamental for London equation [39] and for the Landau-
Ginzburg model of superconductivity [40]. Meanwhile, either through high derivatives [41]-[42]-[43], spontaneous 
symmetry breaking [44]-[45], technicolour [46]-[47], or dimensionalities different than four [48], they are imposing extra 
dependences, as Brout-Englert-Higgs fields [49]-[50]. The contribution here is that without imposing any ad hoc situations, 

Eqs. (7) and (14) derive a gauge invariant mass term 
II

II GGm 


2
 [51] and renormalizable [52], [53]. However it does not 

have on mind an explanation for the origin of the mass of particles [54]. It is just a mechanism for introducing a mass 

parameter in Lagrangian without violating gauge symmetry. Just for nomenclature, one identifies 
22

III mm  . 

Another on-shell information can be derived from },{ XD -basis. Its corresponding equations can be related to 

the }{ IG -basis through the transformations  
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
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











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
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


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I
G

L

G

L

G

L

G

L











 (15) 

 which produces the equations  

   ),(=
2

1
0,= 2][

][

][ GJGmZGGEZ iiii

KJ

JK





    (16) 

 for )(=)( 1 GJGJ I

Iii
  . A verification can be done by multiplying the first and second equation in (15) by Id  and 

iI , respectively. This says that Eqs. (12) and (16) are rotations of the same coupled equations derived from the 

Lagrangian (8). 

The Poincaré lemma associated with the following covariant derivative 
J

IJII GbD   ][=   gives  

       ][

][

][

][][

][ = 






  ZGbZGbbZDD

L

IJL

L

IJLILJIJ   
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   ][

][][][][
2

1 
 ZGG

LK

IKJLILJK   (17) 

 where   0, II DD  . 

Field equations are complemented by identities. In principle, the presence of N-potential fields allows various 
combinations of identities as  

 0=]],[,[]],[,[]],[,[
JIKIKJKJI

   (18) 

 where III Gg   = . However, it yields that there are only N-independent gauge invariant expressions. They are 

the following N-Bianchi granular identities:  

 .0=
III

GGG    (19) 

 

There are also three more new collective identities in Bianchi style:  

 ,= ][][][][][][
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 and a kinetic identity:  

 .=
III SSG


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




    (23) 

 The last identity is the local Noether theorem. It provides the following useful three relationships:  

 0,=
 NJ  (24) 

 0,=
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I J
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
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 0=)(
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1 x
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L
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I 




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
  (26) 

 where 

NJ  for the model being studied is defined without any matter be included. Substituting (8) in (25), one gets 

  0=][

][ JI

IJ GGEZ 


   , which is the same expression as Eq. (16). It says that from the Noether 

information one detects that a U(1) group is also able to generate a current which carries its own gauge fields. Another 

Noether information is that Eq. (26) contains two solutions: 0=
)(

1 II
G

L




 , I

I
G

G

L 



=
)(


, which yields 

the Gauss law 


 N

I

I JG  =1  [55]. 

A classical structure is defined. There is a total of 72 N  equations. They are the N-equations of motion 

associated to each field IG ; N-Bianchi identities where each one is associated to a given field IG ; three new Bianchi 

identities relating collective observables; one kinetic identity relating antisymmetric and symmetric sectors; and finally, 
there is the Noether theorem which adds three equations more. Thus one obtains a first clue that a non-reductionist 
dynamics is inserted in Eq. (1). There is an integral logic written through: coupled field equations with global parameters 
and variables defined in terms of a set; Bianchi identities involving collective fields as Eq. (20-22); Noether and gauge 
fixing expressions relating N-fields. Only through Eq. (19) is that the reductionist aspect is preserved. Consequently by 

putting together N -potential fields rotating under a same group a non-reductionistic dynamics is obtained. It yields a set 

determinism which will be studied at next section. 

A next step is on analyzing the spectroscopy of the model. Based on arguments of gauge invariance, it seems 
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more reasonable to start from a Lagrangian density built up in terms of antisymmetric, symmetric and semitopological 
sectors. It rewrites Eq. (8) in the following sectors:  

 tSAG s=)( LLLL   (27) 

 where  
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 and  
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  ][][][s 2=   (30) 

 which are showing a type of non-abelian-flavour model inside an abelian gauge model. However they mix spin-1 and 

spin-0. The former yield a (0,1)(1,0)  representation of the Lorentz group and carry pure spin-1; but the symmetric 

sector and the latter are mixing vectors and scalars. 

Thus for reading off the involved particles and corresponding physics one should rewrite the Lagrangian in terms 
of the transverse and longitudinal projectors on the space of vector fields. For separating the spins initially organized by 
the symmetric and antisymmetric field strengths one should split in transverse and longitudinal pieces. For this, one 
rewrites the initial Eq. (8) as  

 dntK LLL ti= L  (31) 

 where  
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 with  
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 and  
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 with  

 ,1644=,44= )()()()()(][ JKIJKIJKIJKIJKIJKIIJK bba    
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 and the total derivative term is  

 )(~=t

JI

IJd GGa 
 L  (38) 

 with  
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 .2=~
JIIJ bba  (39) 

 Notice that, in this sort of extended model, it contains kinetic and interacting pieces separately gauge invariant. It also 
generates trilinear and quadrilinear vertices separately gauge invariants and with different coupling constants. 

Nevertheless, for a physical interpretation we should open up a discussion whether we should find out the 

physical fields , }{ IG , by diagonalizing the transverse sector or the piece of L  defined by the anti-symmetric field 

strength. Since we understand that the piece of L  built up in terms of the transverse sector feels contributions from both 

the symmetric and antisymmetric field strengths, it seems more sensible to define the  -matrix as the one that 

completely diagonalizes the piece of L  with the transverse projector. In so doing, we are sure that all possible 
contributions to the spin-1 quanta have been accounted for. It yields  

 ILT LLLL =  (40) 

 with  
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The explicitly transverse diagonalized associated system of equations of motion is  
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 Eq. (47) rewrites Eq. (12). A further simplification is by taking the kinetic identity (23), identity IJIJa =)(  and by taking 
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the Lorentz condition   0=I

II G
  . It yields  
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 Eqs. (49) and (21-22) are relating the opportunity for the symmetric kinetic sector be suppressed in theory. 

We should now discuss the corresponding physical masses. Rewriting Eq. (40), one gets  

 ,=)( f Iree LLGL   (50) 

 then, using the matrix notation ),,(= 1 N

t
GGG   , one gets  
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 Although violates locality this decomposition is valid because it preserves Lorentz covariance, 
TT GG 


 )(=' 1  and 

LL GG 


 )(=' 1 . Consequently it is valid to consider that the spin-1 quanta are accommodated in the first term and 

the spin-0 quanta at second term. The corresponding interacting term written at matrix form is  
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 where TT vz ,,  are column matrices and TT ,,  are row matrices. Both are depending on the initial Lagrangian 

free coefficients. 

The physical basis, }{ IG , stands for a field reference frame on the spin-1 quanta. Therefore, 
2

Im  correspond to 

the physical masses of the transversal sector, 
22

TI mm  . Non-diagonalized scalar contributions are in the longitudinal 

sector. From Eqs. (7-8), one gets that there is necessarily one massless term and a relationship between the transverse 

)( 2

Tm  and longitudinal )( 2

Lm  masses. Analyzing the transverse sector, one reads off the diagonalized matrix 
2

Im . It 

contains a zero and the other elements are depending on the free coefficients written in the initial Lagrangian. This means 
that tachyons can be avoided by controlling such coefficients. Analyzing the longitudinal sector, the mass spectroscopy is 

less immediate. The particles that it embodies display masses that are eigenvalues of the matrix  21

ImB
 where B  is 

the longitudinal kinetic matrix defined from Eq. (51). However, sectors T and L are not completely independent. There is a 
relationship between the masses in both sectors. It is given by  

    2122

1 = IN mBdetBdetmm   (53) 

 where Eq. (53) is showing that the presence of any null mass in sector-T will correspond to a massless quantum in 

sector-L [56]. A further analysis on the }{ IG  spectroscopy is given in [57]. It studies on the fields set variety by showing 

that the )
2

1
,

2

1
(  niche of potential fields contain quanta diversity (spin, mass, charges; C, P, T). A fact that turns realistic 

such fourth light invariance interpretation. Given a field set it is possible to discriminate a quanta diversity in every LG 
irreducible representation. 

Concluding, the objective of this section was to investigate on the wholeness principle. In 1962, Cabbibo and 

Ferrari also built up a model with more than one potential fields [58]. Their proposal was to work through U(1) U(1). 

Differently, the thesis here is that by associating fields under a common gauge parameter one produces an 

antireductionistic behaviour. For this, instead of a multiplicity of abelian gauge symmetries like U
n(1) , it introduces 

through Eq. (7) the fields network meaning. Its entities are not more longer isolated, instead, they feed up a global system 



ISSN 2347-3487                                                           

1851 | P a g e                                                 F e b r u a r y  0 6 ,  2 0 1 5  

with the following global properties: physical fields IG  are defined globally as variables which are linear combinations of 

the initial IA , coefficients as ][ IJ  depending on initial free coefficients, coupled equations, Noether laws relating a N-set 

and also Green functions whose poles expression will be depending on parameters associated to the entire Lagrangian. 
Therefore, Eq. (8) is more than a mechanism with different massive potential fields without requiring the Higgs mechanism 

or a QED plus 1)( N  Proca equations. It contains an integral symmetry. Its proposal is not anymore for being restricted 

for generating interactions, but also, to build up a global interrelated system. It conducts an antireductionist abelian whole 
unity through gauge symmetry that works differently from Cabbibo, Ferrari and Higgs performances. The corresponding 

7)(2 N  classical equations are establishing an integral system where these equations are interconnected as a whole 

and expressing that physics is more than a problem of fragmentation. However, there is something more than just being a 
fields complex dynamics. There is a network meaning with a set determinism to be understood. 

3  SET DETERMINISM 

 Given such whole structure one has to analyze its corresponding dynamics. For this, one has to examine the 

involved symmetries. These 72 N  integral equations develops two kinds of symmetry associated to gauge invariance. 

They are the directive symmetry and the circumstantial symmetry. Their qualitative difference is that while the director 
appears as a natural instruction from the gauge parameter, the circumstantial will depend on relationships between the so-
called global parameters. 

Whole gauge theories introduce the symmetry management. They will develop a new feature in gauge theory 
which is the organization context. Provide two controls on the symmetry action which are the directive and the 
circumstantial behaviours. We will study on it through five cases: genuine gauge field, current conservation, global 

symmetry, )(NSO , Ward-Takahashi. Firstly, Eq. (1) management produces a field set determinism where only one 

genuine gauge field coordinates 72 N  classical equations. This genuine gauge field shows up at },{ iXD  basis 

where D  appears as the only one field depending on the gauge parameter. This means that the directive symmetry 

implies that Eq. (7) contains just one massless potential field while for the other fields the corresponding masses will be 
depending on the symmetry circumstances stipulated by the free parameters. 

As the current conservation is consequence of a given symmetry implementation, our second case is to 
investigate on these symmetries by analyzing the corresponding conserved currents. The presence of a common gauge 
parameter results in the Ward and Noether informations which are respectively associated to action and Lagrangian 
invariances. They represent what we call as an instruction from the director symmetry. They yield just one conserved 
current with N-global contributions. From action invariance  
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 one gets through Eq. (31)  
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 which says that the directive instruction is a conserved current involving mass terms, longitudinal kinetic terms and 
trilinear and quadrilinear vertices. Considering Lagrangian invariance Eqs. (24-26) introduce the Noether current. Notice 
that they do not necessarily coincide as in usual QED (Noether is an on-shell information, while Ward is off-shell). The 
relevance here is that their instructions are derived directly from the gauge parameter. 

Now let us analyze on conserved currents through the presence of the circumstantial symmetry. We should try to 
impose N-conservation possibilities by rewriting Eq. (47) as  
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 with  
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 Taking the partial derivative, yields  
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IJK GGEnGGn 


 (4)(3)
 

     .(2)(1) LKJ

IJKL

LKJ

IJKL GGGEnGGGn 





    (58) 

 Consequently, the classical decoupling of the longitudinal sector 0=IG
  will depend on the circumstantial 

adjusting of the values of the global free parameters. For proving this, one has to study explicitly every case involving a 

given number of potential fields. In Appendix B the cases 2,3=N  are performed. In principle, the model contains 

opportunities for N-conserved currents. 

