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 ABSTRACT 

The structure of superdeformed rotational bands (SDRB's) in A ~ 150  mass region are studied by using the 
Harris three – parameter expansion and the incremental alignment. The bandhead spins Io have been determined with 
best fit procedure in order to obtain a minimum root mean square deviation between the calculated and the experimental 
dynamical moments of inertia. 

The kinematic moment of inertia has been calculated as a function of rotational frequency and compared to the 
corresponding experimental ones by assuming three spin values Io - 2 , Io , Io + 2. The transition energies and the variation 
of the moments of inertia as a function of rotational frequency have been calculated. The agreement between theory and 
experiment are excellent.  

The identical bands of SDRB's with ΔI = 2 staggering in 
148

Gd (SD6) and 
149

Gd (SD1) are investigated. Also the 
presence of ΔI = 2 staggering effect in the yrast bands of 

147
Eu and 

150
Tb has been examined. 
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Introduction 

The study of superdeformed rotational bands (SDRB’s) is one of the most exciting areas in nuclear structure. 
More than 335 superdeformed (SD) bands were observed in various mass regions [1,2]. They are associated with 
extremely large quadrupole deformation. The difference between the SDRB's in various mass regions is manifested 
through the behavior of the moments of inertia. The exact excitation energies, spins and parities of SDRB's remain 
unknown. Spin best fit extrapolation procedures were used to predict the spins of these SD states [3-16]. It is noted that all 
the available approaches gain from the comparison of the calculated transition energies or the dynamical moments of 
inertia with the experimental results. 

One of the most interesting phenomena observed in SD bands is the identical bands (IB's)[17-19] whereby SD 
bands with very nearly identical energies were observed in different nuclei. The incremental alignment depending only on 
γ- transition energies was introduced [20-22] to compare the SD bands in neighboring nuclei. The ΔI = 2 energy 
staggering in gamma – ray transitions [23-26] is one of the few mechanisms which not predicted theoretically and up to 
now is poorly understood. This phenomenon was first observed in 

149
Gd [23], where the dynamical moment of inertia of 

the yrast SD band exhibits a small oscillation when plotted versus the rotational frequency of the nucleus. This effect is 
commonly called ΔI = 4 bifurcation because the band is consequently divided into two sequences with levels I, I+4, I+8, … 
and I+2, I+6, I+10, … differing in angular momentum by four units. Despite several theoretical attempts [16, 19, 22, 27-31] 
search for the physical origin of the staggering, there is no general agreement. Some discussions connect this effect with 
the presence of a C4 symmetry of nuclear Hamiltonian [27-29]. Other studies [30, 31] argue that the staggering could be 
related to band crossing. 

 The purpose of the present paper is to report results of the structure of SDRB's in mass region A~ 150 by using 
the three parameters Harris formula and the incremental alignment which has the important advantage that it does not 
require knowledge of the spins of the states. The paper is arranged as follows: In section 2 , we outline the concept of 
Harris parameterization for SDRB's. The properties of the incremental alignment of SD bands are discussed in section 3. 
In section 4 we review the concept of Δ I = 2 staggering. In section 5, we presented a numerical calculations and obtained 
results and discussions for five SDRB's in Eu / Gd / Tb nuclei in mass region A = 150. 

2. Outline of the Theory   

A power series expansion with improved convergence properties was first suggested by Harris [32], as an 
extension of cranked model. In the Harris formulation, the nuclear excitation energy E is given in terms of even powers of 
the angular frequencies ω. The expansion up to ω

6
 is: 

                        𝐸 =
1

2
𝛼𝜔2 +

3

4
𝛽𝜔4 +

5

6
𝛾𝜔6                                             (1) 

where the expansion coefficients α, β and γ have the dimensions, ℏ2𝑀𝑒𝑉−1 , ℏ4𝑀𝑒𝑉−3 and ℏ6𝑀𝑒𝑉−5 respectively. The 
angular frequency ω is not directly observed quantity, but is derived from the observed rotational spectrum according to 
the canonical relation 

                        ℏ𝜔 =
𝑑𝐸

𝑑𝐼 
                                                                               (2) 

with 𝐼 =   𝐼(𝐼 + 1) 
1

2  is the intermediate nuclear spin. 

