

Approximation of derivations on proper JCQ*-algebras

Ga Ya Kim¹, SeongSik Kim² andSoo Hwan Kim³

¹Department of Urban Engineering, Dong-eui University, Busan 614-714, Repubic of Korea kimgya@deu.ac.kr

^{2, 3}Department of Mathematics, Dong-eui University, Busan 614-714, Repubic of Korea sskim@deu.ac.kr. sh-kim@deu.ac.kr

ABSTRACT

In this paper, we prove the generalized Hyers-Ulam stability of proper JCQ^* -derivations on proper JCQ^* -triples associated to the general (m,n)-Cauchy-Jensen additive functional equation:

$$\sum_{\substack{1 \le i_1 < \dots < i_m \le n, \ 1 \le k_l \le n \\ k_l \ne i_l, \ \forall \ i \in \{1, \dots, m\}}} f\left(\frac{1}{m} \sum_{j=1}^m x_{i_j} + \sum_{l=1}^{n-m} x_{k_l}\right) = \frac{n-m+1}{n} {n \choose m} \sum_{i=1}^n f(x_i)$$

KEYWORDS

Proper JCQ^* -triples; proper JCQ^* -derivations; (m,n)-Cauchy-Jensen additive mappings; generalized Hyers-Ulam stability; contractively subadditive mappings; k-contractively subhomogeneous mappings

SUBJECT CLASSIFICATION

2010 Mathematics Subject Classification: 39B52, 39B82, 46S50, 47B48

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN PHYSICS

Vol.7, No.1

japeditor@gmail.com

www.cirjap.com

INTRODUCTION AND PRELIMINARIES

Ternary algebraic operations were considered in the 19th century by several mathematicians such as Cayley [2] who introduced the notion of cubic matrix which in turn was generalized by Kapranov, Gelfand and Zelevinskil et al. [14]. Ternary structures and their generalization, the so-called *n*-ary structures, raise certain hopes in view of their possible applications in physics. Some significant physical applications are described in [15, 16].

The study of stability problems of functional equations which had been proposed by Ulam [29], concerned the stability of group homomorphisms. The famous Ulam stability problem was partially solved by Hyers [8] for a linear functional equation in Banach spaces. Later, the results of Hyers was generalized by Rassias [26] generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy differences. This phenomenon of stability that was introduced by Rassias [26] is called the generalized Hyers-Ulam stability. Since then, the stability problems of many algebraic, differential, integral, operatorial equations have been extensively investigated [9, 12, 13]. Several mathematician have contributed works of approximate homomorphisms and their stability theory in the field of functional equations on C^* -algebras, JB^* -algebras, JCQ^* -algebras [4, 6, 10, 11, 18, 19, 21 - 24, 27, 28].

In the sequel, we use the definitions and notations of a proper CQ*-algebra as in [3].

Let A be a linear space and A_0 is a *-algebra contained in A as a subspace. A is called a *quasi* *-algebra over A_0 if the following three conditions hold:

- (i) the right and left multiplications of an element of A and an element of A_0 are defined and bilinear;
- (ii) $x_1(x_2a) = (x_1x_2)a$ and $x_1(ax_2) = (x_1a)x_2$ for all $x_1, x_2 \in A_0$, $a \in A$;
- (iii) an involution *, which extends the involution of A_0 , is defined in a linear space A with the property that $(ax)^* = x^*a^*$ for all $x \in A_0$, $a \in A$, whenever the multiplication is defined.

Many authors ([3], [4], [28]) have considered a special class of quasi *-algebras, called proper \mathbb{CQ}^* -algebra, which arise as completions of \mathbb{C}^* -algebras.