Conserved currents are showing that, differently from usual gauge theories, Eq. (1) introduces the meaning of 
symmetry management. It says that for systematizing a coherent whole one has to read off its directive and circumstantial 
instructions. The evolution equations will depend on both aspects where while the former means a guideline of an overal l 
plan originated from the gauge parameter the latter establishes gauge strategies derived from the free coefficients. They 
are respectively a natural consequence of sharing a common gauge parameter (as Ward and Noether information) and 
stem from possibilities given by global free parameters relationships (a gauge strategy) based on a so-called volume of 
circumstances as Appendix A calculates. 

A third case to study is on global symmetry. Carrying on the investigation over these whole symmetries, let us 
consider the most general global symmetry  

 
J

IJI GAG  =  (59) 

 with the corresponding Ward identity  
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 Calculating it explicitly, one gets  
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 where  
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 Therefore, for this Eq. (59) symmetry to be implemented, the last six parameters not connected with a total derivative 

must vanish. A necessary condition is 0=Adet . However the implementation condition will depend on circumstances 

between the global parameters. In Appendix D the case 2=N  is studied. 

Another case is to consider a set of symmetries  
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 It yields,  

  
LKJ

IJKL

KJ

IJK

KJ

IJK GGGrGGrGGrxd 











(1)(2)(1)4 =  

        KJ

IJK

KJ

IJK

KJ

IJK GGrGGrGGr 











(5)(4)(3)
 

 0=(3)(2) MLKJ

IJKLM

LKJ

IJKL

LKJ

IJKL GGGGrGGGrGGGr 












   

 where  

   ,2=,2= )(

(2)

)()(

(1)

KLJ
L

IIJKKLKLJ
L

IIJK aArcbAr   

   ,2=,2= )(

(4)

)()(

(3)

JLK
L

IIJKJLJLK
L

IIJK aArcbAr   

 ,=,2= )(

(1)(5)

MJLK
M

IKLMJ
M

IIJKLKLJ
L

IIJK aAbArdAr   

 ,2= )()(

(2)

JKML
M

IKMLJ
M

IIJKL bAbAr   

   ,=(3)

MKJL
M

ILKMLMKJ
M

IIJKL aAaaAr   

 .2=
)

)
(

(
)

)
(

())(())(( 






 
N

M
K

L
M

N
L

KKNLMLMKNJ
N

IIJKLM bbaaAr  (63) 

 

As a fourth case, let us consider the SO(N) case P

P

II GRG  =  with a
t

a
iw

eR = . From Eq. (59), a 

relevant application for this circumstantial symmetry is by imposing a certain field symmetry on the Lagrangian. Rewriting 
Eq. (13) as  

             












 GMGGCGGBGGAGL tttt

K =  (64) 

 one has the conditions  
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 .=,=,=,= MRMRCRCRBRBRARAR tttt
 (65) 

 Considering an infinitesimal rotation, we obtain for the interacting terms  

       0,=pqiriApirqiAiqrpiA atatat   

         .0=pqriisApqisirApirsiqAiqrsipA atatatat   (66) 

 The corresponding directive and circumstantial symmetries are implemented and enlarged vectorial fields are introduced 
with charged vectorial fields [59]. 

A fifth case is that one where the Ward-Takahashi identity freezes the longitudinal part from one of the N -

involved fields. Considering the director symmetry:   1

1= IIG ,  i= ,  i=  (fermions included), 

and the gauge fixing term 
I

II GG 
 =][L  one derives the expression [52]  
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 which yields the following system of equations  

 ,=,1 JIJI 
   (68) 

 where  

 ).(=and
2

, yx
GG

I
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JI

IJ 


 











 W  (69) 

 Then, working out the above expressions one gets as directive, that even for such abelian generalization a massless 
photon is preserved when it interacts with electron and positron and also with another vector fields and that the propagator 

longitudinal part corresponding to a generic field IG  do not suffer radiation correction. As circumstance, that some 

infinities can be cancelled by adding graphs. 

The five cases studied are showing the notion of symmetry management. As a novelty, there appears the 
meaning of circumstance, which introduces the chances of interfering on symmetry. Circumstances means the space to 
do physical modelling without violating gauge symmetry. For instance, the kinetic L-sector be isolated. It is possible to 

isolate symmetric kinetic sector either by taking 0=
 IG  or by substituting Eqs. (20-23) in Eq. (12). It says that by 

adjusting parameters the symmetric kinetic sector can be decoupled as Appendix C shows or transformed into the 
antisymmetric kinetic sector and interactions terms. 

Thus, the gauge parameter is transformed from compensating fields and from taking degree of freedom into an 
instrument for set orientation and for creating chance. The fact to be observed here is that from this set determinism one 
derives two types of symmetries. Eq. (7) provides instructions to Eq. (8), such as the compulsory existence of one 
massless field together with circumstantial possibilities for physics be done. It yields a whole physics playing with 
symmetry possibilities being defined with the notions of directive through gauge parameter and circumstance through 

global free coefficients. Consequently, the 7)2( N  equations derived at last section should be read off as a 

conglomerated of fields under a set determinism where the directive laws are related directly to the gauge parameter 
(Bianchi identities, Noether current, Ward identities), while the circumstantial laws bring the meaning of chance (choice on 
degrees of freedom, conserved currents, etc). 

A gauge organizing principle appears. An association fields, saying that any whole gauge model contains 

directive and opportunities, where an organization for establishing the fields set }{ IG  behaviour can be derived without 

gauge invariance being violated. There is a management control through the directive symmetry and expectatives through 
the circumstantial symmetry. The realization of a whole physical system will be depending not only on compensating 
interactions but also through organization. It means the capacity of guiding and interfering in the whole system. Given the 

initial N4 -potential fields, one gets M -measurable entities and S -sources with an organization capability being 

managed by gauge symmetry. 

Thus, these antireductionist equations are not only relating interdependent fields, but providing another concept 
of determinism. There is a set dynamics embedded in a symmetry management. It introduces another concept of 
determinism where one can not predict the future state precisely, and like quantum mechanics and chaos, whole gauge 
models work with an uncertain causality. A dynamics where instead of probability introduces the concept of chance. 
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However, differently it shows a determinism based on organization. As a new concept, it introduces a causality 
coordinated by the notions of directive and circumstance. As consequence, the whole approach generates a state 
equation with a gauge organizing principle based on directive and chance, which must be our next fact to be explored. We 
have to write it in terms of physical variables. 

4  GLOBAL MAXWELL EQUATION 

 The systemic principle is under consideration. It says that nature general tendency is to build up wholeness. So, 
prior to entropy, nature moves in direction of possible whole structures as atoms, molecules, bodies, ..., planetary 

systems, galaxies. Therefore, in terms of field theory, our compromise will be with a set of fields }{ IG , as Eq. (8) states. 

Given the )
2

1
,

2

1
(  niche, there are coupled equations with a global flow carrying granular and collective variables and 

global conservation laws to be studied. We should now rewrite section 2 in terms of correspondent observables. 

We have now to look for the state equation corresponding to the )
2

1
,

2

1
(  niche. As clue, it will correspond to an 

equation involving particles with spin 1 and 0; as result, a fundament from this model is that given fields with a LG nature, 

it is possible to differentiate them dynamically and through discrete symmetries saying that the )
2

1
,

2

1
(  niche contains 

particles with different quantum numbers [57]. But now, we wish to explore this diversity through EM fields. 

Being an experimental science, the first physics‟s challenge for a given model is to promote new entities to be 
measured. In fact, generate physical entities is a first symmetry consequence, even before interactions. The possibility of 
including different potential fields in the same gauge group introduces other types of electric and magnetic fields. Eqs. (9) 
and (10) develop new fundamental entities for defining the measuring process. Dimensional analysis and gauge 
invariance select N-pairs of generic electric and magnetic fields with the same Maxwell structure  

 jiIijkIiII GEBGE
2

1
=,= 0


 (70) 

 and also, composite electric and magnetic fields  

 
J

i

I

jijkIJ

J

i

I

IJ GGEbGe ][][
2

1
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 (71) 

 defined from potential fields  

  ., III GG


   (72) 

 Being composite fields, as Eq. (71) shows, e


 and b


 are a new type of measurable fields. They will have macroscopic 

consequences, although defined as collective microscopic fields. These collective fields are a first manifestation of the 
wholeness principle at field theory. 

The symmetric sector also develops new gauge invariant terms. It yields the following scalars, vectors and 
tensors  
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 where 1=00g , ijijg = . 

The antisymmetric field tensor is read off as  
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 where Eq. (74) introduces elements for the space-time scenario with granular and collective domains. Its basic entities 

are generic Faraday variables IE


 and IB


, which have the usual Maxwell character, and e


, b


, which have a 

cooperative character. 

Similarly one gets the symmetric tensor  
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 where Eq. (75) introduces elements for a symmetric EM sector. Given that any symmetric tensor can be expressed as 

 )t(
4

1
= SrSS   where S  is a traceless matrix, one gets for Eq. (75) the Lorentz decomposition (1,1)+(0,0), 

saying that its components contains the following spin content 0210  . Consequently, while Maxwell is only 

associated to spin 1, Eq. (75) provides a symmetric electromagnetism where differently from gravity, one derives a spin-2 

behaviour (and others) without associating a rank-2 field h . It shows that from potentials field IG )1,0( , one obtains 

EM fields containing spin 0, 1 and 2, as for instance,  , 


, ij . 

We are looking for an evolution on our comprehension of the EM phenomena. EM started with electric charge, 
EM fields, Maxwell equations, non-minimal EM interactions with magnetic moments, QED photon field, and now, one 
reverses this path through a fourth interpretation to light invariance principle. As expected, there are more EM fields than 
usual Maxwell. Following the lemma that one should consider a symmetry at its most, Eqs. (74)-(75) are showing that 
before implementing interactions the first symmetry proposal is to find out the maximum number of physical objects. 
Spinors works as this example, where studying all possible Lorentz group irreducible representations, one finds out an 
entity which does not live on space-time. In our case, from an antireductionist gauge symmetry, one is able to build up 
physical entities beyond Maxwell, which kinematics and dynamics are challenging us. 

Kinematically, the above EM fields Lorentz transformations introduces new invariants as 

])()2[(= 22][

][ eEbBZZ



 , 

22)(

)( )()2(= iiiiiiii rssZZ  
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
, 

)8(=
~ ][

][ eBbEBEZZ


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2)(
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  where 

I

I EaE


= , 
I

I BbB


= . The trace is also 

invariant 



 ZZ =')

(
. Also 

22= II

I

I BEGG



 , )2(= 22][

][ bezz



 , bezz


4=~ ][

][


 , and so 

on. As a new result, it shows that the granular and collective sectors are connected through relativity, as relationships 

)2(=][ bBeEzG III




 , )2(=~ ][ eBbEzG III




  and the corresponding symmetric 

relationships are showing [60]. 

Dynamically, we are pursuing for an equation representing the antireductionist performance. Maxwell fields do 
not occupy a special room anymore, other variables candidates to a dynamics become possible. We have to consider how 
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these variables defined at Eqs. (74)-(75) are described. There is a new electromagnetic scenario for being understood. An 
electromagnetic extension shall be obtained by substituting Eqs. (74), (75) in (47). A state equation to be expressed from 

variational principle having the group of fields },{ )(][  ZZ  as block variables. It yields the so-called Global Maxwell 

equation which can be separated in two sectors:   Granular sector: 

   ),(=
2

1 2 GmebE IIIII 


 (76) 
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
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 0,=II B
t

E





  (78) 

 0,=IB


  (79) 

 where the internal sources )(GI  and )(GJ I


 are defined at Eq. (48). Later on, they will be rewritten in terms of IE


 

and e


. As Faraday, one gets EM fields depending on potential fields pairs },{ II G


 . Eqs. (78-79) provide the solutions 

III f
t


 ='  and III fG'G 


=  which are consistent with the gauge transformation proposed by Eq. (7).   