The corresponding expression of dynamical moment of inertia J
(2)

 for the Harris expansion equation (1) is  

𝐽(2)

ℏ2 =   
𝑑2𝐸

𝑑𝐼 2
 

−1

=
1

ℏ

𝑑𝐼 

𝑑𝜔
=

1

𝜔

𝑑𝐸

𝑑𝜔
= 𝛼 + 3𝛽𝜔2 + 5𝛾𝜔4                         (3) 

which leads to expression for the intermediate nuclear spin I as a function of ω, by integrating equation (3) with 
respect to ω: 

ℏ𝐼 =  𝑑𝜔 𝐽 2 = 𝛼𝜔 + 𝛽𝜔3 + 𝛾𝜔5 − 𝑖𝑜                                         4  

where io is the constant of integration (aligned spin)  

The expression for the kinematic moment of inertia J
(1)

 for Harris expansion reads: 

𝐽(1)

ℏ2
=  

𝐼 

ℏ𝜔
= 𝛼 + 𝛽𝜔2 + 𝛾𝜔4                                                             (5) 

One can extract the rotational frequency, kinematic and dynamical moments of inertia by using the 
experimental interaband E2 transition energies as: 

ℏ𝜔 𝐼 =
𝐸𝛾 𝐼 + 2 → 𝐼 + 𝐸𝛾 𝐼 → 𝐼 − 2 

4
    𝑀𝑒𝑉                                       (6) 

𝐽 2  𝐼 =
4

𝐸𝛾 𝐼 + 2 → 𝐼 − 𝐸𝛾 𝐼 → 𝐼 − 2 
  ℏ2𝑀𝑒𝑉−1                                 (7)  
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𝐽 1  𝐼 =
2𝐼 − 1

𝐸𝛾 𝐼 → 𝐼 − 2 
  ℏ2𝑀𝑒𝑉−1                                                                (8) 

It is seen that, while J
(1)

 depends on the spin proposition, J
(2)

 does not. 

3. Transition Energies Based on the Incremental Alignment 

The incremental alignment Δi between two bands A and B defined as [20]: 

∆𝑖𝐴𝐵 =
∆𝐸𝛾

∆𝐸𝛾
𝑟𝑒𝑓

                                                                                                        (9) 

where ΔEγ is obtained by subtracting the transition energy in a band of interest A from the closest transition energy in the 

reference SD band B and ∆𝐸𝛾
𝑟𝑒𝑓

 is calculated as the energy difference between the two closest transitions in the SD band 

of the reference B. The reference nuclei involves either the same proton (𝜋6𝑛) or neutron (𝜈7𝑛) intruder configuration. The 
incremental alignment has the important advantage that it dose not require knowledge of the spins of the states. To 
compare directly the transition energies of SD bands in given mass region to reference band one must study the 
evaluation of Δi with rotational frequency. Δi is linked to the total alignment i through the relation  i = Δi + ΔI where ΔI is the 
difference between the angular momenta associated with the transitions. 

If the incremental alignment ΔiCD between unknown band D and reference band C has the same value of the 
incremental alignment ΔiAB of another pair A and B, that is  

∆𝑖𝐴𝐵 = 2
𝐸𝛾

𝐴 𝐼 + ∆𝐼 − 𝐸𝛾
𝐵(𝐼)

𝐸𝛾
𝐵 𝐼 + 2 − 𝐸𝛾

𝐵(𝐼)
= ∆𝑖𝐶𝐷 = 2

𝐸𝛾
𝐷 𝐼 + ∆𝐼 − 𝐸𝛾

𝐶(𝐼)

𝐸𝛾
𝐶 𝐼 + 2 − 𝐸𝛾

𝐶(𝐼)
                    (10) 

Then one can calculate the gamma transition energies of band D from the relation 

𝐸𝛾
𝐷 𝐼 = 𝐸𝛾

𝐶 𝐼 +
1

2
 𝐸𝛾

𝐶 𝐼 + 2 − 𝐸𝛾
𝐶(𝐼) ∆𝐴𝐵                                                        (11) 

4. ΔI = 2 Staggering in SDRB's 

To explore the ΔI = 2 staggering in a band, one must subtract from the difference between two consecutive transitions 

in the band ΔEγ(I)= Eγ(I+2)-Eγ(I) a smooth reference 𝛥𝐸𝛾
𝑟𝑒𝑓

(𝐼) calculated with the help of the finite difference approximation 

to the n – order derivatives of the transition energies with respect to the spin d
n
Eγ(I)/dI

n
. This smooth difference is given by  

 