Definition 1.1. Let A be a Banach module over the C^* -algebra A_0 with involution * and C^* -norm $||\cdot||_{A_0}$ such that $A_0 \subset A$. Then (A, A_0) is called a *proper CQ*-algebra* if the following three conditions hold:

- (i) A_0 is dense in A with respect to its norm $||\cdot||$;
- (ii) $(ab)^* = b^*a^*$ for all $a, b \in A_0$, whenever the multiplication is defined;
- (iii) $||y||_{A_0} = \sup_{a \in A, ||a|| \le 1} ||ay||$ for all $y \in A_0$.

Definition 1.2. A proper CQ^* -algebra (A, A_0) , endowed with the triple product $A_0 \times A \times A_0 \ni (w_0, w, w_1) \to [w_0, w^*, w_1] \in A$ which is \mathbb{C} -linear in the outer variables, conjugate \mathbb{C} -linear in the middle variable and satisfies that $[w_0, w, w_1] \in A_0$ for all $w_0, w_1 \in A_0$ and all $w \in A$, is called a *proper CQ*-ternary algebra* and denoted by $(A, A_0, [\cdot, \cdot, \cdot])$.

Note that if (A, A_0) is a proper CQ^* -algebra and $[z, x, w] = zx^*w$ for all $x \in A$ and all $z, w \in A_0$, then $(A, A_0, [\cdot, \cdot, \cdot])$ is a proper CQ^* -ternary algebra.

Definition 1.3. A proper CQ^* -algebra (A, A_0) , endowed with Jordan triple product

$$\{z, x, w\} = \frac{zx^*w + wx^*z}{2}$$

for all $x \in A$ and all $z, w \in A_0$, is called a *proper JCQ*-triple* and denoted by $(A, A_0, \{\cdot, \cdot, \cdot\})$.

Let A be a proper CQ*-algebra with respect to the Jordan product $x \circ y = \frac{xy + yx}{2}$. Then we get the Jordan triple product

$$\{z, x, w\} = (z \circ x^*) \circ w + (w \circ x^*) \circ z - (z \circ w) \circ x^*$$

for all $x \in A$ and all $z, w \in A_0$.

Definition 1.4. Let $(A, A_0, \{\cdot, \cdot, \cdot\})$ be a proper JCQ^* -triple. A \mathbb{C} -linear mapping $\delta: A_0 \to A$ is called a *proper JCQ*-triple derivation* if

$$\delta(\{w_0, w_1, w_2\}) = \{\delta(w_0), w_1, w_2\} + \{w_0, \delta(w_1), w_2\} + \{w_0, w_1, \delta(w_2)\}$$

for all $w_0, w_1, w_2 \in A_0$.

We recall that a mapping $\rho: A \to B$ having a domain A and a codomain (B, \leq) that are both closed under addition. A mapping $\rho: A \to B$ is contractively subadditive if ther exists a constant L with 0 < L < 1 such that $\rho(x+y) \leq L(\rho(x) + \rho(y))$ for all $x, y \in A$. A mapping ρ is expansively superadditive if there exists a constant L with 0 < L < 1 such that $\rho(x+y) \geq \frac{1}{L}(\rho(x) + \rho(y))$ for all $x, y \in A$. Therefore, if a mapping ρ is contractively subadditive (l = 1) and expansively superadditive (l = -1), then ρ satisfies the properties $\rho(\lambda^{nl} x) \leq (\lambda L)^{nl} \rho(x)$, respectively.

Let $k \in \mathbb{Z}^+$ be fixed. A mapping ρ is a k-contractivelysubhomogeneous if there exists a constant L with 0 < L < 1 such that a mapping $\rho(\lambda \, x) \le \lambda^k \, L \, \rho(x)$, and ρ is an k-expansively superhomogeneous if there exists a constant L with 0 < L < 1 such that a mapping $\rho(\lambda x) \le \frac{\lambda^k}{L} \, \rho(x)$ for all $x \in A$ and $\lambda \in \mathbb{Z}^+$.