Collective sector: 
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IJ BEGb
t

e
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 ,= ][

JI

IJ BGb
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  where a collectivism based on induction laws is derived from Eq. (20). 

We have to understand on Eq. (4). These equations should not be taken as a surprise. First, two space vectors 

can always be thought as components of a skew-symmetric rank-2 tensor 
A , which writes through the field equation 


 =A , where ),(= beA


 complements Eqs. (76)-(77). Similarly for )( eb


 , one gets 80)-(81). So, these 

apparently new equations are just following that all natural phenomena shall be described by equations which possess the 
Lorentz group as their symmetry group. Second, there is a systemic logic to be understood. We have to analyze how this 

determinism proceed. Observe on its capacity to manage with the antireductionist symmetry. So, it derives a )
2

1
,

2

1
(  

physics ruled by the notions of set,organization, directive, circumstance, network. Where every field from Eqs. (5)-(6) is 
now embedded in a whole. Also there is a dynamics relating the individual and the collective fields. Third, on that fields 

IE


, IB


, e


, b


 and others are originated from internal charges I  and )(GJ I


 and not from electric charge. 

As a fourth aspect, there are two interpretations for these equations. A first one, separate in two sectors as 
above. A second one, based on vectorial analysis where the Helmoltz prescription says that a given vector is defined 
through the divergent and rotational operators; then, by adding both sectors one gets four equations which well-defined 

variables are the vectors ebE II


  and bbB II


 . Later on, at chapter 10, this second interpretation will be associated 

to macroscopic fields. Finally, notice that every term in above Global Maxwell equation is gauge invariant, for instance, 


t

IIJIIJIIJ



 1

1)()()( =  is invariant due to (14). 

A next step is to analyze on these equations. We are not more playing with a pair BE


  coupled with electric 

charge, but there is a state equation with two sectors, I -EM layers, four EM-regimes, explicit potential fields and a global 

photon to be understood. The first systematization is that Eq. (4) provides two classes of equations. The first ones are 
(76)-(79) with a granular nature and having the Maxwell‟s equations as particular case. The second class of equations 

exhibits a collective nature written in terms of e


, b


 variables, with charge and current defined by point-like fields being 

summed over. It is interesting to compare them with Born-Infeld where a qualitative difference is that while eqs (80)-(81) 
develops a dynamical interpretation for the collective vector fields the Born-Infeld contributions are just algebraic, 
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i

I
i

B
H



 B=
L

 and 

i

I
i

E
D



 B=
L

 [64]. 

Then, from this antireductionist abelian model, one obtains a Global Maxwell state equation. It introduces new 
terms on Gauss [61], Ampère [62], Faraday‟s laws [63] and a new photon interpretation. These equations are introducing 

an EM fields dynamics without electric charge dependence. They provide an I -layers dynamics where each one 

corresponds to every IG  field from the original )
2

1
,

2

1
(  niche. Each layer contains its own Gauss and Ampère laws 

relating granular and collective fields with non-linear sources. Induction laws are also extended for new EM fields. A new 

photon emerges, taking the layer 1=I , Maxwell is reobtained and 1G  corresponds to a massless photon field which is 

not more passive but with a non-linear source )(1 G . It appears a global photon which function is to manage this I -

layers physics by the directive symmetry. 

We should now observe some features on dynamics, photon behaviour, phenomenology. A first one is on 
dynamics, instead of the time evolution of a given field, it contains the dynamics of the whole system. It develops an 

individual-collective dynamics relating the granular ( II BE


 ) and the collective ( be


 ) fields. At following sections we 

will study the corresponding conservation laws and forces. A second aspect is on the photon, it is associated to the 
directive symmetry while other fields behave under the circumstantial symmetry. There is a new photon behaviour to be 
considered. The third one is on possible phenomenologies, Eq. (4) will sustain three planes of phenomenology. The 

subtlest layer depends just on gauge invariant conglomerates of potential fields, as 
J

IJ G


][ . These clusters lie down in 

the region of Bohm-Aharanov effect and quantum mechanics wave function. The second layer means the usual Maxwell 

sector with new couplings for ( 11 BE


 ) plus an enlargement with other flavour fields ( II BE


 ). The third one 

corresponds to a tissue made of collective fields, and the fourth with longitudinal fields with different spins. The last layer is 
associated to macroscopic EM fields studied at section 10. 

There is still a second collective sector to be considered, the longitudinal identities at Eqs. (21)-(22). However 
their relationships are just algebraic. The relevance of these Bianchi-longitudinal-identities is that they connect the 
symmetric kinetic and interacting sectors. Depending on the ansatz (at this classical level it is not necessary to study the 

ansatz stability) there are different possibilities to relate them. The first one is JIIJ  =)( , a circumstance which 

makes the identity (21) give the following relationships:  

 ,2=2,=  I

I

I

I

I

I Gss
t

s
t











 

 ,= i

I

jIj

I

iIij

I

Iijjiij GGsss
t

 



 

 .= ij

I

kIki

I

jIjk

I

iIijkkijjki GGGsss    (82) 

 Adjusting the relationships JIIJ  =)( , Eq. (22) yields:  

 ,~2~2=22 










 I

I

I

I

I

I Gww
t

r
t

 (83) 

 ,~2~2=22
k

i

I

kI

I

I

I

I

k

ik GGww
t

r  






 (84) 

 ,~2~2=22 










 I

Iij

I

Iijij

I

Iijijij Gww
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r
t
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 ,~2~2=22
l

k

I

lIij

I

Iijij

I

kI

l

klijijijk GGww
t

r  






 (86) 

 where 
I

I S00=~  , 
I

iI S0=~ 


, 
I

ijIij S =~
. 

For II  =  circumstantial relationships, the identity (22) transform into:  
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 ,22=22 






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
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I
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
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
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 ,22=22 

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 .22=22 kl

lI

Iijk

I

Iijij

I

kIkl

l

ijkijijk GGss
t

r  



  (90) 

 

For completeness of this section the kinetic identity (23) will be rewritten in two ways, i.e. either as  

 ,=
k

k

I

I
t

E 




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 ,= ik

k
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







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
 (92) 

 or as  

 ,~~= 











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E I
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 .~~= ik

k

I

I

I

I
t

E
t

B  











 (94) 

 Eqs. (82)-(94) provide useful kinematic relationships for decoupling the symmetric kinetic sector. 

A Global Maxwell equation is introduced. Eq. (4) proposes a step forward in the EM comprehension. From usual 

Maxwell one notices that the electromagnetic fields behave as a set },{ BE


, and so, a step forward should be to 

consider a set of potential fields }{ IG . It yields that, besides the historical Maxwell sector there are other EM aspects 

and laws. However, we should be cautious for considering that Eq. (4) means an extension to Maxwell equations. We 
should just highlight that up to now we have expressed a mathematical expression derived from wholeness principle with 
gauge invariance. For joining to the observational Maxwell circle, at least three next steps are required. First, understand 
on its contributions to the Maxwell limitations; observe on the model consistency (positive hamiltonian, renormalizability, 
unitarity); for finally, construct its phenomenological implications as the four EM regimes that it proposes. With this plan of 
work, a next step will be to discuss on Eq. (4) contribution to the potential fields physicality. 

5  POTENTIAL FIELDS AS LINES OF FORCE 

 Maxwell theory was a great triumph. However, although Maxwell equations have been considered as the theory 
for electric charges [65], their main message was not about properties of the electric charge, but about the existence of a 
strange constraint in nature. From Franklin (1750) [66] to Hertz (1886), electromagnetism had been a subject developed 
between the electric charge and the electromagnetic waves observations. But, when the Michelson-Morley experiment 
(1887) [67] made a rupture, there was something more than the incorporation of optics into the theory of 
electromagnetism. There was a hidden contract in nature. Implicitly, Maxwell theory had grasped an explicit nature 
determination: light invariance. 

Certainly light invariance is a strange dogma. However, due to the fact that it was discovered experimentally, 
there is no other choice than to follow it. Theoretical abstractions were derived, and so, astonishingly, they provide 
consistent predictions. Maxwell equations, Relativity and Lorentz group show that, light invariance is not just a principle 
supported by an experimental background, but also with theoretical-experimental consequences as electromagnetic 
waves, matter-energy convertibility, spin etc. Through these results physics become more confident on following such 
principle, although its nature still remains interrogative. We could say that light invariance is not more a postulate but a 
determination to do physics. It contains the physics DNA. 

Therefore, given light invariance as the basis for exploring the physics phenomena, we have to take into account 
not only Maxwell and Relativity, but also the Lorentz group (LG). It makes a bridge between space-time and internal 
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symmetries. The Lorentz group global symmetry, ,=
2

1










 
















e  goes further than Lorentz transformations 

and defines a Lie Algebra. Physical properties obtained from this algebra are showing that there are more consequences 
coming from group algebra than from Lorentz transformations. By associating covariant fields transforming through LG we 
are giving rules for systematizing physics. Its global symmetry commands not only the space-time transformations but also 
develops four features for the physical processes. They are the fields spin representations (irreducible group 
representations), relativistic equations (Klein-Gordon, Maxwell, Proca, Weyl, Dirac, Rarita-Schwinger, Pauli-Fierz), gauge 
symmetry (cancelation of spurious spins from LG) and CPT theorem (LG and spin statistics). 

The effort of this work has been to discover a path through light invariance to go beyond Maxwell. Observe that, 

first Relativity produces the equation 
2= mcE  showing differently from Larmor equation that radiation can come from 

matter and not only from electric charge, and second, that LG generates Lagrangians that are beyond of Maxwell domain. 
However, both are not able to add any new term to Maxwell equation. Besides all these new channels for describing 
physical processes that they have been discovering, Relativity and LG are not able to go further than Maxwell equation. 
The basic question “electric charge or light - which comes first?” remains with electric charge as primordial, now supported 
by Dirac equation. 

Nevertheless there is a conflict to be considered. First, the Lorentz group clarify the A  presence through the 

)
2

1
,

2

1
(  representation. It indicates that, a comprehension beyond Maxwell should be to incorporate the photon field as a 

physical agent, as LG does with spinors. Second, just considering a massless particle with spin-1, one heuristically 

associates the expression 0=T

AW , from which, one derives the Maxwell equations 0=
F  and 0=






F , 

showing how Maxwell can come out from light first than electric charge. Both work as clauses, determining that potential 
fields should be more than subsidiary fields derived from Bianchi identities. In practice, as time goes by the potential fields 
presence became more and more relevant for physics be done. They show how to express the theory degrees of freedom, 

reveal symmetries as gauge invariance, derive from eAvemvL 2

2

1
=  the force basic expression 

BveEexm =


, implement Maxwell in Quantum Mechanics by redefining the canonical momentum ,= Aqvmp


  

develop spin presence as a reaction to LG rotations. QED also is based on A  field [68]. They are indicating that the 

electron sees the photon field. Scalar electrodynamics also contains a conserved current with a explicit dependence on 
potential fields. Phenomenologically, it produce the Bohm-Aharanov [69] and Aharanov-Casher effects [70]. There are 
also different electro and magneto-optics effects as Faraday, Kerr, Pockels, Cotton-Mouton which have been studied for 
more than a century showing the interaction of light and matter [71]. 

Thus, a basic challenge for a model beyond Maxwell is to include the potential fields as physical agents. 
Something is missing. A new interpretation becomes necessary. There is something more to be done than including 
monopoles, non-linearity and so on. It is necessary a deeper comprehension on light invariance symmetry. Our view is 
that there is still a fourth interpretation to be given to light invariance where after Maxwell equation, Relativity and Lorentz 

group one should consider fields under the wholeness principle. Interpret that the interdependence between BE


  fields 
indicates something beyond than introducing displacement current and electric charge. Consider that, more than relativize 

physical entities, light invariance primordially promotes physical associations as },{ BE


, },{ xt


, },{ pE


, },{ k


 , 

},{ A


 . A fact saying that, for light invariance signature the meaning of association is more fundamental. Based on that, 

we should go further on the meaning of associations. Interpret that, instead of light invariance be initially correlated to the 
photon field, it should be to a niche of potential fields. 