(i)  The Flibotte definition 

Flibotte et al [23] described the deviation by means of a function of four consecutive transition energies which is 
denoted as the 4 point formula  

∆3𝐸𝛾 𝐼 =
1

4
 𝐸𝛾 𝐼 − 2 − 3𝐸𝛾 𝐼 + 3𝐸𝛾 𝐼 + 2 − 𝐸𝛾 𝐼 + 4                    (12) 

(ii)  The Cederwall definition 

In this case, a function of five consecutive Eγ value is used the 5-point formula [24] 

∆4𝐸𝛾 𝐼 =
1

16
 𝐸𝛾 𝐼 − 4 − 4𝐸𝛾 𝐼 − 2 + 6𝐸𝛾 𝐼 − 4𝐸𝛾 𝐼 + 2 + 𝐸𝛾 𝐼 + 4                                                                                     (13) 

where Eγ(I) is  the transition energy from a spin state with I to I-2. It is worth while to point out that Δ
'
 Eγ(I) is proportional 

to the inverse of the dynamical moment of inertia J
(2)

.  

In order to see the variation in the experimental transition energies, we subtract from the 4- point and 5- point formulae 
the calculated ones. The corresponding staggering parameters are  S

(3)
(I) and S

(4)
(I) respectively 

 

𝑆(3) 𝐼 = 4  ∆3𝐸𝛾 𝐼 −  ∆3𝐸𝛾 𝐼  
𝑐𝑎𝑙

                                                             (14) 

𝑆(4) 𝐼 = 16  ∆4𝐸𝛾 𝐼 −  ∆4𝐸𝛾 𝐼  
𝑐𝑎𝑙

                                                             (15) 

5. Numerical Calculations and Discussion 

The optimized best parameters α, β, γ of Harris expansion for our selected SDRB's have been calculated by 
using a computer simulated search program in order to minimize the common definition of the root mean square (rms) 
deviation χ, given by  



ISSN 2347-3487                                                           

 

1417 | P a g e                                                       J a n u a r y  2 1 ,  2 0 1 5  

χ =  
1

𝑁
  

𝐽𝑒𝑥𝑝
 2  𝐼𝑖 −𝐽𝑐𝑎𝑙

(2)
(𝐼𝑖)

𝐽𝑒𝑥𝑝
(2)

(𝐼𝑖)
 

2

𝑁
𝑖=1  

1
2 

                                                                 (16) 

where N is the number of experimental data points entering into the fitting procedure.  The assigned spin values of the 
bandhead are extracted from equation (4). It has been argued that at zero frequency the aligned spin io is equel to zero or 
half for our selected SDRB's. 

Using these assigned spin values Io, the kinematic J
(1)

(I) is plotted versus rotational frequency ℏ𝜔 and compared 

to the J
(1)

 value obtained from the experimental transition energies by assuming three different spins Io-2, Io, Io+2 for the 
lowest SD states. Figure (1) represent an example for 

148
Gd(SD6) at Io = 36, 38, 40, we see that the best agreement is 

obtained for bandhead spin Io= 38 which is the predicted value from the theory. From the figure one, notice that the 
absolute value of J

(1)
(I) and also the slope are sensitive to the spin assignment. Table (1) lists the calculated transition 

energies Eγ(I),  the bandhead spin Io and model parameters α, β, γ resulting from the best fitting procedure for 
148

Gd(SD1) 
and 

149
Gd(SD1). Agreement between theory and experiment are excellent (the experimental data are taken from Refs 

[1,2]). 

 

Fig. (1) The calculated kinematic moment of inertia J
(1) 

 of 
148

Gd(SD6) is plotted versus rotational frequency ℏω 
and compared to the J

(1)
 values obtained from the experimental transition energies assuming three different 

bandhead spins Io = 36, 38, 40, for lowest SD state. 

 

 

 

 

 

 

 

 

 

 

 

Theory

IO = 38

IO = 40

IO = 3684

88

92

96

100

104

0.4 0.5 0.6 0.7 0.8

J
(1

) (
 ℏ

2
M

eV
-1

) 

ℏω(MeV)

148Gd(SD6)



ISSN 2347-3487                                                           

 

1418 | P a g e                                                       J a n u a r y  2 1 ,  2 0 1 5  

Table (1) The calculated transition energies Eγ of the identical SD bands 
149

Gd(SD1) and 
148

Gd(SD6) using the 
Harris expansion and comparison with experimental data, the model parameters α, β, γ and the bandhead spin Io 
are listed in the table.  