Now, we consider a mapping $f: X \to Y$ satisfying the following functional equation:

$$\sum_{\substack{1 \le i_1 < \dots < i_m \le n, \ 1 \le k_l \le n \\ k_l \ne i_l, \ \forall \ i \in \{1,\dots,m\}}} f\left(\frac{1}{m} \sum_{j=1}^m x_{i_j} + \sum_{l=1}^{n-m} x_{k_l}\right) = \frac{n-m+1}{n} \binom{n}{m} \sum_{l=1}^n f(x_l)$$
(1.1)

for all $x_1, x_2, \dots, x_n \in X$, where n, m are fixed integers with $n \ge 2$ and $n \ge m \ge 1$. In case m = 1, the functional equation (1.1) yields the Cauchy additive functional equation

$$f\left(\sum_{l=1}^{n} x_{k_l}\right) = n \sum_{i=1}^{n} f(x_i).$$

Also, in case m=n, the functional equation (1.1) yields the Jensen additive functional equation

$$f\left(\frac{1}{n}\sum_{j=1}^{n}x_{j}\right) = \frac{1}{n}\sum_{i=1}^{n}f(x_{i}).$$

Therefore, the functional equation (1,1) is a generalized form of the Cauchy-Jensen additive equation and every solution of the functional equation (1.1) may be analogously called the general (m,n)-Cauchy-Jensen additive functional equation. Recently, the generalized Hyers-Ulam stability of homomorphisms and derivations in several Banachalgebras associated to the functional equation (1.1) have investigated by [1], [7], [25].

Let X, Y be linear spaces. For each $m \in \mathbb{Z}^+$ with $1 \le m \le n$, a mapping $f: X \to Y$ satisfies the functional equation (1.1) for all $n \ge 2$ if and only if f(x) - f(0) = A(x) is Canuchy additive, where f(0) = 0 if m < n. In particular, f(n - m + 1)x = (n - m + 1)f(x) and f(mx) = m f(x) for all $x \in X$.

Throughout this paper, let A be a unital proper JCQ^* -triple, $\lambda = n - m + 1$ be a fixed positive integer with $n \ge 2$, $n \ge m \ge 1$ and $T^1 = \{\mu \in \mathbb{C} : |\mu| = 1\}$. For any mapping $f: A \to A$, we define

$$\Delta_{\mu} f(x_1, \dots, x_n) = \sum_{\substack{1 \le i_1 < \dots < i_m \le n, \ 1 \le k_l \le n \\ k_l \ne i_l \ \forall i \in \{1, \dots, m\}}} f\left(\frac{1}{m} \sum_{j=1}^m \mu x_{i_j} + \sum_{l=1}^{n-m} \mu x_{k_l}\right) - \frac{n-m+1}{n} \binom{n}{m} \sum_{i=1}^n f(\mu x_i)$$
(1.2)

for all $\mu \in T^1$ and all $x_1, \dots, x_n \in A$.

STABILITY OF PROPER JCQ*-TRIPLES DERIVATIONS

In this section, we investigate the generalized Hyers-Ulam stability results for proper *JCQ**-triple derivations associated to the functional equation (1.2) in proper *JCQ**-triples.

Theorem 2.1. Assume that there exist a contractively subadditive mapping $\varphi: A_0^n \to [0, \infty)$ and a 3-contractively subhomogeneous mapping $\psi: A_0^3 \to [0, \infty)$ with a constant L < 1 such that a mapping $f: A_0 \to A$ satisfies

$$\left\|\Delta_{\mu}f(x_{1},\cdots,x_{n})\right\|_{A} \leq \varphi(x_{1},\cdots,x_{n}),\tag{2.1}$$

$$||f(\{w_0, w_1, w_2\}) - \{f(w_0), w_1, w_2\} - \{w_0, f(w_1), w_2\} - \{w_0, w_1, f(w_2)\}||_A \le \psi(w_0, w_1, w_2)$$
(2.2)

for all $\mu \in T^1$ and all $x_1, \cdots, x_n, w_0, w_1, w_2 \in A_0$. Then there exists a unique proper JCQ^* -triples derivation $\delta \colon A_0 \to A$ such that