Considering as fundamental grouping a set of fields }{ IA  at )
2

1
,

2

1
(  representation, one supposes that before 

Maxwell equation, there is a state equation corresponding to such irreducible representation family, which function is to 

network fields under a same Lorentz nature. As result, for 1=I  Maxwell is reobtained, and as new result the photon field 
is introduced as an explicit variable. Something appears. There are news EM agents. Eqs. (76)-(77), (80)-(81) are showing 

potential fields as physical variables. These equations explicitly show the presence of IG  fields not more as subsidiary 

fields, but carrying their own self-determination. The zeitgeist based on external sources is changed, now one moves to an 

interpretation where potential fields are their own sources. It develops an )
2

1
,

2

1
(  electromagnetism which replaces the 
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electric charge by an EM based on light metric and with selfinteracting photons not depending on electric charge [72]. 

The meaning of potential fields as lines of force appears. Historically, a qualitative change happened when 
Faraday introduced the concept of lines of force, up to then, physics was catalogued at Newtonian category where the 
phenomena was only related to matter presence. Faraday was revolutionary, it opened physical laws to a subtle 
behaviour, and magically, his induction law brought civilization to the industrial age just by correlating fields. However, 

although the BE


  fields become realistic, the )( A


  fields remained without physicality. Classically there are three 

sets of equations from where the potential fields presence can be understood as lines of force. They are the equations of 
motion, conservation laws and forces. Eq. (8) provides three arguments to the potential fields meaning. The first one is 

that nonlinear equations as )(= GJG II

W  are developing fields as own sources; second, comes out through the 

conservation laws, where section 6 will identify internal charges },,,,,{  JBcIN JJJJJ  as fields sources; and by 

third, the force expressions at Eqs. (160-161) are showing )(GI  and )(GJ I


 as acting elements. 

Complementing there are also five phenomenological possibilities for verifying the presence of potential fields 

lines of force. First, is on the presence of field-balls as 
J

IJ G


][ . Second, by defining IIG  =  one obtains a 

dynamics just depending on potential fields. Third, through the explicit interaction between EM fields and potential fields as 

IIE 


, II GE


 , II GB


  and so on as section 8 writes. Fourth, is their presence on the Global Lorentz force as 

section 7 studies. And by fifth, is that the four EM regimes (electric, photonic, massive, neutral) will be directly depending 
on potential fields. Their physical existence will be studied at sections 6-8. 

A new physicality appears. There is a physics beyond Maxwell to be understood which opens a new passage for 
exploring nature behaviour through potential fields. It is supported by charges and currents explicitly depending on the 

potential fields and their self-sources. There is an antireductionist approach, where any field IG  interacts with itself and 

with other fields, and also, with spins, masses and charges derived from the field set }{ IG . As result, similarly to 

Faraday lines, from Eq. (4) one is able to generate potential fields lines of force. At next section, we will start by exploring 
more on the energy flux through potential fields lines of force. 

6  CONSERVATION LAWS 

 A physics that precedes electric charge is introduced by a )
2

1
,

2

1
(  whole electromagnetism. Different sources 

from electric charge are creating an EM with potential fields as line of force. It indicates that, although in the historical 
process, charge came first than light, now this process can be inverted. Although the classical definition of 
electromagnetism considers the action of electric and magnetic fields over particles with a charge and/or magnetic 

moment [73], a )
2

1
,

2

1
(  whole physics antecedes. there is a systemic flux to be investigated. 

In order to go further than electric charge it is necessary to systematize on new sources. They will be showing a 
fields system working as a group derived from just one gauge parameter. There is a migration carrying various fields and 
sources where through an whole abelian gauge model new Faraday lines of force get through space in terms of currents 
flow and continuity equations. Then, we have to explore that right-hand terms developed in previous sections. 

The first N-conserved charges are given by  

 










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


IIIII G

t
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t
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2

1
=)()(  (95) 

 which define a bunch of internal charges and currents expressed by Eq. (47). Notice that the Maxwell sector, 1=I  and 

0=2

Im , obeys a first conservation law between nonlinear terms. 

Eqs. (80-81) introduce another conservation. It is identified as a collective source, because they are the 
inhomogeneous terms for collective fields,  

 0=cc J
t







  

 with  

  .=,= ][][

JIJI

IJc

JI

IJc BEGJBG


   (96) 
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 Eqs. (95) and (96) define the internal charges in Eqs. (4) right hand side. These equations are showing that there is the 
possibility of expressing charges in terms of fields. They support how fields modify and sustain their own existence. In Eq. 
(95) they promote a nonlinear behaviour, while in Eq. (96) they give rise to fields with a granular nature working as source 
for collective fields. 

A third conservation law comes from collective Bianchi identities. From Eq. (20), one gets  

 .=is source  thewhere0,= ][





  JIIJ

B

B GGJJ  (97) 

 Notice that the symmetric Bianchi identities are algebraic, they do not correspond to any charge. 

Noether current at Eq. (24) expresses a fourth continuity equation [74]. It provides a charge conservation 
associated to the group of fields. It is a step forward to Maxwell displacement current and corresponding electric charge 
conservation by including an internal charge conservation. 

A relevant fact is that these four equations are not expressing the electric charge, but charges and three-current 
densities which are depending on fields. These continuity equations are supporting on the existence of abelian fields 
depending on internal sources. Observe that, at usual Maxwell theory only entities as the Poynting vector are expressed 
through fields, whereas here charges and currents are also defined. The relevant aspect is that these self-internal charges 

act as origin for EM fields: )(GI  acts as source for granular fields and )(Gc  acts as source for collective fields. 

Consequently, given a photonic charge )(1 G  one obtains that photonic EM fields 11 BE


  are generated. It yields an 

electromagnetism where light is not more passive, but is producing its own fields. 

The fifth conservation law is given by the second type of global conservation associated to the improved energy 
momentum tensor  

 .0=
  (98) 

 

Although Eq. (98) is guaranteed by translation invariance, one should calculate it in order to verify the 

consistency of the equations being introduced. Deriving the energy momentum tensor T  of the global electromagnetic 

field, we get  
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 Working out the improved tensor we obtain  
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Given that gauge invariance is not broken by the introduction of a gauge fixing term we will include it in Eq. (105),  
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Verifying the property of symmetry, one checks that [73]  

 ,=    (111) 

 as obviously expected. Taking the derivative of Eq. (105), the conservation law Eq. (98) is explicitly shown. The dilatation 

current 
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 Considering that the total derivative can be reabsorbed, one gets that only the mass term breaks the dilatation invariance, 
although the Poincaré invariance is preserved. 

For physical reasons the energy momentum tensor should be rewritten in terms of transverse and longitudinal 
pieces. It reads  
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 where  
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 (117) 

 There is a flow described through energy density, Poynting vector and stress tensor. The differential laws are  
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The energy density of the system is  
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The total flux density is  
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  and,  
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The global Maxwell‟s stress tensor is  
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These conservation laws are manifesting the meaning of the whole. New features are introduced through an 
antireductionistic physics through a global system organized by the abelian gauge parameter. First, Eqs. (95)-(144) are 
physics laws for a joined system with a global physics compensation between the set of observables; second, that these 

internal charges are expressing on the existence of „fields stones‟ as 
IJ , and later, Eq. (161) show how these fields 

stones act as forces (remember that the passage from Newton laws to Maxwell equations brought another nature 
behaviour through fields, and so, as a next contribution to this fields environment, the above equations introduce fields as 
source); third, they are explicitly showing that gauge symmetry goes beyond to the usual lemma where the number 
conservation laws must be equal to the number of generators [75]; fourth, they are flowing a systemic behaviour 
consistent with the fact that internal charges and currents expressions emerge earlier than the introduction of the electric 
charge; and finally, new aspects that extend Maxwell theory come into play which will be analyzed below. 

We are now going to consider three cases. A first concrete consequence is to compare the polarization and 
magnetization vectors coming from this fourth interpretation to light invariance and the usual Maxwell constitutive 

approach. Comparing literature the e


- b


 contributions in Eq. (4) differ from the standard case for P


- M


 [76]. Although 

both pairs presence coincide at left hand side of Global Maxwell, discrepancies appear for the corresponding expressions 
of energy, energy-flow and stress tensor. We have denoted in italic these new contributions. They are showing that by 
describing polarization and magnetization vectors from first principles in the original Lagrangian makes a difference with 
respect to introducing them by hand in the equations of motion. As an example of a new physical contribution, Eq. (132) 

shows a term be


  for changing momentum. 

Another consideration is on the positivity of the hamiltonian. The existence of a stable ground state is required for 
perturbative excitations to be well defined. An unbounded-from-below hamiltonian would mean the existence of ghost-
tachyons and a divergent partition function. For analysing on these aspects, it is necessary to consider just the kinetic 
terms. From Eq. (119), one reads that the transverse and massive sectors are positively defined. However the longitudinal 

sector has mixed contributions. An analysis is required. For this, one describes LU  in function of potential fields. When 

you discard in LU  the positive terms and the divergence term, which can be integrated over, you get  
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 Considering the relationship II  2=  
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 and the Lorentz condition, 
I

I

I

I
t
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Another proof come outs from the following vectorial identities:    
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  where IIIII GmjGJJ


2

2

1
)(=  . Substituting Eqs. (6) in Eq. (118), one gets  
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 with the normalized condition 1=I

I bb . Eq. (151) provides a more general proof for hamiltonian positivity by isolating 

the transverse and antisymmetric sectors. Integrating over time one gets an expression for LU  which does not depend on 
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kinetic terms. 

The third result is on the consequences from the longitudinal decoupling on the components of the energy-

momentum tensor. Based on the conserved currents derived circumstantially at section 3, implying 0=
 IG , a 

consistent result on freezing the kinetic longitudinal term is obtained. Appendix C shows that longitudinal physical entities 
as charges and currents, energy, Poynting vector, stress tensor are cancelled. As consequence, the unitarity for this 
abelian whole model is considered. After Eqs. (145)-(151) be showing on a positive Hamiltonian, renormalizability be 
verified through power counting and Ward identity [52], [53], this longitudinal decoupling works as a first argument for 
unitarity (a further perturbative study is under development). 

The sixth conservation law concerns to the total angular momentum .= 






 kkk SLJ   It contains the orbital 

angular momentum plus the spin contribution. It gives 0=
 kJ  where 








  kkk xxL = , 

  Ik

I

k G
G

S 









 


L
=  which will be worked out in a next work where we are going to study on a neutral 

electromagnetism under spin influence. 

Summarizing, different charges are derived from this antireductionist abelian gauge symmetry. They are saying 
that there is something more than electric charge. Usually there are two types of charges basing gauge theories which are 
the Noether and topological charges [77]. The new fact here is that there is a branch of charges. They are revealing how 

from the symmetry management one derives directive charges as },,,,{  JBCN JJJJ  and circumstantial charges 

}{ IJ . As consequence, there is something more than electric charge for the EM phenomena be described. While 

displacement current allowed electric charge conservation, the introduction of the fields set propitiates opportunities for 

various interactions 


 AI

AGJ , , where A  means an index expressing these various conserved charges possibilities. As 

result, they are characterizing a behaviour where individual fields are associated to systemic charges. 

7  GLOBAL LORENTZ FORCE 
 This section will deal with the meaning of force. Special relativity defines force through the equation 


 f=  which means an exchange of energy and momentum between two systems made by fields and external 

sources. Following this methodology we have to investigate on Eq. (8) consequences. For coupling the interaction of fields 
with external sources one has to discuss the gauge invariance alternatives. The simplest scalar interaction term involving 

N-external currents Ij  is of the form I

I jG 


, where the Ij  source does not necessarily correspond to the electric 

charge. This leads us to the following Lagrangian density  

 I

I jGLL 
0=  (152) 

 

Considering the basis },{ iXD , the sources that produce the fields are given by 
i

iIII jjj  1=  

where the external current j  is coupled to the D  genuine gauge field, while 
i

j  to 
i

X  . Then, the Noether theorem 

provides a continuity equation 0=
 j  which is enough for the complete Lagrangian to be gauge invariant; therefore 

the 
i

j  currents are not required to be conserved. The corresponding field equations become  
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1 2][
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 and as result, the force equation is derived from Eq. (152). From Appendix D, one gets  
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EML ffff =  (154) 

 with  
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 Eq. (154) is the fundamental equation. Besides the usual Lorentz type, it gives rise to a massive and environmental 
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nature. Notice that Eqs. (155) are introducing global force with variables as external sources, potential fields, masses, 

densities )(GI , )(GJ I


, continuity equations. 

