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ABSTRACT 

The effect of cold electron beam on electromagnetic electron cyclotron (EMEC) wave has been studied by using the 
unperturbed Lorentzian (Kappa) distribution in the magnetosphere for relativistic plasma. The dispersion relation is 
obtained by using the method of characteristic solutions and kinetic approach. An expression for the growth rate of a 
system has been calculated. It is inferred that in addition to the relativistic plasma obliquity and effect of cold electron 
beam modifies the growth rate and it also shifts the wave band significantly. The relativistic electrons by increasing the 
growth rate and widening the bandwidth may explain a wide frequency range of EMEC wave emissions in the 
magnetosphere. 
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INTODUCTION 

There is strong evidence that the high latitude ionosphere is an important source of magnetospheric ions, which is 
confirmed by the observations of the upward flowing accelerated ionospheric ions in the auroral zone, These up flowing 
accelerated ionospheric ions can be characterized as either a beam like distribution of particles or conic like distribution 
depending upon their pitch angles. 

In the last decade some authors have reported the presence of upward and downward flow of ions in the ionosphere [1-2]. 
Evidence for ion heating exists in the F-region where an intense super thermal ion beam was reported in confirmation with 
electrostatic ion-cyclotron wave observed near an auroral arc and was interpreted interms of ion heating. Moreover 
different satellite observation have confirmed the presence of energetic (keV) up streaming ion beams and electrostic 
waves in the magnetospheric plasma also. Penetration of ion beam is background plasma has been observed by various 
satellites and space probes. The ions accelerated towards the Earth’s magneto tail far away from the earth are reported to 
be of ionospheres origin. 

Theoretical studies of whistler wave excitation have generally adopted anisotropic Maxwellian distributions to describe the 
resonant population. The dispersion relation can then be evaluated in terms of the plasma dispersion function [3]. 
However, in the natural space environment of planetary magnetospheres, astrophysical plasmas and the solar wind, 
plasmas are generally observed to possess a non-Maxwellian high energy tail component [4]. The origin of the high 
energy tail is not well understood, but once generated; the high energy tail persists in the collisionless magnetospheric 
environment. A useful distribution function to model such plasmas is the generalized Lorentzian (Kappa) distribution [5-6] 

explained by a spectral index  and valid for  > 3/2. The modified dispersion function (Kappa distribution) approaches the 

plasma dispersion function (Maxwellian) in the limit as κ , although it can also be modeled by loss-cone 

distribution [7]. The modified dispersion function, Lorentzian (Kappa) distribution explains the wide spectrum range in 
comparison to bi-Maxwellian and loss-cone distribution functions. At the same time it is expected to be instrumental in 
studying micro instabilities in plasmas.  

Kappa distribution has been used to analyze and interpret spacecraft data on the Earth’s magnetospheric plasma sheet [4, 
8], the solar wind [9], Jupiter [10] and Saturn [8]. In practice it is found that many space plasmas can be modeled more 
effectively by a superposition of Kappa distributions rather than by Maxwellians. In the context of both space and 
laboratory plasmas [11], showed that the equilibrium state of the distribution function for a plasma immersed in 
superthermal radiation resembles a Lorentzian type distribution. 

In the recent past whistler mode energetic electrons interaction assuming bi-Lorentzian (Kappa) particle distribution was 
studied by Thorne and summers [12]. These authors derived the dispersion relation in the absence of AC electric field. 
These studies require the understanding of plasma properties subjected to fields of oscillating nature. In addition to 
injection of AC fields into space [13], electric field measurements at magnetospheric heights and in shock regions have 
given values of AC field along and perpendicular to Earth’s magnetic field [14-15]. The behaviour of plasma in high 
frequency parallel and perpendicular AC fields have also been studied by a large number of investigators.  

Motivated by these studies, in the present chapter, whistler mode instabilities have been analyzed for an anisotropic 

plasma having a generalized Lorentzian (Kappa) distribution function having spectral index , reducible to Maxwellian 
distribution in the limit  in the presence of parallel AC electric field by method of characteristics solution. Using 

details of particle trajectories, dispersion relation and growth rate have been derived in analytical form and are evaluated 
for plasma parameters suited to the Earth’s magnetosphere. Results have been discussed and compared with that 
obtained by earlier workers using Maxwellian distribution. It is observed that the Maxwellian and Kappa distributions differ 

substantially in the high energy tail, but the differences become less significant as  increases.  