$$||f(x) - \delta(x)||_A \le \frac{1}{\binom{n}{m}(n-m+1)(1-L)}\varphi(x,\dots,x)$$
 (2.3)

for all $x \in A_0$

Proof.Letting $\mu = 1$ and $x_1 = \cdots = x_n = x$ in (2.1), we get

$$\left\| f(x) - \frac{1}{\lambda} f(\lambda x) \right\|_{A} \le \frac{1}{\binom{n}{m} \lambda} \varphi(x, \dots, x) \tag{2.4}$$

for all $x \in A_0$, where $\lambda = n - m + 1$. Using the induction method, we get

$$\left\| \frac{f(\lambda^{k}x)}{\lambda^{k}} - \frac{f(\lambda^{j}x)}{\lambda^{j}} \right\|_{A} = \sum_{i=k}^{j-1} \left\| \frac{f(\lambda^{i}x)}{\lambda^{i}} - \frac{f(\lambda^{i+1}x)}{\lambda^{i+1}} \right\|_{A}$$

$$\leq \frac{1}{\binom{n}{m}} \lambda \sum_{i=k}^{j-1} \frac{1}{\lambda^{i}} \varphi(\lambda^{i}x, \dots, \lambda^{i}x) \leq \frac{1}{\binom{n}{m}} \lambda \sum_{i=k}^{\infty} L^{i} \varphi(x, \dots, x)$$
(2.5)

for all $x \in A_0$ and all integers j,k with $j > k \ge 0$. Then, the sequence $\left\{\frac{f(\lambda^j x)}{\lambda^j}\right\}$ is a Cauchy sequence in A for all $x \in A_0$. Since A is complete, it converges in A. So, we can define a mapping $\delta \colon A_0 \to A$ by

$$\delta(x) = \lim_{j \to \infty} \frac{f(\lambda^j x)}{\lambda^j} \tag{2.6}$$

for all $x \in A_0$. Passing the limit $j \to \infty$ in (2.5) with k = 0, we get

$$\|f(x) - \delta(x)\|_A \le \frac{1}{\binom{n}{m}\lambda(1-L)}\varphi(x,\dots,x) = \frac{1}{\binom{n}{m}(n-m+1)(1-L)}\varphi(x,\dots,x)$$

for all $x \in A_0$. Now, we show that δ is \mathbb{C} -linear mapping. It follows from (2.1) and (2.6) that

$$\left\| \Delta_{\mu} \delta(x_1, \dots, x_n) \right\|_{A} \le \lim_{j \to \infty} \frac{1}{\lambda^{j}} \left\| \Delta_{\mu} f(\lambda^{j} x_1, \dots, \lambda^{j} x_n) \right\|_{A} \le \lim_{j \to \infty} L^{j} \varphi(x_1, \dots, x_n) = 0 \tag{2.7}$$

forall $x_1, x_2, \cdots, x_n \in A_0$. Then, letting $\mu = 1$, the mapping δ satisfies (1.1). So, $\delta : A_0 \to A$ is Cauchy additive. Also, taking $x_1 = x$ and $x_2 = \cdots = x_n = 0$ in (2.1), we get $\delta(\mu x) = \mu \delta(x)$ for all $x \in A_0$. By the same reasoning as that the proof of Theorem 2.1 of [20], the mapping $\delta : A_0 \to A$ is $\mathbb C$ -linear. Since 3-contractively subhomogeneity ψ , (2.2) and (2.6), we obtain that