Three kinds of forces emerge. Each term in Eq. (155) corresponds respectively to a granular, massive and 
environmental force. We should first prove that each of them is gauge invariant. For the first and second terms the proof is 

immediate. Rewriting Eq. (54) as )(=)( GJGJ
iA

Ii

A

I   , )(=)( GJGJ
iS
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S
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I   , we obtain )(=)( GJGJ
i

IiI 



   which shows that the third term 

is also invariant. Consequently, every contribution can be measured separately. A general relationship is 

I

I

EM jGff 
  4= . The usual Lorentz force will be reobtained under the condition 0=Ij . 

Another indication about a whole physics is obtained. It is the physical existence of an environment just 
depending on potential fields. From Eq. (5), there are four contributions for environmental forces:  
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 Notice that above equations do not depend on any external parameter as charge or mass. Eq. (4) implies that 
A

Ef


 

corresponds to a sector depending only on ][ IJ  coefficients. 

Eq. (154) can also be written through a flavour series I

N

I
ff   1=

= , which shows that for 1=I  the usual 

Lorentz force is reobtained. It is because the last two terms are canceled by a massless genuine gauge field and Noether 

theorem. However for 1I  there are different regions with forces beyond Lorentz. There is a possibility for the photon to 
connect other aspects of matter not depending on electric charge, as W‟s weak force. Eq. (154) shows that instead of four 
interactions, one can decompose the number of interactions depending on the number of flavours. Notice a photon field 
presence in all these sectors. 

For a better understanding, we should describe these new forces in terms of components. This gives  
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Notice that strengths are proportional to charges, masses and environmental couplings like )( IJ . Besides a 

granular sector associated to test charges there is a network dynamics. Eqs. (7) comes out from the interdependence 
relationships produced by a whole model. Eq. (158) shows that different lines of force emerge which are not anymore from 
charge to charge. They are presenting how fields act on fields and on mass without any external source. 
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A new significance for force appears. Eq. (158) contains different sources for transmitting momentum. Particles 

can be deflected not only from test charges as in Eq. (159). A force can also be originated from a given field IG


 

interacting with its own masses as Eq. (160) shows. Eq. (161) means an environmental force where its variables )(GI  

and )(GJ I


 do not act over individual objects, but over gauge invariant conglomerates of potential fields it is a force 

derived from the fields cooperation aspect. 

Eq. (160) defines a classical massive interaction. It offers a microscopic reason for the relationship between 
mass, force and fields. For instance, consider a inverse square law depending on a potential fields solution 
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For a better understanding of Eq. (161), one should be divided in three parts: 
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Environmental forces say that matter transformations depend exclusively on fields. Eqs. (7) are expressing 
mathematically the grouping meaning of fields. Notice that every term can separatedly be measured. 

A consequence from this network of fields is on the presence of induced forces. Eqs. (4) and (158) have 
interconnected relationships which produce induced forces. For instance, let us consider from Eq. (160) the expressions 

for the set involving just two fields 0=1
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 an implicit 

dependence on ),( 11 G
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  through Eq. (4). Induced forces here means an interconnected causality. 

8  )
2

1
,

2

1
(  EM PHYSICALITY 

 After classical equations, conservation laws and forces being studied a next aspect is to analyze on the 

corresponding )
2

1
,

2

1
(  EM physicality. Historically, different trials have happened in order to improve Maxwell equations. 

Today there are nearly 31 models beyond Maxwell [79]. Each of them has developed special features. Between various 
efforts we would emphasize de Broglie-Proca massive photon [80], [81], Bohr-Infield non-linearity [64], Euler-Heisenberg 
vacuum polarization [82], Dirac monopoles [83], Podolsky high derivatives [41], Chern-Simmons with Levi-Civita [48], 
Kalb-Rammond scalar photon-dark energy [84], [85], Wilczek axionic [86], Jackiw Lorentz symmetry violation [87], 
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Gambini-Pullin loop quantum gravity [88], Meyers-Pospelov strings [89]. However, they are not being able to replace QED, 
which have been remained as the standard theory for electromagnetism. And so, the basic discussion whether light or 
electric charge comes first? - conserves the old answer where QED introduces the photon field coupled to the electric 
charge. 

There is a concern on the foundations of electromagnetism. Under this challenge we would like to understand 
what are Eq. (1) real contributions to EM phenomena. Given such principle where nature works as a group this work has 
proposed to cross Maxwell frontier through a fourth interpretation to light invariance. Eq. (4) was entitled as a Global 
Maxwell equation, but its crucial test is about the possibilities to go beyond Maxwell. It contains a mathematical support, 
proposes a whole electromagnetism, introduces potential fields physically, new conserved charges, but up to now, it is just 
a conjecture. We still need to analyse how far it is able to surpass Maxwell limitations. Then, after sections 1-7 be 
developed, the next effort on this text shall be to understand whether it provokes just a mathematical formulation or it is 
really able to go beyond Maxwell limitations. 

A new EM scenario appears. Based on a fields set }{ IG  a branch of electromagnetic fields 
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 collective fields, and 

longitudinal observables also with collective and granular aspects. The existence of these observables is spread through 

I -fields layers, two sectors (granular and collective) and four physical regions (photonic, massive, neutral, charged). 
They build up the Global Maxwell equation containing ordinary Maxwell and new terms. Their equations modify the usual 
Coulomb, Ampère, Faraday, Lorentz laws and introduce new Bianchi identities. And we have to ask: Maxwell frontier is 
being crossed? 

Theoretically, Maxwell equations are changed and we should analyse the possibilities for these new laws. New 
charges and currents appear to be measured with an explicit dependance on potential fields. Experimentally, a main 
difficulty for any post Maxwell model is on the precisions tests of QED being related by Kinoshita table [90]. The difference 

here is that Lorentz and antireductionist gauge invariances introduce new couplings constants, as 1gG , where g  is not 

necessarily related to the fine structure constant. New parameters can be introduced as Eq. (4) shows. This crucial fact 
allows to investigate on the existence of new EM laws without being limited by QED high precisions. Physically, one 
derives an EM which contains the displacement current, light invariance, but surpass the electric charge requirement. 

We should now consider on the existence of new laws. Two facts are protecting their proposals. First, being able 
to offer an argument to answer the Kinoshita restrictions. Second, we get space for proposing new laws by noticing that 
the dates of these 19th century publications are in striking contrast with those related to the sophisticated, multi-
parametrized and cosmological detections of our current days. Initially, there is a new Coulomb law in Eq. (76) where the 
Maxwell electric field works as its own source. It introduces a non-linear Gauss law, where a first physical consequence is 
on the existence of fields not necessarily depending on electric charge and not necessarily depending on the square 
inverse law. The expression of these these granular electric fields will be depending on the number of involved fields in the 

initial set [91]. Follows that, a new Ampère law is obtained adding another displacement current depending on e


 and on 

potential fields )(GJ I


. This result brings an experimental challenge for Ampère law be tested through cluster data. 

Faraday‟s law is also generalized for induction laws depending on collective and potential fields and not depending on 
electric charge and for collective fields. There is a new EM to be understood. They leave room for an EM not more charge-
based and not restricted to EM fields. 

A first good signal on the chances of these new equations is from the comparison with the Maxwell constitutive 
equations. Experiments tell that there are constitutive relations to be derived from an initial Lagrangian. They show that 
many materials respond to an electromagnetic field by setting up globally neutral charge and current distributions. Then, 
for characterizing the charge and current distributions of material response, one has to introduce by hand the polarization 
and magnetization vectors, which are macroscopic variables. Therefore, Maxwell equations are defined through four 

vectors E


, D


, B


 and H


, where the displacement field D


 and magnetic field strength H


 are heuristically introduced. 

So, a space is left for arguing about an origin for D


 and H


 from first principles. What is the physical significance of the 

displacement D


? A step forward given by Eq. 4 is that such antireductionistic gauge invariance can define not only 

Maxwell fields, but also collective fields, and so, an analogy between the polarization and magnetization vectors ( P


 and 

M


) and the self-cooperations ( e


 and b


) is performed. Eqs. (76)-(77) are characterizing a potential field origin for P


 

and M


 vectors and a nonlinear behavior. These equations offer an ab initio reason given by ebED III


 , 

bbBH III


 . The antireductionist symmetry says that, instead of this lacking variable being considered just as a 

phenomenological response function, the polarization and magnetization vectors can be defined from initial potential 
fields. As in the Born-Infeld case, it produces an expression also valid in vacuum. 

The relevant result is that through the whole gauge principle there is an origin and a contribution at heuristic 
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constitutive phenomenology installed at Maxwell equation. However, it brings coincidences and differences. Although 

)( MP


  and )( be


  pairs coincide in some terms at Eq. (4), they differ when the theory is computed further as 

section 6 and 7 show. Which pair fits better with the first principles of field theory and light invariance? Answer appears 
through the respective Lagrangian, conservation laws and forces. For this, we should compare each pair contribution on 

fTSU ij


,,,  expressions, and so, from previous sections one notices that )( be


  pair splits more terms than 

)( MP


 . The collective fields derived from primordial potential fields introduce new energy and momentum terms, and, 

a global force where e


 and b


 are variables for changing momentum differently from the usual product of the dipole 

momentum with the first derivative of the field. They also introduce not by hand a nonlinear behavior at the Global Maxwel l 
equation. As conclusion, from first principles, Eq. (4) rewrites usual Maxwell constitutive laws and adds new terms. 

A second contribution is on the so-called massive photon. Since de Broglie (1922) and Proca (1936), a list of the 
extensions of Maxwell‟s EM with mass have been studied. The discussion of extended EM models with the appearance of 
massive photons and photinos [93], [94] become a relevant matter. In 1941 Schrödinger emphasized the link between 
photon mass and a finite range of static forces [95]. Meanwhile, there is a continuous concern on the upper limit of photon 
mass [96]. The difference here is that Eqs. (76), (77) are introducing an unification between massless photon and massive 
potential fields. It yields a model that although does not reply London‟s equations it contains implications on Meissner 
effect with contributions on powers of the magnetic fields, 

0=),,,()()(2 beBGgBBBBBBBB LKJ

IJKL

KJ

IJK

J

IJ

J

IJI


  W  where ,...IJ  are 

depending on the free coefficients and masses [97]. 

A third contribution is on non-linearity. 1912 was done the first attempt to make Maxwell‟s equations non-linear 
through Mie‟s theory [98]. Non-linear theories constitute a branch of classical and quantum field theories relevant in a 
variety of theoretical and observational, see for instance [100] and references therein. As nonlinear terms, we will identify 
those proportional to fields which have a space-time evolution. At this scenario, Eq. (4) provides self-sources, but for 
electric and magnetic fields. There are three independent contributions, where each one means a gauge invariant block in 
Eq. (4). They are  

 )()()(=)( GGGG ST

I

S

I

A

II    (166) 

 and  

 .)()()(=)( GJGJGJGJ ST
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S
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A
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
  (167) 

 

Analyzing the antisymmetric sector, one observes two independent charges  

  eEbGG K

K

J

IJ

A

I


][=)(   (168) 

 which are showing electric and composite electric fields acting as their own sources. This means fields with feedback. 
Four terms contribute to the currents  
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 which are explicitly showing a vectorial causality where the currents are proportional to any type of electric field and 
perpendicular to any type of magnetic field. Explicitly, Eqs. (168-169) are showing the presence of potential fields. 

The symmetric sources depend on kinetic and interacting terms )()(=)( GGG IS

I

KS

I

S

I

    where  
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 For currents, one derives )()(=)( GJGJGJ IS
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 with photons self-interacting currents. Observe that terms with second derivative at 
KS

I

  and 
KS

IJ 


 are converted 

to interactive terms through the kinetic identity, Eq. (23) and the symmetric Bianchi identities. 

The semi-topological contribution carries energy through the following charges and currents  
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 where one notices that, inversely, Eq. (173) shows currents proportional to magnetic fields and perpendicular to electric 
fields. There is also information in Eq. (172) on the existence of a self-magnetic field divergence term as a source. 