149
Gd(SD1) 

α = 85.2090    ,   γ = -0.5726 

β = -8.6100    ,   Io = 22.5 

148
Gd(SD1) 

α = 100.9703    ,    γ = 20.8539 

β = -37.6449     ,    Io = 38 

Spin 

(ℏ) 

Eγ
cal (I) 

(KeV) 

Eγ
exp

(I) 

(KeV) 

Spin 

(ℏ) 

Eγ
cal (I) 

(KeV) 

Eγ
exp

(I) 

(KeV) 

27.5 605.118 617.8    

29.5 642.736 664.2    

31.5 693.621 711.8    

33.5 745.336 759.7    

35.5 797.781 808.1 40 804.192 802.20 

37.5 848.099 857.1 42 849.047 849.44 

39.5 903.351 906.7 44 891.697 897.40 

41.5 965.904 957.1 46 945.545 945.86 

43.5 1024.748 1008.7 48 996.198 996.08 

45.5 1084.111 1060.7 50 1055.704 1046.83 

47.5 1139.423 1113.8 52 1104.063 1099.39 

49.5 1198.870 1167.2 54 1157.809 1152.20 

51.5 1253.496 1221.8 56 1209.088 1206.26 

53.5 1307.262 1276.5 58 1258.264 1261.00 

55.5 1354.966 1332.0 60 1310.666 1216.57 

57.5 1400.888 1387.6 62 1362.652 1372.10 

59.5 1444.776 1444.2 64 1420.210 1428.55 

61.5 1481.362 1500.5 66 1490.407 1485.16 

63.5 1536.120 1557.8 68 1547.367 1542.40 

65.5 1550.705 1615.7    

67.5 1572.227 1672.1    

69.5 1663.264 1729.9    

 

Now, we will use the incremental alignment as a tool to predict the transition energies of 
147

Eu(SD1), 
147

Eu(SD5) 
and 

150
Tb(SD1). The incremental alignment ΔiAB of the SDRB's in nucleus A relative to nucleus B is calculated and used to 

predict the transition energies in nucleus D belonging to another pair CD has the same incremental alignment of ΔiAB. The 
nucleus D is an isotope or isotone to the nucleus C which involves either the same proton or neutron intruder 
configuration. In the A~ 150 mass region, there is a neutron gap at N = 85, this means that for 

148
Eu85 excited neutron 

configurations can only be created via energetically costly excitations across the gap, while for 
147

Eu84 several low energy 
neutron excitations are possible. This is analogous to the structure in the isotope 

148
Gd84 and 

149
Gd85. For proton, there is 

a gap at Z = 64, thus we expect that many of low-lying SD bands in A~ 150 nuclei will be identical to bands in the 
neighboring Z+1 Gadolinium nuclei. The positive signature (α = + 1/2) 1/2 [301] orbital is also close to Fermi surface, and it 
may generate identical bands (IB's). The intruder orbital SD band configurations of our reference nuclei B and C are: 

Eu148  𝑆𝐷1    𝜋 62    𝜈 71    

Gd148  𝑆𝐷1    𝜋 62   𝜈 71   1/2[521] −1   

Gd149  𝑆𝐷1    𝜋 62   𝜈 71 

while the SD configurations in the neigh boring nuclei are: 
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Eu147  𝑆𝐷1    𝜋 62    𝜈 70    

Eu147  𝑆𝐷5    𝜋 62   𝜈 70  𝜋  1/2  301 , 𝛼 = 1/2  −1   

Eu148  𝑆𝐷2    𝜋 62   𝜈 71 𝜋  1/2  301 , 𝛼 = 1/2  −1 

Gd148  𝑆𝐷6    𝜋 62    𝜈 71    

Tb149  𝑆𝐷1    𝜋 63   𝜈 70    

Tb150  𝑆𝐷1    𝜋 63   𝜈 71 

The calculated transition energies of 
147

Eu(SD1), 
147

Eu(SD5) and 
150

Tb(SD1) deduced from the incremental 
alignment and reference SDRB's are shown in Table (2a, 2b, 2c), these values are in good agreement with experimental 
values[1,2]. 