$$\begin{split} \|\delta(\{w_0, w_1, w_2\}) - \{\delta(w_0), w_1, w_2\} - \{w_0, \delta(w_1), w_2\} - \{w_0, w_1, \delta(w_2)\}\|_A \\ &= \lim_{j \to \infty} \frac{1}{\lambda^{3j}} \left\| f\left(\{\lambda^j w_0, \lambda^j w_1, \lambda^j w_2^-\}\right) - \{f\left(\lambda^j w_0\right), \lambda^j w_1, \lambda^j w_2^-\} - \{\lambda^j w_0, f\left(\lambda^j w_1\right), \lambda^j w_2^-\} - \{\lambda^j w_0, \lambda^j w_1, f\left(\lambda^j w_2\right)\} \right\|_A \\ &\leq \lim_{j \to \infty} \frac{1}{\lambda^{3j}} \left. \psi\left(\lambda^j w_0, \lambda^j w_1, \lambda^j w_2\right) \leq \lim_{j \to \infty} L^j \left. \psi(w_0, w_1, w_2) = 0 \right. \end{split}$$

for all $w_0, w_1, w_2 \in A_0$. So, we have

$$\delta(\{w_0, w_1, w_2\}) = \{\delta(w_0), w_1, w_2\} + \{w_0, \delta(w_1), w_2\} + \{w_0, w_1, \delta(w_2)\}$$

for all $w_0, w_1, w_2 \in A_0$. Thus, the mapping δ is a proper JCQ^* -triples derivation on A_0 .

Finally, let $\delta': A_0 \to A$ be another proper JCQ^* -triples derivation satisfying (2.3). Then, we have

$$\begin{split} \|\delta(x) - \delta'(x)\|_A &= \frac{1}{\lambda^j} \|\delta(\lambda^j x) - \delta'(\lambda^j x)\|_A \\ &\leq \frac{1}{\lambda^j} \Big(\|\delta(\lambda^j x) - f(\lambda^j x)\|_A + \|\delta'(\lambda^j x) - f(\lambda^j x)\|_A \Big) \\ &\leq \frac{2\varphi(x, \cdots, x)L^j}{\binom{n}{n}(n-m+1)}, \end{split}$$

which tends to zero as $j \to \infty$ for all $x \in A_0$. Thus, we can conclude that $\delta(x) = \delta'(x)$ for all $x \in A_0$. This completes the proof.

Theorem 2.2. Assume that there exists an expansively superadditive mapping $\varphi: A_0^n \to [0, \infty)$ and a 3-expansively superhomogenus mapping $\psi: A_0^3 \to [0, \infty)$ with a constant L < 1 such that a mapping $f: A_0 \to A$ satisfies (2.1) and (2.2). Then there exists a unique perper JCQ^* -triples derivation $\delta: A_0 \to A$ such that

$$\|f(x) - \delta(x)\|_{A} \le \frac{L}{\binom{n}{m}(1-L)} \varphi(x, \dots, x)$$

$$\tag{2.8}$$

for all $x \in A_0$.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique \mathbb{C} -linear mapping $\delta: A_0 \to A$ such that (2.8). The mapping $\delta: A_0 \to A$ is given by

$$\delta(x) = \lim_{i \to \infty} \lambda^{i} f(\frac{x}{\lambda^{i}}) \tag{2.9}$$

for all $x \in A_0$. Since a 3-expansively superhomogeneity of ψ , (2.2) and (2.9), we get

$$\begin{split} & \|\delta(\{w_0, w_1, w_2\}) - \{\delta(w_0), w_1, w_2\} - \{w_0, \delta(w_1), w_2\} - \{w_0, w_1, \delta(w_2)\}\|_A \\ &= \lim_{j \to \infty} \lambda^{3j} \left\| f\left(\{\frac{w_0}{\lambda^j}, \frac{w_1}{\lambda^j}, \frac{w_2}{\lambda^j}\right\}\right) - \{f\left(\frac{w_0}{\lambda^j}\right), \frac{w_1}{\lambda^j}, \frac{w_2}{\lambda^j}\right\} - \{\frac{w_0}{\lambda^j}, f\left(\frac{w_1}{\lambda^j}\right), \frac{w_2}{\lambda^j}\} - \{\frac{w_0}{\lambda^j}, \frac{w_1}{\lambda^j}, f\left(\frac{w_2}{\lambda^j}\right)\}\right\|_A \\ &\leq \lim_{j \to \infty} L^j \psi(w_0, w_1, w_2) = 0 \end{split}$$

for all $w_0, w_1, w_2 \in A_0$. The rest of proof is the similar way to the proof of Theorem 2.1. This completes the proof.