Non-linear laws are derived from this systemic signature. Plasma [100], condensed matter, astrophysics, are 
requiring a non-linear electrodynamics based on first principles. Originally Born-Infeld have been the heart of this 
description. Eqs. (166)-(167) are introducing that an essential product from Eq. (4) is that its observables get mathematical 
and physical existence without external sources. For better comprehension, we should take as comparison with kinks, 
domain walls, solitons, monopoles, instantons and mesons, where they can be taken as the best well-known structures to 
illustrate configurations of fields that are no longer excited by perturbing the system with external sources [101]. The 
difference here is that under this global view no topological property is necessary to support non-perturbative 
configurations in the absence of external sources. 

Another evident but necessary argument on the consistency of Eq. (4) is to analyze if source equations 

automatically will be fulfilled for all 0>t  due to the homogeneous equations, once they are satisfied by the initial data at 

0=t . To check this, we differentiate (78) and use (79). It follows indeed that 0=),( xtBI


  once if it is true at 0=t . 

Differentiating (76) and using (77) we get 0=)(G
t

E
t

II 











. 

A fourth result is a second type of Faraday law about collective laws. Eqs. (80)-(81) develops an exclusive 
Faraday law between collective fields. We should make a comparison with the usual non-abelian case, with the weak 

interaction case. Considering that the 
0Z  and 

W -particles associated to a Yang-Mills field–strength, one gets the 

following relationship  cbcb

abcaa BEAfgB
t

E






 =  where aE


 and aB


 are fields associated to a weak 

charge. However, probably the Yang-Mills law is not so much discussed because of weak interactions being related to 
microscopic effects. Nevertheless it should generate an isospin current. Then, we would say that the existence of an 
exclusive Faraday law with sources is not a missing view but depends more on interpretation than on experimental 
evidence. A fact were Eq. (80) can be supported by the YM case. 

Eq. (81) introduces monopoles not as particles but as configurations. This means that instead of searching to 
Dirac monopoles one should observe on fields set. This equation is experimentally possible. Materials with spontaneous 
polarization (piezoelectricity) or spontaneous magnetization are candidates. There is a literature supporting the detection 

of a divergenceless magnetization, gM =


 , as domain walls in ferromagnetism and of a exclusive Faraday law as in 

magnetic nuclear resonance [102]. Another situation is with spin ice [103]. Complementing, we should observe that, the 
Gauss law for the non-Abelian magnetic field might, at first glance, also suggests that magnetic monopoles come out due 

to the non linear structure. It gives 
cb

abca BAfgB


 =  where aB


 denotes a non-abelian magnetic field. Then a 

similarity between Eq. (81) and non-abelian case appears. However, this result is not true in general. Indeed ‟t Hooft and 
Polyakov showed that scalars must be present and it is their coupling to the Y-M potentials that induce, for a class of local 
symmetry groups, soliton-like solutions that carry non-trivial magnetic charge [104], [105] and, still more important, only in 
the phase of spontaneuosly broken symmetry. 
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In a special case, Eqs. (4) can be written concisely as just two equations. By introduction of a complex vector 

field    bbBiebE IIII


  in 3+1 dimensions, one confirms the similarity between the granular/collective electric and 

magnetic fields [106]:  
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 Eqs. (174) are equations that display Poincaré symmetry, conformal symmetry (with respect to space-time 
transformations preserving angles and not just lengths) and the duality rotation symmetry 
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. 

Thus, after considering new Coulomb, Ampère, Faraday, collective, duality laws, from the above results it is 
possible to evince the Maxwell modified laws. They are showing features where a new EM phenomena should be 
considered through the Lorentz symmetry and the antireductionist gauge symmetry. Both be responsible to cross Maxwell 
frontier and introduce Eq. (4) not more as a mathematical expression. It becomes candidate to be explored experimentally. 

9  DISPERSION RELATIONS 

A further topic to study is the wave-like behavior of Eq. (4). Dispersion relations can be tested through the 
behavior of light in materials [107]. We should first explore the model in terms of its most fundamental variables. The 
homogeneous equations provide the usual solutions  
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 Substituting (175) in (4), it yields  
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 Notice that the coefficients are defined in Eq. (57) and Lorentz condition was not considered. 

Describing the wave equations in terms of measurable fields, one gets  
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 where the right hand side contains interactive terms. Observe that, differently from the usual Maxwell case, Eqs. (176) 

and (177) do not coincide. Given that the variables ),( II G


  and ),,,( beBE II


 do not travel under the same equation, 

we get different causalities. This means that the different types of forces in Eq. (178) will not propagate with the same 
velocity. 

A next step is to study these wave equations by taking the plane wave solutions  
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Thus, the ensuing equation connecting w  and k  is obtained from the following N4  equations:  
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    LKJ
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IJKIKJ GnGGwniGknni 
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 (181) 

 where the coefficients such as 
(1)

IJn  are written in Eq. (4). 

A next study is to discuss the corresponding dispersion relations. Taking the particular case involving just linear 
potentials, one gets the following system  
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 where the dispersion relation matrix IJM  is  
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 (182) 

 Eq. (182) means the linear Global Maxwell equation in the momentum space and IR  and IT


 are sources associated to 

potential fields respectively. Notice that a  means a space index ( 1,2,3=a ). 

Different scenarios as dispersion from plasma [108], quantum gravity [89], spontaneous symmetry breaking of 
Lorentz invariance [109], loop quantum gravity [110] have been shown on dispersion relations beyond Maxwell. The 
wholeness principle introduces another case. The corresponding poles equation is  

     0=0

142

14

42

4 AwAwA
N

N

N

N 


   (183) 

 where MA  denotes coefficients depending on (
2k , 

2

Im , global coefficients). It yields, )(=2 kfw , with the 

corresponding group velocity 
)(2

)(
=

kf

kf
vg


. Eq. (183) is showing on the possibilities for new dispersion relations. The 

nature of the waves associated to these poles is given through a linear combination of potential fields. A relationship 
obtained from the eigenvectors in the diagonalization of Eq. (182). 

Thus it is fundamental to explore the possibilities for traveling faster than the speed of light. These will depend on 

IJM  nature. For the diagonal IJM  matrix case, under the condition  

   ,0=(1) I

IJIJ Gn 
   (184) 

 there is one-to-one correspondence between poles and potential fields  
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



  (185) 

 which implies a dispersion relation bounded by c . The corresponding residues are consistent because the IR  sign is 

irrelevant. Thus physically it becomes important to explore the non-diagonal case. Eq. (184) becomes a frontier. It says 
that the whole dynamics introduced by Eq. (1) coincides with the usual Maxwell light for the coefficients conditions  

 ,216444= IJJIIJJIJIIJ    (186) 

 or when the Eq. (59) conserved internal current is considered. On other hand, without violating any basic principle as 
Lorentz transformations or hamiltonian positivity, one gets dispersion relations greater than c . In Appendix E we explore 

such circumstances for the case 1,2=I . 
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The Michelson-Morley invariant result is preserved and expanded. Eq. (E.2) shows the relationship 
22 = wk  as 

a directive and provides circumstances for waves traveling faster than c . Notice that these velocities are corresponding to 

potential fields waves and not to observable waves. 

Returning to Eq. (43) and taking the particular plane wave and linear potential solutions, one gets  
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 (187) 

 Concluding, for the particular linear solution considered here, one gets that while 
IE


 and 

IB


 are bounded by c , 

combinations of I  and IG


 can move faster. Therefore, taking the linear approximation Eq. (182), one derives that while 

Lf


 travels bounded by c  (Eq. (187)), Mf


 can take a greater speed (Appendix E) and Ef


 with mixed effects. 

Longitudinal waves can also be derived from the kinetic identity 
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For transversality conditions, one gets the k-Global Maxwell equations  
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Thus for the particular case without source and massless we obtain the following orthogonality relationships 
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which show that such generic E-M fields are in the same plane. Defining ),(,),( eBarcbEarc II


  , one 

gets that  

 .||||=||||= eBbEand II


   (190) 

 The massive case only differs from Eq. (53) in the condition  

 .IEk


  (191) 

 Notice that these transversality conditions are basically lost when sources are included. 

10  MACROELECTROMAGNETISM 

 There is a macroelectromagnetism to be understood. Eqs. (4) are fundamental ones for they are described in 
terms of the most elementary observables of the theory. However, for a magnetometer, it can be observed not in terms of 
its microscopic variables. Depending on type of measurement, it yields that, one has also to explore cases where Eqs. (4) 
can be reinterpreted through a superposition of observables. 
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A first superposition is to define total fields },{ TT BE


. They represent the resulting field from a medium. It gives 

eEbE I

IT


= , bBbB I
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= . Then, for 1=I

I bb , Eqs. (4) can be reduced in terms of four equations:  
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 Notice that )(GA

I  and )(GJ A

I


 are written in terms of TT BE


, . At large distances, as in cosmology, these total fields 

are expected to be those which are experimentally detected. The corresponding wave equations are  
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A second case of observables superposition in Eqs. (4) means the nearest reproduction to Maxwell. Multiplying 

Eq. (54) by 1
1
I

  and Ii
1 , one rotates for  
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 which yields the corresponding vector form  
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 where 
I

I EE


1
1=  , and so on. Eq. (8) reproduces formally Maxwell equations for 0= . These equations are 

showing that Maxwell and Global Maxwell are connected through a macroscopic electromagnetism to be investigated. 

Another aspect to be included on this macroscopic view is about a collective physics. Eq. (4) is not associated 

only to individual quanta but also develop a macroscopic regime made of by composite fields e


, b


, s , s


, ijs , r , ijr . 

They are new elements for describing an fields environment, where while e


 and b


 are entities with space-time evolution, 

the others are sources of a given input. As a many body system they develop a local definition for an environment without 
quanta. Being gauge invariant they are candidates for measurement, defined similarly to usual electric and magnetic fields 
they are local fields representing excitations derived from many particles. Thus as an Eq. (4) limit, there is a macroscopic 

dynamical theory based on collective fields appear by taking IIG  = . 

11  LIGHT INVARIANCE AND LIGHT 

 The essence of this work is to understand light as the beginning. Maxwell stands EM fields being emanated from 
an electric charge. Its first two equations already show charge conservation and implicitly light invariance. Our viewpoint is 

that there is a primordial light interpretation to be grasped. A perspective supported by the expression 
2= cmE , which 

says that any matter can be converted into energy, and so, indicating that radiation is not uniquely originated from the 
electric charge, and inversely, one should ask whether matter cannot be created from ordinary photons. However, the 
main difficulty for a photon physics overture is due to Maxwell‟s equation, it localizes photons as a consequence. They are 
derived just as a Larmor electromagnetic radiation. 

Thus, we have been looking for an EM interpretation beyond electric charge. It starts by noticing that Maxwell 
introduces a passive light. In the Maxwell radiation field one gets light not as a source but as a lake transmitting EM fields. 

This can be seen through the D‟Alembertian expression ),();(=);( 3 xtJxxttGxdtdxtA




  requiring 

an external source. An active light urges for being considered. We are challenged to work out this hypothesis. Introduce a 
step forward, first with respect to the original Maxwell prescription when Gauss and Ampère wrote their equations by 
observing electronic charges and currents, and second, to the abelian gauge theory that reinterpreted this process through 
gauge symmetry. We have to look for a new EM foundation. Light is a cause or consequence? EM phenomena should 
start with electric charge or self-interacting photons? 

Light invariance is an interrogative principle, probably we cannot fully understand it, but at least one should relate 
it to the photon field. As the singular porter of this physics dogma, light should be a distinguishable particle. But just with 
Lorentz symmetry we cannot do that. Probably some symmetry is missing. We are looking for an electromagnetism not 
only based on the light metric but that one which takes the photon so singular as light invariance is. Then, after physics be 
pushed to a global approach, a next step is to differentiate the photon as a special particle between that others inserted in 
the set. 