 The behavior of moments of inertia seems to be very useful to understand the properties of SDRB's, because of 
J

(2)
 is related to the curvature of the excitation energy as a function of spin and can be derived from the energy difference 

between two consecutive transitions in the band, therefore, J
(2) 

does not depend on the knowledge of the spin I but only on 
measured γ- ray energies. The calculated results of the dynamic J

(2) 
and kinematic J

(1)
 moments of inertia as a function of 

rotational frequency ℏ𝜔 are plotted in Figure (2) for our selected SDRB's. the general trends of the evolution of 
 
J

(2)
, shows 

considerable variation from one nucleus to another depending on the occupancy of high-N intruder orbitals. 

       Table (2a) The calculated transition energies Eγ of the band 1 in 
147

Eu using the incremental alignment Δi of 
(
148

Gd(SD6), 
149

Gd(SD1)) and the transition energies of 
148

Eu(SD1). 

148
Gd(SD1) 

Eγ(I)(KeV) 

149
Gd(SD1) 

Eγ(I)(KeV) 

148
Eu(SD1) 

Eγ(I)(KeV) 

147
Eu(SD1) 

Eγ(I)(KeV) 

147
Eu(SD1) 

Eγ
cal(I)(KeV) 

∆i 

795.8 759.7 747.7 790.6 785.141 1.4917 

846.7 808.1 797.9 842.3 837.602 1.5755 

897.9 857.1 848.3 892.3 890.414 1.6451 

950.3 906.7 899.5 946.8 943.357 1.7233 

1003.9 957.1 950.4 1001.3 998.831 1.8139 

1058.7 1008.7 1003.8 1056.3 1055.047 1.9230 

1114.2 1060.7 1057.1 1112.5 1111.102 2.0150 

1170.6 1113.8 1110.7 1169.4 1168.775 2.1273 

1227.8 1167.2 1165.5 1226.6 1226.230 2.2197 

1285.6 1221.8 1220.1 1284.2 1284.949 2.3327 

1344.0 1276.5 1275.7 1342.7 1342.834 2.4324 

1402.5 1332.0 1330.9 1401.6 1402.660 2.5357 

1461.4 1387.6 1387.5 1460.5 1460.254 2.6077 

1520.5 1444.2 1443.3 1519.3 1518.649 2.7104 

1580.5 1500.5 1498.9 1578.5 1577.363 2.7923 
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 Table (2b) The calculated transition energies Eγ of the band 5 in 
147

Eu using the incremental alignment Δi of 
(
148

Eu(SD2), 
149

Gd(SD1)) and the transition energies of 
148

Gd(SD1).  

148
Eu(SD2) 

Eγ(I)(KeV) 

149
Gd(SD1) 

Eγ(I)(KeV) 

148
Gd(SD1) 

Eγ(I)(KeV) 

147
Eu(SD5) 

Eγ(I)(KeV) 

147
Eu(SD5) 

Eγ
cal(I)(KeV) 

∆i 

844.2 808.1 795.8 835.9 833.298 1.4734 

894.8 857.1 846.7 889.0 885.614 1.5201 

946.1 906.7 897.9 940.5 938.861 1.5634 

998.1 957.1 950.3 994.7 992.887 1.5891 

1050.9 1008.7 1003.9 1048.6 1048.370 1.6230 

1104.2 1060.7 1058.7 1103.7 1104.165 1.6384 

1157.9 1113.8 1114.2 1155.4 1160.775 1.6516 

1212.4 1167.2 1170.6 1222.8 1217.950 1.6556 

1268.7 1221.8 1227.8 1276.0 1277.357 1.7148 

1322.0 1276.5 1285.6 1331.8 1333.476 1.6396 

1377.8 1332.0 1344.0 1388.3 1392.186 1.6474 

1434.0 1387.6 1402.5 1447.6 1450.783 1.6395 

1489.2 1444.2 1461.4 1506.9 1508.635 1.5985 

1544.1 1500.5 1520.5 1561.1 1566.165 1.5218 
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Fig. (2) calculated results of the dynamic moment of inertia J
(2)

 (closed circle) and kinematic moment of inertia J
(1)

 
(open circles) as a function of rotational frequency ℏ ω of the SD bands in 

147
Eu(SD1) , 

147
Eu(SD5), 

148
Gd(SD6), 

149
Gd(SD1) and 

150
Tb(Sd1). 
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 Table (2c) The calculated transition energies Eγ of the band 1 in 
150

Tb using the incremental alignment Δi of 
(
149

Tb(SD1), 
148

Gd(SD1)) and the transition energies of 
149

Gd(SD1).  