MATHEMATICAL FORMULATION: 

A spatially homogeneous anisotropic, collisionless plasma subjected to external magnetic field 
zo eB ˆBo and an electric 

field 
xo eE ˆ t)sin(υEo has been considered to get dispersion relation. In this case, linearized Vlasov-Maxwell equations, 

obtained after neglecting higher order terms and separating the equilibrium and non-equilibrium parts, following the 
technique of Pandey et al. [16], are given as below: 
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The particle trajectories are obtained by solving equation of motion defined in equation (3) and S(r,v,t) is defined as: 
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where s denotes species and E1, B1 and fs1 are perturbed quantities and are assumed to have harmonic dependence in 
E1, B1 and fs1=exp i(k.r− ωt). The method of characteristic solution is used to determine the perturbed distribution function, 
fs1, which is obtained from Eq. (2) by 

      



0

s1 tdtt,t,,t,st,,f vr,vvr,rvr oo
      (5) 

The phase space coordinate system has been transformed from  t,vr,  to  tt, oo v,r . The particle trajectories 

which are obtained by solving eq. (3) for the given external field and wave propagation,  zx ê,0,ê ||kk  k  are: 
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and the velocities are 
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P and Pz denote momenta perpendicular and parallel to the magnetic field. Using equations (5), (6) and the Bessel 
identity and performing the time integration, following the technique and method of Pandey and Kaur [17], the perturbed  
distribution function is found after some lengthy algebraic simplifications as : 
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Due to the phase factor the solution is possible when m = n. Here 
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By using these in the Maxwell's equations we get the dielectric tensor, 
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For parallel propagating whistler mode instability, the general dispersion relation reduces to  
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The dispersion relation for relativistic case with perpendicular AC electric field for g= 0, p = 1, n = 1 is written as: 
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The unperturbed Lorentzian-Kappa distribution function is:  
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And associated parallel and perpendicular effective thermal speeds are 
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Applying the approximation in electron-cyclotron range of frequencies. In this case, ion temperature are assumed 

i||iis TTT   and assumed to be magnetized with |iγω| r  << csω while electrons are assumed to have e||e TT   

and |αk| |||| << |i.γωω| csr  for background plasma. Therefore Equation (13) becomes the following, as a sum of 

background and injected cold beam plasma:  
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  ξZ Plasma Dispersion Function 
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here the function *
1

Z  occurring in Eq. (21) is the modified plasma dispersion function defined by Summers and Thorne 

[8]. 
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  0ξIm   The power series  ξ*
κZ  is given by 
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Applying condition 
2

ci

2

pi

2

22

ω

ω
1

ω

ck
  with p=1, n=1 and q=0 we can get the growth rate and real frequency 

using 433 γXγX1K  ,

43

3

4
γXγX1

γX
K


 , 

csω

~ ||||αk
k  , 

2

o

oo||B

B

nμTK
β   

s

o
xs

m

eE
Γ   

ce

4
ω

γυ
X


   4

w

c γX1
n

n
1δ   

When EMEC waves propagate parallel to magnetic field direction, the expression of growth rate and real frequency 
becomes:   
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DISCUSSION: 

Plasma Parameters: 

To study the variation of dimensionless growth rate of electromagnetic electron-cyclotron waves consisting of kappa 

distribution function, following plasma parameters have been considered B0 = 1x10
-7

T, Eo = 4 mV/m, i||BTk =100eV, 

e||BTk =5KeV, T/T|| = 1.25, 1.5, 1.75, υ 2KHz, 3KHz, 4KHz, o.70.5,0.6,γ  and nc/nw= 10,15,20,30. According to 

this choice of plasma parameters, the discussion of the results is given as. 