Light should be as beginning as light invariance is. There is a missing connection between light invariance and 
light. It is still a physical challenge to pursue on such correlation. Something is hidden for understanding the photon as 
origin. In the previous sections, a whole electromagnetism was introduced obeying the light metric and associated to 
conserved charges different than electric charge, but now, we wish to stipulate light as primordial. After the performances 
given by electric charge, the constant of light velocity in vacuum and Lorentz group algebra, a further configuration 
becomes to explore a relationship between light invariance and light through the wholeness principle. Perhaps through a 
new information, as to consider Lorentz and antireductionist gauge symmetries working together one is able to distinguish 
the photon field. Enlight light. 

There is something more for the photon. Given these four interpretations, one derives a fields association based 

on a whole gauge symmetry where the )
2

1
,

2

1
(  set develops two special properties: two underlines symmetries (directive 

and circumstantial) and quanta diversity [57]. Then, the next question is over which quanta the directive symmetry will be 
manifested. Beyond that light speed is an invariant, there is another information coming through the set gauge symmetry. 

Analyzing the mass sector, Eqs. (7) and (36) show that the )
2

1
,

2

1
(  system contains as directive the presence of one 

massless quanta. This fact is crucial. It reveals that the photon field is that one to be identified as the system directive. 
Knowing that, one gets that given a potential fields set the photon field works as guideline. Let us there be light. 

There is a wholeness principle for introducing the photon as primordial. Work as source of a whole. The novelty is 

that there is an antireductionist photon. Given the fields set }{ IG , it is driven by light, where we must consider the 

photon field 1G  as origin. Nevertheless, one has to assign that this photon field is made of by vector and scalar photons. 

This means that both particles must be considered as basic. Therefore, although through the vector photon the Michelson-
Morley experiment brings a physics based in the sense of absolute, we should not discard on scalar photon meaning. For 
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physics, today, its existence is still a mystery. Our observation, is that this model naturally contains on its massless 
existence without requiring mass as in supersymmetry [111]. However, in order rewrite Maxwell as limit one has to avoid 
it, be decoupled as through Eq. (23) or Eq. (56). For nomenclature, we will call vector photon as photon. 

The introduction of the antireductionist gauge symmetry offers four possibilities for the photon to be selected in 

the fields set }{ IG . They are to understand it as the genuine gauge field, associated to two degrees of freedom 

controlled by the canonical momenta and the gauge fixing term, related to the directive symmetry and coupled to the 

Noether current. Firstly, one notices that the fields basis },{ iXD  is showing the presence of just one genuine gauge 

field inserted between another potential fields. So, although the photon was introduced together with other potential fields 
in a set, as Eq. (7) denotes, one can distinguish it between different fields transforming under a same U(1)-
antireductionistic symmetry by assuming as being that one directly connected to the gauge parameter. Consequently, Eq. 

(1) contains only one field directly associated to the gauge parameter, and so, this one, 1G , should be interpreted as the 

massless photon field. 

Secondly, one should analyze on degrees of freedom. The corresponding canonical momenta at basis },{ iXD  

is 

D

S

D

A

DD 
~

= ,where the antisymmetric contribution is 
][0=  dZA

D , the symmetric 0=S

D

  and the 

semitopological 
ji

ijD XXd 


  0)(=
~
 , are saying that dynamically the theory suppress one degree of freedom 

from D -field. Meanwhile the corresponding canonical momenta at physical basis is 

)(2= )(][
0

0)(0][0 





  zzbZZZb IIII
I

G  , which relates a 
0

I
G  expression not 

necessarily zero. Given that the number of d. f. is independent on the fields reference system [35], one expects at }{ IG  

basis to cancel 1 d. f. through the circumstantial symmetry. This can be done by taking 0=0

1
G  at physical basis 

through a convenient choice of the free parameters [112]. The second d. f. is taken from gauge fixing. Observe that, being 

the gauge fixing solution, as in the Lorentz gauge with )()(=)( 1

4 yGyxGydx 
   where )( yxG   is the 

Green‟s function of W . At this way, one gets that 1G  becomes the massless Maxwell field with two degrees of 

freedom. Notice that these 2 d. f. are taken circumstantially, while as directive the model incorporates the scalar photon. 
This is physics, a subject where any solution is valid since the basic symmetries are not violated. 

The third photon characterization comes out from the set determinism. As studied at section 3, this whole 
approach drives directive and circumstantial symmetries, then, the photon field works as that one directly associated to the 
antireductionist gauge parameter. It yields a systemic physical solution where the photon field becomes the fields set 
directive while the other potential fields are under circumstances as studied at Appendices. While the photon field 
assumes the symmetry, other fields do their services. Finally, one makes a decision where the photon field is physically 
selected as that one for coupling to the conserved charge generated by the entire fields set. From the U(1)-whole 
symmetry one derives a Noether current to be coupled to the photon. 

Therefore before the displacement current there is a correlation between light and light invariance to be explored. 
And so, by introducing an antireductionist gauge symmetry together with Lorentz invariance, one states a distinguished 
photon. Where, Eq. (8) is rewritten as  

 .)(
2

1
=)( 1w

2

1

2













GjgGGGmZZGL N

I

II   (198) 

 Eq. (198) defines a Physics of Light [113]. It relates a global photon determinism }{ IG  . It makes the photon as the 

quanta responsible for carrying the physics conducting the space-time Lorentz symmetry and the antireductionistic gauge 
symmetry. A configuration characterizing a light electromagnetism where the electric charge is not more on the origin but 
anteceded by a photon simultaneous interaction with all other fields through the Noether conserved current, 

I

I

N G
G

L
j 



 



= , and the whole coupling constant wg . 

Eq. (198) addresses to an electromagnetic behaviour where light becomes primordial. It proposes a model where 
besides light metric, it yields an antireductionist photon field. This fourth interpretation reveals that the photon can work as 
the symmetry manager and the whole maker with the following properties: singular (distinguished), selfinteracting, active, 
directive, global. Its singularity means be associated to light invariance and to the antireductionist gauge parameter; 
selfinteractivity comes from abelian non-linearity; activeness from being able to generate its own EM fields; directivity 

because it becomes compulsory for connecting I EM layers and four regimes; and, global due to its corresponding 

connectivities. At this way, the former Planck-Einstein photon turns into a globalink particle responsible for connecting the 
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pieces of the electromagnetic mosaic at Eq. (4). Conceptually, it is ubiquous, because it shall be everywhere where light 
invariance is. There is an ubiquous lux to be understood. Consequence from the correlation between light invariance and 
light from joining the Lorentz and the antireductionist gauge symmetries it generates an antireductionist messenger photon 

(singular-selfinteracting-active-directive-global). Light become a root acting everywhere through an )
2

1
,

2

1
(  physics that 

enlarges the light metric with four EM regimes entitled as photonic, massive, neutral, electric charged. Therefore, while 
light radiation is the appropriated term for electric charge, absolute for relativity, global light will be the terminology for this 
whole physics. There is an EM network physics being driven by such global photon acting as the light invariance promotor. 

It says that, the 72 N  classical equations are interdependencies coordinated through a global photon participating 

directly and indirectly in all physical processes involving the set }{ IG . 

These four non-Maxwellian regimes are the new aspects to be considered. They are meaning that light interacts 
more with matter and fields than one suspects. The first one is a photonic physics. We consider as photonic physics any 
property derived from photons. Similarly to the electron, the photon is expected to be an EM source. Evidently the 20th-
century was dominated by the electron but the expectation for this millennium is on the photonic physics. Nowadays, a 
related fact is the presence of a Photonic Engineering. However, it still needs be supported by a Photonic Physics, as 
defining from first principles a photonic current to replace the electric current. Maxwell is not able to express this fact 
mathematically, it just provokes a misunderstanding by associating the Poynting vector as a photonic current. The origin 
for this photonic world must be expected from the photon as physical agent. Given the abelian non-linearity, as Eqs. (166)-
(167) show, Eq. (198) become candidate for producing self-interacting photons, photonic current, non-linear 
electromagnetic waves, new dispersion relation, force depending on photon field. These features is that will be opening a 
view for Photonic Engineering [114] where light is more than an electromagnetic radiation. 

This photonic world should be found through astrophysics and laboratory. For astrophysics view, looking at 
Hubble telescope photographs, we have a clue that there is a subtle dynamics where light precedes electric charge. There 
is a dynamical cosmological world entirely governed by light. Interstellar gases of photons interacting without electrons 
and positrons are showing a physics beyond QED. We expect this fact to be common in the stars formation. There, self-
interacting photons may be responsible for increasing photon‟s energy. The creation of various cosmic structures as stellar 
explosions, rounded city of stars, interstellar clouds of gas are expected to be depending more on self-interacting photons 
than on gravitational effects and electronic charge. Antennae galaxies collisions (NGC 4038/4039),  -rays bursts [115]-

[116], observation of a photonic magnetoresistance, transmission bits, and so on, are yielding a photonic data [117]. The 
behavior of light in a strong magnetic field environment as magnetars [118] is another motivation, and, on a more 
speculative vein, superconducting cosmic strings [119]. For laboratory view, SLAC has demonstrated creation of matter 
out of light [120] and the PVLAS experiment on non-linearity [121]. QED should work as a boundary condition for a new 
photon physics: the electron-positron reaction offers a first range of energy, it belongs to a region where photons are 
carrying bundles of energy bellow to 1 MeV. Inelastic light-by-light scattering involving only real photons is another 
candidate for this lab determination [122]. There is a new physics which means to explore a kind of light where one can 
conjure matter from light and vice-versa. 

A second regime concerns to associate EM fields with mass. There is a mass physics to be understood. Given 
that nearly 96% of the universe is dark [123], i.e. unknown, this assumption gets another opportunity to be investigated. 
However, fundamental physics experiments often refer to gravitation or particle physics and not electromagnetism. There 
is no relation between mass and electromagnetism. Here, differently from General Relativity where mass works as fields 
source through the energy momentum tensor, its participation is through field equations, conservation laws and force. Eqs. 
(4) and (160) are showing on possibilities for fields relationships with mass. They bring a contribution for the physical 
processes different from inertia and gravity. 

A third regime is on neutral electromagnetism: in the realm of Atomic, Condensed Matter Physics, Astrophysics 
there are systems that present very strong magnetic fields, as neutron stars, without any electric charge be presented 
[124]. There is a clear Maxwell difficulty for describing neutral interactions as a neutron under an external magnetic field. 
There are different cases in the literature supporting a neutral electromagnetism. A first example is the electric dipole, 
quadrupole interactions with a globally neutral charge; a second is on neutral particles which exhibit magnetic dipole 

moment and couple to external magnetic fields BS


 , despite their vanishing electric charge; a third one the Aharonov-

Casher term E


 ; finally, on EM fields coupled with constants that are not the electric charge. The last frontier of this 

neutral electromagnetism is to detect the interaction 1gG  with a photon coupling beyond electric charge. For this, here 

one is able to introduce a gauge invariant neutral coupling as 
IA

AI Gja 
  where 

Aj  can be any conserved charge }{ Aj  

developed at section 6. Concluding, we could say that Maxwell‟s theory is not so clear in situations involving spin-
electromagnetism and completely absent when the electromagnetic fields are not coupled to electric charges. 

The fourth regime comes back to electric charge. As we know electromagnetism is an interaction based on 
electric charge as quantum number. The extension here with respect to Maxwell and QED is that it introduces new 
possibilities for the electric charge be exchanged. Consider particles reactions associated to electric charge conservation 

but beyond photon intermediation. Explore an electromagnetism that introduces charged currents with 0Q . Besides 
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Maxwell displacement current introduce a field set to support the electric charge conservation. Primarily to the usual 

electroweak intermediation },,{ 0 WZ , there is an EM manifestation with an electric charge transmission through a 

potential fields set like m ,{ massive photon, 

Y massive charged bosons}  without electric charge violation. 

These interdependent four regimes will be explored in further works. Under this expectative, Eq. (7) is proposing 
a totality of potential fields guided by photons. Different physical regions are revealed. And so, a reason for photons fields 
existence is to connect different physical processes. 

12  CONCLUSION 

 The number (31) and variety of non-Maxwellian electromagnetisms is relevant [79], [125], [126]. Since the 1920s 
with the works of de Broglie [80] that various attempts have been done, both in classical and quantum domains. They 
contain many hitherto independent lines of thought. This work selects 12 tasks beyond Maxwell. They are on polarization 
and magnetization vectors, massive photon, non-linearity, new EM fields, physical potential fields, new conserved 
charges, EM photonic, EM neutral, EM spin, EM mass, EM charged, new dispersion relation. As challenge, there is no 
model in literature providing all these features together. A fact which interrogates on existence of a new principle for the 
electromagnetism comprehension. 