149
Tb(SD1) 

Eγ(I)(KeV) 

148
Gd(SD1) 

Eγ(I)(KeV) 

149
Gd(SD1) 

Eγ(I)(KeV) 

150
Tb(SD1) 

Eγ(I)(KeV) 

150
Tb(SD1) 

Eγ
cal(I)(KeV) 

∆i 

740.1 699.9 711.8 748.2 751.916 1.6750 

794.7 747.9 759.7 799.2 806.906 1.9540 

847.1 795.8 808.1 850.5 857.484 2.0157 

899.4 846.7 857.1 902.1 908.150 2.0585 

953.5 897.9 906.7 954.1 960.176 2.1221 

1007.2 950.3 957.1 1006.9 1011.875 2.1231 

1060.7 1003.9 1008.7 1059.6 1062.595 2.0729 

1114.2 1058.7 1060.7 1112.4 1113.800 2.0000 

1169.2 1114.2 1113.8 1165.5 1165.873 1.9503 

1224.6 1170.6 1167.2 1218.8 1218.745 1.8881 

1278.8 1227.8 1221.8 1272.3 1270.064 1.7647 

1334.4 1285.6 1276.5 1326.4 1322.875 1.6712 

1391.1 1344.0 1332.0 1380.3 1376.763 1.6102 

 

Another result of the present work is the existence of ΔI= 2 staggering in the transition energies of 
147

Eu(SD1),  
148

Gd(SD6), 
149

Gd(SD1) and 
150

Tb(SD1). Figure (3) show the calculated results of staggering parameters S
(3)

 (I) (definition 
of Flibotte [23]) and S

(4)
 (I) (definition of Cederwall [24]) as a function of rotational frequency ℏ𝜔. The numerical values of 

J
(1)

 (I), J
(2)

 (I), S
(3)

 (I) and S
(4)

 (I) are listed in Table (3a-3e). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ISSN 2347-3487                                                           

 

1423 | P a g e                                                       J a n u a r y  2 1 ,  2 0 1 5  

  

  

  

  

Fig. (3) Calculated results of staggering parameters S
(3)

(I) obtained by Flibotte definition[23](4-point formula) and 
S

(4)
(I) obtained by Cederwall definition [24] (5-point formula ) as a function of rotational frequency ℏ ω of SDRB's 

in  
147

Eu(SD1), 
148

Gd(SD6),
149

Eu(SD1) and 
150

Tb(SD1). 
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     Table (3a) Calculated dynamic J
(2)

 and kinematic J
(1)

 moments of inertia and the staggering parameters S
(3)

(I) 
obtained by Flibotte definition[23](4-point formula) and S

(4)
(I) obtained by Cederwall definition[24](5-point formula) 

for 
147

Eu(SD1). 

ℏ ω 

(MeV) 

J
(2) 

( ℏ
2
MeV

-1
) 

J
(1)

 

( ℏ
2
MeV

-1
) 

S
(3)

(I) 

( KeV) 

S
(4)

(I) 

( KeV) 

0.4056 80.871 84.061   

0.4320 75.740 83.571   

0.4584 75.552 83.107 -6.420 -13.320 

0.4855 72.105 82.683 6.900 9.187 

0.5134 71.154 82.095 -1.289 -0.686 

0.5415 71.358 81.512 -1.903 -3.882 

0.5699 69.356 81.000 2.279 3.715 

0.5987 69.619 80.426 -1.436 -2.818 

0.6277 68.121 79.919 1.382 3.980 

0.6569 69.102 79.380 -2.598 -5.873 

0.6863 66.86 78.937 3.275 7.048 

0.7157 69.451 78.422 -3.973 -6.906 

0.7447 68.499 78.068 3.133 4.115 

0.7740 68.126 77.700 -0.982  

 

   Table (3b) The Calculated dynamic J
(2)

 and kinematic J
(1)

 moments of inertia for 
147

Eu(SD5). 

ℏ ω 

(MeV) 

J
(2) 

( ℏ
2
MeV

-1
) 

J
(1)

 

( ℏ
2
MeV

-1
) 

0.4297 76.458 88.803 

0.4561 75.121 88.074 

0.4829 74.038 87.339 

0.5103 72.094 86.616 

0.5381 71.691 85.847 

0.5662 70.658 85.132 

0.5946 69.960 84.426 

0.6238 67.332 83.747 

0.6277 71.277 82.983 

0.6564 68.131 82.491 

0.7107 68.262 81.885 

0.7398 69.141 81.335 

0.7687 67.528 80.867 
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  Table (3c) The same as Table (3a) but for 
148

Gd(SD6). 