Corollary 2.3. Let s, θ be nonnegative real numbers with s < 3. Suppose that a mapping $f: A_0 \to A$ satisfies

ISSN 2347-3487

$$\begin{split} \|\Delta_{1}f(x_{1},\cdots,x_{n})\|_{A} &\leq \theta, \\ \|\delta(\{w_{0},w_{1},w_{2}\}) - \{\delta(w_{0}),w_{1},w_{2}\} - \{w_{0},\delta(w_{1}),w_{2}\} - \{w_{0},w_{1},\delta(w_{2})\}\|_{A} \\ &\leq \theta\big(\|w_{0}\|_{A_{0}}^{s} + \|w_{1}\|_{A_{0}}^{s} + \|w_{2}\|_{A_{0}}^{s}\big)(2.11) \end{split}$$

for all $x_1, \dots, x_n, w_0, w_1, w_2 \in A_0$. Then there exists a unique proper proper JCQ^* -triple derivation $\delta: A_0 \to A$ such that

$$||f(x) - \delta(x)||_A \le \frac{\theta}{\binom{n}{m}(n-m)}$$
(2.12)

for all $x \in A_0$.

Corollary 2.4. Let $r,s \in \mathbb{R}$ and θ be nonnegative real numbers with $r \neq 1, s \neq 3$. Suppose that a mapping $f:A_0 \to A$ satisfies

$$\|\Delta_{\mu} f(x_1, \dots, x_n)\|_{A} \le \theta \sum_{i=1}^{n} \|x_i\|_{A_0}^r,$$
 (2.13)

$$\begin{split} \|\delta(\{w_0, w_1, w_2\}) - \{\delta(w_0), w_1, w_2\} - \{w_0, \delta(w_1), w_2\} - \{w_0, w_1, \delta(w_2)\}\|_A \\ &\leq \theta \left(\|w_0\|_{A_0}^s + \|w_1\|_{A_0}^s + \|w_2\|_{A_0}^s \right) (2.14) \end{split}$$

for all $x_1, \dots, x_n, w_0, w_1, w_2 \in A_0$. Then there exists a unique proper JCQ^* -triple derivation $\delta: A_0 \to A$ such that

$$||f(x) - \delta(x)||_{A} \le \begin{cases} \frac{n\theta ||x||_{A_{0}}^{r}}{\binom{n}{m}((n-m+1)-(n-m+1)^{r})}, & r < 1, s < 3\\ \frac{n\theta ||x||_{A_{0}}^{r}}{\binom{n}{m}((n-m+1)^{r}-(n-m+1))}, & r > 1, s > 3 \end{cases}$$

$$(2.15)$$

for all $x \in A_0$

Proof. Let $\varphi(x_1, \cdots, x_n) = \theta \sum_{i=1}^n \|x_i\|_{A_0}^r$ and $\psi(w_0, w_1, w_2) = \theta \left(\|w_0\|_{A_0}^s + \|w_1\|_{A_0}^s + \|w_2\|_{A_0}^s\right)$ for all $x_1, \cdots, x_n, w_0, w_1, w_2 \in A_0$. If we can choose $L = (m-m+1)^{r-1}$ if r < 1, s < 3 and $L = (m-m+1)^{1-r}$ if r > 1, s > 3, respectively and by applying Theorem 2.1 and 2.2, then we obtain the desired results. This completes the proof.