Our effort on this work is that there is still a fourth interpretation of light invariance to investigate on an EM 
formulation that generalizes that of Maxwell. Our observation is that nature works as a group. This implies that a new 
relationship between the parts must be introduced. Fundamental physics relates parts through symmetry, and as 
discussed, there are two possibilities for doing that, which are through multiplets and LG irreducible representations. 
However, there is a qualitative difference between these two ways of grouping, while through multiplets usual gauge 
theory ends up at the QED reductionism, based on LG one builds up a mechanism where the EM works under an 
antireductionist order. 

Light invariance may be a strange experimental principle but we do not have another option than to follow it. It 
leads us to understand on physical laws. But, there is a contradiction, which is that its carrier, the photon, is being 
understood not as cause but as electric charge consequence. Something is missing. Everything should start with a deeper 
comprehension into the photon nature. So, after Maxwell, Relativity, Lorentz group, one introduces a fourth interpretation 
where fields are originated as Lorentz group niches, and discovers that, what is missing for a more complete 
understanding on the EM phenomena is the presence of an antireductionist photon. There is an ubiquous lux to be 
understood. It is in everywhere where light invariance is and works for associating fields located in any LG irreducible 
representation. It comes up as a consequence from two experimental symmetries. They are the photon space-time 
symmetry originated from the Michelson-Morley experiment and the antireductionist gauge symmetry from that nature 
works as a group. And so, light becomes a root that controls the fields systemic dynamics. The photon becomes a 
singular-active-directive-global messenger and its action precedes the electric charge behaviour. It appears a light 
universalism not ruled by the electric charge as coupling constant. 

Three structures are derived from this fourth interpretation to the light invariance dogma. They are a singular 
photon, Global Maxwell state equation and Global Lorentz force. They extend Maxwell and pushes the limits of our EM 
knowledge to new frontiers expressed through Eq. (198). First, being the particle that porters the presence of light 
invariance the photon should receive a special distinction. Be more than a passive radiation or just a tensor transforming 
equally to others LG associated fields. Through the antireductionistic gauge parameter there are four opportunities for 
privileging the photon in a fields set. They are to associate it as the genuine gauge field, degrees of freedom fixed from the 
gauge-fixing term, directive in a set determinism, coupled to the system conserved currents. They distinguish the photon 
and it becomes singular, as one expects from the light invariance messenger. This fact is fundamental, encountered such 
light primordial view, the fine relationship between light invariance and light is realized. Then, with a singular photon in the 
physics scenario one derives, based on the correlation between light and light invariance, a model called Physics of Light 
[113]. As follows, it derives a Global Maxwell equation with laws articulated by a global photon and new possibilities for 
exchanging momentum from relationships between fields with fields and masses through a Global Lorentz force. 

The Maxwell frontier is crossed. Considering the principles of light invariance, wholeness and gauge symmetry 
one has moved from Maxwell EM fields, QED photon field, to an Physics of Light with four regimes (electric charge, 
photonic, massive, neutral) interlaced by a global photon. The first regime nearest to Maxwell is the electric charge sector. 
It adds new possibilities for electric charge exchange. Given that electromagnetism standard definition is an interaction 
based on the electric charge quantum number conservation, there is room for the EM phenomena be extended through 
mediators beyond the photon, as massive photon, charged vector bosons. While at Maxwell-QED such exchange is just 
based on the photon intermediation, it is still possible to associate three carriers to the electric charge manifestation. They 
will provide an EM charged preserving the electric charge conservation, but beyond displacement current and photon field, 
it is possible to predict a new EM exchange through photon, massive photon, massive charged bosons. The wholeness 

principle introduces a fields set like },,{ 

 Ym . 

The second regime is the photonic. QED does not support a photon age with photonic Hall-effect, photonic 
magnetoresistance and there is a new light behaviour to be understood. It is derived from light and not depending on 
electric charge. It discovers another EM region based on selfinteracting photons, photonic charge, new dispersion relation, 
Lorentz photon force. Phenomenologically, this photonic regime with photons generating photons also brings new 
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phenomenological possibilities as photon-jets, photon-balls, frequency variations. This photonic territory sustains a 
Photonic Engineering based on a Physics of Light. For innovations, the novelty is on the possibilities to develop 
electromagnetic apparatus based on the photon new features and propose a new photonic telecommunication. The last 
two regimes are opportunities to investigate on EM phenomena through spin, mass and neutral charges. They provide 
another motivations to our understanding of the universe as largely based on EM observations. 

A new EM building arises. It designs a non-Maxwellian model, an )
2

1
,

2

1
(  EM coordinated through an 

antireductionist photon with an universality which extends the electric charge presence. Its infrastructure is based on a 
new principle (wholeness), two symmetries (Lorentz and whole gauge abelian), Lagrangian (as Eq. (198)) and 
consistencies (local, positive Hamiltonian, renormalizable, unitary), where unitarity still has to be proved. These 
foundations will be arising Maxwell plus the 12 new phenomenological floors stated before. This “12 integral building” 
associated through a photon networking will provide opportunities for the next EM technologies [127]. 

As conclusion, we should pursue on light as the next energy shape to be explored. Given the photon 
antireductionist features (singular, selfinteracting, own EM fields, directive, global), light becomes the original energy. The 

)
2

1
,

2

1
(  EM extends the meaning of light conversion, it states that, besides 

2= mcE , Larmor expression, particles-

antiparticles collisions there are other relationships matter-fields-light due to the presence of a global photon 

interconnecting different matters and fields. As consequence, all forms of energy derived from these I -layers and four 
EM regimes will be depending on light primordial manifestation. Besides oil and gas, eolian and so on, light becomes the 
next energy to be produced and converted into another ones. 
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APPENDIX A. VOLUME OF CIRCUMSTANCES 

A consequence from Eq. (1) is the appearance of the so-called free and global coefficients. They are coefficients 

that can take any value without violating gauge invariance. The constructor basis, },{ iXD , is the natural place to 

observe the free coefficients. And at physical basis, }{ IG , is where the global coefficients are identified. 

Thus one should systematize the presence of these coefficients in the model. The free coefficients are 
associated to scalar terms. There are two origins: from gauge scalars given by fields strengths, and from gauge and 

Lorentz scalars given by the Lagrangian terms. So from Eq. (5) one notices that d , i , ][ij , ..., )(ij  represent the 

gauge free coefficients. Observe that d  and i  coefficients can be absorbed through fields redefinition. At table A the 

free coefficients are listed: 

 

TABLE A 

Scalars Free Coefficient 
N

o
 of Free Coefficients 


 DD  

2d  1  

iXD 
  id2  1N  

ji XXD 
  ][2 ijd  2)/21)((  NN  

ji XX 
  ji  21)( N  

jki XXX 
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ji


   ji  21)( N  
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jig 



   ji 2  21)( N  

jki XX 
  )(2 kji  1)/2( NN  

jki XXg 

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jki XXg 
  )(2 kji  /21)( 2NN  
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  )(8 kji  /21)( 2NN  

lkji XXXX 



    )()()( 22 klijij    /21)]([ 2NN  
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ijm  
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Considering the contributions from antisymmetric, symmetric and mass sectors the number of free coefficients is 

 421)(1 3  NNN . Adding the semitopological term we have more  442
4

1 234  NNNN . Thus the 

total number of free coefficients carried by (11) Lagrangian is  8121383
4

1 234  NNNN  where just 

 433
2

1 2  NN  involves D  field. This means the volume of circumstances propitiated by this abelian global model. 

Given these initial coefficients plus the   matrix elements (which are also determined by free coefficients) one derives 

the global coefficients. They appear on the physical basis, }{ IG . 

APPENDIX B. CIRCUMSTANTIAL SYMMETRIES 

Two consequences from the circumstancial symmetry property developed by Eq. (1) global gauge model will be 
considered. They are the longitudinal decoupling and the new symmetries. Here circumstance on symmetry means to 

determine the coefficients Ib , I , I , ][ IJ , )( IJ , )( IJ  for a certain objective without breaking gauge invariance. 

However being a physical problem one has first to establish what would be the physical precription. Thus we define by 

order as the model intention to have the following characteristics: antissymetric quanta ( Ib ), fields environment ( )( IJ ), 

self-interaction photons ( )( IJ , )( IJ ), symmetric quanta ( I , I ). 

Let us start by studying the circumstances for conserved currents (c.c.). In order to avoid undesired models the 
classical prescription is conserved currents. For this every field in this global model must be associated to a corresponding 
conserved current (c.c.). Noether and Ward identities already inform on the existence of only one natural conservation law. 
In this appendice we will explore such circumstancial symmetry on conserved currents, for cases involving just two and 

three fields, 2,3=I . 

 

CASE 1: I=2. 

Let us choose 

.0. 2  J  (B.1) 

For being studied. There are two possibilities: 

1.1  Usual case ( no E  term ). 

There are 12 equations for the c.c. to be studied. Two possible solutions are 
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where Z_  is the any variable. 
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1.2  Including semi-topological term 

Analysing this sector isolatedly, the necessary and sufficient condition is 0=[12] . Considering all theory 

sectors we can choose the following possibilities: 

        (a) 0=== )()(][ IJIJIJ  (B.4) 

         (b) 0===][ IIIJ                                                                                                                (B.5) 

         (c) 0=== )()( IJIJIb                                                                                                              (B.6) 

         (d) 0=== IIIb                                                                                                                   (B.7) 

CASE 2: I=3. 

We have to study the case 0== 32 JJ                                                                                                    (B.8) 

For without/with semi-topological term three general solutions are 

1.  0=== )()(][ IJIJIJ  , exceto (11)                                                                                         (B.9) 

2.  0===== )()(32][ IJIJIJ  , exceto (11)  e (11)                                                      (B.10) 

3.  0=== IIIb                                                                                                                       (B.11) 

Concluding, one notices in cases 1 and 2 the existence of solutions where undesired model can be decoupled without the 
considered physical prescription be violated. 

As new symmetries and circumstances we understand possibilities on IJA  matrix given by Eq. (14). For 2=I , 

the conditions for a conserved charge (15) are 
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For N-conservation laws (17), we get 
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Notice that (B.12) and (B.13) are obtained for massless case. 
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Appendix C. LONGITUDINAL DECOUPLING 

We should investigate on the consequences from the relationship 0=IG
 . For charges and currents, it 

yields 

0)(  GKS

I  (C.1) 
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 For the tensor energy momentum components: 

0LU  (C.3) 
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The above equations are yielding that the condition 0=IG
  cancel the L-sector. They show that only 

physical entities associated to the symmetric interaction is different from zero. However, being an interaction without 
propagation, it does not have physical implication. 

APPENDIX D. GLOBAL LORENTZ FORCE AT },{ iXD  BASIS 

For simplicity, we are going first to derive the force expression at },{ iXD  basis. Following the procedure given 

by [78], one couples the current j  and ij  to fields D  and ij  respectively. It gives  
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 where 0L  is expressed at Eq. (2). It yields the following expression for the energy momentum tensor  
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 where ][ 0L  is the energy momentum, Eq. (105), written at },{ iXD  basis. It gives  
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Considering currents as explicitly depending on coordinates, one gets by definition [78]  
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where xpl
x

e|


L
 means a derivative acting on the sector explicitly depending on 

x . On the other hand, 

calculating 



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  from (2), one derives,  
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Comparing (4) and (5), we have  
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 where 
f  is the force density. 

Considering the Euler-Lagrange relationships:  
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 one gets,  
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Substituting in (D.3),  
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Finally, not considering the total derivative  
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Writing in terms of physical basis }{ IG ,  
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APPENDIX E. DISPERSION RELATION FOR 2=N  

Considering Eq. (36) involving two potential fields one gets the following expression for the poles in the 
corresponding dispersion relation matrix.  
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Thus we have to investigate on the possibilities for having a speed greater than c . The first two cases are 

forbidden. However Eq. (D.4) shows possibilities for the case: 
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