ℏ ω 

(MeV) 

J
(2) 

( ℏ
2
MeV

-1
) 

J
(1)

 

( ℏ
2
MeV

-1
) 

S
(3)

(I) 

( KeV) 

S
(4)

(I) 

( KeV) 

0.4129 84.746 98.235   

0.4367 83.224 97.756   

0.4608 81.690 97.566 13.623 29.276 

0.4855 80.144 96.240 -15.653 -28.931 

0.5107 78.606 95.362 13.278 34.554 

0.5366 77.099 93.776 -21.280 -39.374 

0.5629 75.654 93.291 18.094 27.448 

0.5897 74.304 92.415 -8.854 -11.788 

0.6169 73.091 91.804 0.934 -1.245 

0.6444 72.053 91.395 5.179 5.951 

0.6722 71.230 90.793 -2.772 -7.300 

0.7002 70.665 90.265 5.028 -2.809 

0.7284 70.402 89.423 7.827 34.213 

0.7569 70.492 87.895   

 

 Table (3d) The same as Table (3a) but for 
149

Gd(SD1). 

ℏ ω 

(MeV) 

J
(2) 

( ℏ
2
MeV

-1
) 

J
(1)

 

( ℏ
2
MeV

-1
) 

S
(3)

(I) 

( KeV) 

S
(4)

(I) 

( KeV) 

0.3440 82.112 90.239   

0.3678 81.658 89.385 -0.300  

0.3919 81.172 88.550 -2.957 2.657 

0.4163 80.653 87.743 7.061 -9.818 

0.4409 80.077 87.253 2.167 4.894 

0.4659 79.465 86.345 -11.410 13.577 

0.4914 78.789 84.894 5.028 -16.348 

0.5173 78.100 83.923 -5.270 10.298 

0.5436 77.314 83.017 8.986 -14.255 

0.5702 76.514 82.497 -9.856 18.842 

0.5972 75.639 81.743 5.061 -14.917 

0.6245 74.717 81.372 -5.902 10.963 

0.6521 73.711 81.085 4.980 -10.882 

0.6799 72.653 81.182 -1.152 6.132 

0.7079 71.542 81.376 1.032 -2.184 

0.7361 70.377 81.673 9.174 -8.142 

0.7933 69.112 82.079   

0.8219 67.833 82.024   

0.8505 66.449 83.832   
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 Table (3e) The same as Table (3a) but for 
150

Tb(SD1). 

150
Tb SD1 

ℏ ω 

(MeV) 

J
(2) 

( ℏ
2
MeV

-1
) 

J
(1)

 

( ℏ
2
MeV

-1
) 

S
(3)

(I) 

( KeV) 

S
(4)

(I) 

( KeV) 

0.3897 72.634 78.466   

0.4161 79.211 78.068   

0.4414 78.948 78.135 4.740 3.648 

0.4670 76.884 78.180 1.092 3.179 

0.4930 77.370 78.110 -1.287 -2.335 

0.5186 78.864 78.072 0.548 -1.016 

0.5440 78.117 78.110 1.264 1.081 

0.5699 76.815 78.110 0.183 0.152 

0.5961 75.654 78.053 0.031 2.383 

0.6222 77.943 77.949 -2.352 -4.997 

0.6482 75.741 77.948 2.645 2.260 

0.6749 74.228 77.860 0.385  

 

Conclusion  

The three parameters Harris formula for energy levels is proposed in this paper to parameterize the E2 transition 
γ- ray energies and the dynamical moment of inertia in five SD bands in the A = 150 mass region. The incremental 
alignment which depends on the occupation of specific single particle orbitals and not depends on the knowledge of the 
spin has been also used to predict the transition energies of SD bands of 

147
Eu and 

150
Tb. The role of occupation of high – 

j intruder orbitals in the structure of the SD bands has been investigated. Our results indicate that the N = 80 gap is 
considerable more stable than that Z = 64 gap. In all our selected SDRB's the calculated results agree with experimental 
data very well, this indicate that Harris formula and incremental alignment can describe both the yrast and the excited SD 
bands. Finally our results suggest that the identical bands 

148
Gd (SD6), 

149
Gd (SD1) and also the yrast SD bands of 

147
Eu 

and 
150

Tb exhibits ΔI = 2 staggering pattern. 
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