Results: 

Figure 1 shows the variation of growth rate and real frequency with respect to k
~

 for various values of temperature 

anisotropy AT of background plasma and other fixed parameters as listed in figure caption. Since AT = [(T/T||)– 1], AT 

becomes 0.25, 0.50 and 0.75. For T/T||=1.25, 1.5 and 1.75, the growth rate is 0.00389, 0.0053 and 0.0062 respectively. 

The maxima changes from k
~

=0.22 to k
~

=0.23 and k
~

=0.23.As the value of AT increases, growth rate increases. In this 
graph the growth rate increases with increase of temperature anisotropy and maxima is shifted significantly towards the 
higher k values. It is clear from the figure that the temperature anisotropy is the main source of energy to drive the 
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excitation of the wave. The real frequency increases with increasing value of k
~

. This satisfied the condition of 

electromagnetic waves. In figure2 variation of dimensionless growth rate and real frequency with respect to k
~

 for various 
values of AC frequencies is shown with other fixed parameters as mentioned in figure caption. The growth rate is 0.00516, 

0.00630 and 0.00812 for  = 2 KHz, 3 KHz and 4 KHz at k
~

=0.24, k
~

=0.23 and k
~

=0.22 respectively. It is seen that 

growth rate increases with increase in AC frequency but maxima shifts to lower value of wave number. The real frequency 

increases with increasing value of k
~

. This satisfied the condition of electromagnetic waves.  Figure 3 shows the variation 

of growth rate and real frequency with k
~

 for various values of ratio of number density of cold electrons to hot electrons. 
The number density of hot background plasma is assumed variable as 5x10

6
m

-3
, 2.5x10

6
m

-3
 and 1.6x10

6
m

-3
, thus giving 

nc/nw as 10, 20 and 30 (approximately). The growth rate is 0.0051 for nc/nw =10 at k
~

=0.24, the growth rate is 0.0058 

when nc/nw =20 at k
~

=0.28 and growth rate is cωγ =0.0067 for nc/nw =30 at k
~

=0.33. This shows that as the number 

density of hot electrons decreases, that is, as the ratio of nc/nw increases from 10 to 30, growth rate increases. The 

increase in bandwidth and significant shift in k
~

valueis also seen in graph from 0.24 to 0.33 for kappa distribution index κ= 

2. The real frequency increases with increasing value of k
~

. This satisfied the condition of electromagnetic waves. Results 

can be compared with Pandey et al. [18] Lorentzian/Kappa plasma series expansion brings change in thermal velocity 
(perpendicular), affecting terms of temperature anisotropy. Temperature anisotropy being the primary source of instability 
gets further modified by Kappa distribution function, giving rise to further increase in growth rate. The theory of kappa 
distribution also explains that suprathermal electron in Kappa distribution modifies the intensity and Doppler frequency of 
electron plasma.  The inclusion of temperature anisotropy in Lorentzian (Kappa) plasma can explain the observed higher 
frequencies spectrum of whistler waves [17, 19]. Figure 4 shows the variation of growth rate and real frequency with 

respect to k
~

 for various values of relativistic factor of background plasma and other fixed parameters as listed in figure 

caption. In this graph the growth rate increases with increase of relativistic factor and maxima is fixed for k
~

 values. It is 

clear from the figure that the relativistic factor is the source of energy to drive the excitation of the wave. The real 

frequency increases with increasing value of k
~

. This satisfied the condition of electromagnetic waves. 

 

 

Fig 1.   Variation of Growth Rate and Real Frequency with respect to k
~

 for various values 

llTT  at no=4x10
4
m

-3
, 5.0 , =2Hz and other fixed plasma parameters. 
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Fig 2. Variation of Growth Rate and Real Frequency with respect to k
~

 for various values of AC     

    frequency ,at llTT =1.25, 5.0 , no=4x10
4
m

-3
 and other fixed plasma parameters. 

 

 

Fig.3. Variation of Growth Rate and Real Frequency with respect to k
~

 for various values of nc/nwat llTT =1.25, 

5.0 , no=4x10
4
m

-3
 and other fixed plasma parameters. 

 

 

      Fig 4. Variation of Growth Rate and Real Frequency with respect to k
~

 for various values of  at nc/nw=10, 

llTT =1.25, no=4x10
4
m

-3
 and other fixed plasma parameters. 
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