Corollary 2.5. Let r_i , s, θ be nonnegative real numbers with $0 \le \sum_{i=1}^n r_i < 1$ and s < 1. Suppose that a mapping $f: A_0 \to A$ satisfies

$$\|\Delta_1 f(x_1, \dots, x_n)\|_A \le \theta \prod_{i=1}^n \|x_i\|_{A_0}^r, \tag{2.16}$$

$$\begin{split} \|\delta(\{w_0, w_1, w_2\}) - \{\delta(w_0), w_1, w_2\} - \{w_0, \delta(w_1), w_2\} - \{w_0, w_1, \delta(w_2)\}\|_A \\ &\leq \theta \big(\|w_0\|_{A_0}^s \cdot \|w_1\|_{A_0}^s \cdot \|w_2\|_{A_0}^s \big) (2.17) \end{split}$$

for all $x_1, \dots, x_n, w_0, w_1, w_2 \in A_0$. Then f is a proper JCQ^* -triple derivation A_0 .

Proof. Putting $x_1 = \cdots = x_n = 0$ in (2.16), we obtain f(0) = 0. Replacing $\mu = 1$ and $x_1 = x$, $x_2 = \cdots = x_n = 0$ in (2.16), we get $f(x) = \frac{f((n-m+1)x)}{(n-m+1)}$. By induction, we get

$$f(x) = \frac{f((n-m+1)^{j}x)}{(n-m+1)^{j}}$$

 $f(x) = \frac{f((n-m+1)^j x)}{(n-m+1)^j}$ for all $x \in A_0$ and all $j \in \mathbb{Z}^+$. It follows from Theorem 2.1 that f is a proper JCQ^* -triple derivation A_0 . This completes the proof.

Corollary 2.6. Let r, r_i, s, θ be nonnegative real numbers with $r < 1, 0 \le \sum_{i=1}^n r_i < 1$ and s < 1. If a mapping $f: A_0 \to A$ satisfies

$$\begin{split} \|\Delta_{1}f(x_{1},\cdots,x_{n})\|_{A} &\leq \theta \left[\sum_{i=1}^{n} \|x_{i}\|_{A_{0}}^{r} + \prod_{i=1}^{n} \|x_{i}\|_{A_{0}}^{r} \right] \\ \|\delta(\{w_{0},w_{1},w_{2}\}) - \{\delta(w_{0}),w_{1},w_{2}\} - \{w_{0},\delta(w_{1}),w_{2}\} - \{w_{0},w_{1},\delta(w_{2})\}\|_{A} \\ &\leq \theta \left(\|w_{0}\|_{A_{0}}^{3s} + \|w_{1}\|_{A_{0}}^{3s} + \|w_{2}\|_{A_{0}}^{3s} + \|w_{0}\|_{A_{0}}^{s} \cdot \|w_{1}\|_{A_{0}}^{s} \cdot \|w_{2}\|_{A_{0}}^{s} \right) (2.19) \end{split}$$

for all $x_1, \dots, x_n, w_0, w_1, w_2 \in A_0$, then there exists a unique a proper JCQ^* -triple derivation $\delta: A_0 \to A$ such that

$$||f(x) - \delta(x)||_A \le \frac{n\theta ||x||_{A_0}^r}{\binom{n}{m} \left((n - m + 1) - (n - m + 1)^r \right)}$$
(2.20)

for all $x \in A_0$.

ACKNOWLEDGMENTS

The authors are greateful to the editors and the reviewers for their valuable commonets and suggestions. The first author was supported by Dong-eui University (2014AA482).

REFERENCES

- [1]Gh. Asgri, Y.J. Cho, Y.W. Lee and M.E. Gordji, Fixed points and stability of functional equations in fuzzy ternary Banach algebras, J. Inequal. Appl. **2013**, 2013:166.
- [2] A. Cayley, On the 34 concomitants of the ternary cubic, Am. J. Math. 4 (1881), 1-15.
- [3] F. Bagarello, A. Inoue, C. Trapani, *-Derivations of quasi-*-algebras, Int. J. Math. Sci. 21 (2004),1077-1096.
- [4] F. Bagarello, C. Trapani and S. Triolo, Quasil-*-algebras of measure operators, Studia Math. 172 (2006), 289-305.
- [5] P. $G\tilde{\alpha}$ vruta, A generalization of the Hyers-Uiam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
- [6] M.E. Gordji, A. Ebadian, N. Ghobadipour, J. M. Rassias and M.B. Savadkouhi, Approximately ternary homomorphisms and derivations on C*-ternary algebras, Abs. Appl. Anal. 2012, Article ID 984160, 10pp.
- [7] F. Hassani, A. Ebadian, M.E. Gordji and H. Kenary, Nearly n-homomorphisms and n-derivations in Fuzzy ternary Banach algebras, J. Inequal. Appl. **2013**, 2013;71.
- [8] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), 222-224.
- [9] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
- [10] J.R. Lee and D.Y. Shin, Homomorphisms in proper Lie CQ*-algebras, J. Korean Math. Soc. 19 (2011), 87-99.
- [11] J.R. Lee, C. Park and D.Y. Shin, Stability of an additive functional inequality in proper CQ*-algebras, Bull. Korean Math. Soc. 48 (2011), 853-871.
- [12] Y. Li and Y. Shen, Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett. 23 (2010), 306-309.
- [13] N. Lungu and C. Craciun, Ulam-Hyers-Rassias stability of a hyperbolic partial differential equation, ISRN Math.Anal. 2012 (2012), Article ID 609754, 10pp.
- [14] M. Kapranov, IM. Gelfand and A. Zelevinskil, Discriminants, Resultants and Multidimensional Determinants.BirkhauserBerilin (1994).
- [15] R. Kerner, Ternary algebraic structures and their applications in physics, Pierre et Marie Curie University, Paris (2000).
- [16] R. Kerner, The cubic chessboard: geometry and physis, Class Quantum Gravity 14 (1977), A203-A225.
- [17] S.S. Kim, J.M. Rassias, Y.J. Cho and S.H. Kim, Generalized Hyers-Ulam stability of derivations on Lie C*-algebras, J. Adv. Phys. 3 (2013), 176-185.
- [18] A. Najati and A. Ranjbari, Stability of homomorphisms for a 3D Cauchy-Jensen type functional equation on C*-ternary algebras, J. Math.Anal. Appl. 341 (2008), 62-79.
- [19] C. Park, Homomorphisms between Lie JC*-algebras and Cauchy-Rassias stability of Lie JC*-algebra derivations, J. Lie Theory 15 (2005), 393-414.
- [20] C. Park, Homomorphisms between Poisson JC*-algebra, Bull. Brazil. Math. Soc. 36 (2005), 79-97.
- [21] C. Park, Proper CQ*-ternary algebras, J. Nonlinear Sci. Appl. 7 (2014), 278-287.
- [22] C. Park and Th.M. Rassias, Homomorphisms and derivations in proper JCQ*-triple, J. Math. Anal. Appl. 337 (2008), 1404-1414.
- [23] C. Park, G.Z. Eskandan, H. Vaezi and D.Y. Shin, Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras, J. Inequal. Appl. **2012**:2012:114.
- [24] J.M. Rassias and H.M. Kim, Approximate hommomorphisms and derivations between C*-ternary algebras, J. Math. Phys. 49 (2008), 063507.
- [25] J.M. Rassias, K.W. Jun and H.M. Kim, Approximate (*m,n*)-Cauchy-Jensen additive mappings In C*-algebras, Acta Math. Sinica, 27 (2011), 1907-1922.
- [26] Th. M. Rassias, On the stability of the linear mapping in Bannch spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [27] R. Saadati, Gh. Sadeghi and Th.M. Rassias, Approximate generalized additive mappings in proper multi-CQ*-algebras, Filomat 28:4 (2014), 677-694.
- [28] C. Trapani, Quasi-*-algebras of operators and their applications, Rev. Math. Phys. 7 (1995), 1303-1332.
- [29] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley & Sons, New York, USA, 1940.