Approximation of derivations on properJCQ*-algebras

Ga Ya Kim ${ }^{1}$,SeongSik Kim ${ }^{2}$ andSoo Hwan Kim 3
${ }^{1}$ Department of Urban Engineering, Dong-eui University, Busan 614-714, Repubic of Korea kimgya@deu.ac.kr
${ }^{2,3}$ Department of Mathematics, Dong-eui University, Busan 614-714, Repubic of Korea sskim@deu.ac.kr, sh-kim@deu.ac.kr

ABSTRACT

In this paper, we prove the generalized Hyers-Ulam stability of proper $J C Q^{*}$-derivations on proper $J C Q^{*}$-triples associated to the general (m, n)-Cauchy-Jensen additive functional equation:

$$
\sum_{\substack{1 \leq i_{1}<\cdots<i_{m} \leq n, 1 \leq k_{l} \leq n \\ k_{l} \neq i_{j}, \forall j \in\{1, \cdots, m\}}} f\left(\frac{1}{m} \sum_{j=1}^{m} x_{i_{j}}+\sum_{l=1}^{n-m} x_{k_{l}}\right)=\frac{n-m+1}{n}\binom{n}{m} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

KEYWORDS

Proper $J C Q^{*}$-triples; properJCQ*-derivations; (m,n)-Cauchy-Jensen additive mappings; generalized Hyers-Ulam stability; contractivelysubadditive mappings; k-contractiuelysubhomogeneous mappings

SUBJECT CLASSIFICATION

2010 Mathematics Subject Classification: 39B52, 39B82, 46S50, 47B48

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN PHYSICS

Vol.7, No. 1
japeditor@gmail.com

INTRODUCTION AND PRELIMINARIES

Ternary algebraic operations were considered in the $19^{\text {th }}$ century by several mathematicians such as Cayley [2] who introduced the notion of cubic matrix which in turn was generaliaed by Kapranov, Gelfand and Zelevinskil et al. [14]. Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes in view of their possible applications in physics. Some significant physical applications are described in [15, 16].
The study of stability problems of functional equations which had been proposed by Ulam [29], concerned the stability of group homomorphisms. The famous Ulam stability problem was partially solved by Hyers [8] for a linear functional equation in Banach spaces. Later, the results of Hyers was generalized by Rassias [26] generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy differences. This phenomenon of stability that was introduced by Rassias [26] is called the generalized Hyers-Ulam stability. Since then, the stability problems of many algebraic, differential, integral, operatorial equations have been extensively investigated [9, 12, 13]. Several mathematician have contributed works of approximate homomorphisms and their stability theory in the field of functional equations on C^{*} algebras, $J B^{*}$-algebras, $C Q^{*}$-algebras, $J C Q^{*}$-algebras [4, 6, 10, 11, 18, 19, $21-24,27,28$].
In the sequel, we use the definitions and notations of a proper $C Q^{*}$-algebra as in [3].
Let A be a linear space and A_{0} is a $*$-algebra contained in A as a subspace. Ais called a quasi $*$-algebra over A_{0} if the following three conditions hold:
(i)the right and left multiplications of an element of A and an element of A_{0} are defined and bilinear;
(ii) $x_{1}\left(x_{2} a\right)=\left(x_{1} x_{2}\right)$ and $x_{1}\left(a x_{2}\right)=\left(x_{1} a\right) x_{2}$ for all $x_{1}, x_{2} \in A_{0}, a \in A$;
(iii) an involution $*$, which extends the involution of A_{0}, is defined in a linear space A with the property that $(a x)^{*}=x^{*} a^{*}$ for all $x \in A_{0}, a \in A$, whenever the multiplication is defined.
Many authors ([3], [4], [28]) have considered a special class of quasi *-algebras, called proper $C Q^{*}$-algebra, which arise as completions of C^{*}--algebras.
Definition 1.1. Let A be a Banach module over the C^{*}-algebra A_{0} with involution $*$ and C^{*}-norm $\|\cdot\|_{A_{0}}$ such that $A_{0} \subset A$. Then $\left(A, A_{0}\right)$ is called a proper $C Q^{*}$-algebra if the following three conditions hold:
(i) A_{0} is dense in A with respect to its norm $\|\cdot\|$;
(ii) $(\mathrm{ab})^{*}=b^{*} a^{*}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{A}_{0}$, whenever the multiplication is defined;
(iii) $\|y\|_{A_{0}}=\sup _{a \in A,\|a\| \leq 1}\|a y\|$ for all $y \in A_{0}$.

Definition 1.2. A proper $C Q^{*}$-algebra $\left(A, A_{0}\right)$, endowed with the triple product $A_{0} \times A \times A_{0} \ni\left(w_{0}, w, w_{1}\right) \rightarrow\left[w_{0}, w^{*}, w_{1}\right] \in$ A which is \mathbb{C}-linear in the outer variables, conjugate \mathbb{C}-linerar in the middle variable and satisfies that $\left[w_{0}, w, w_{1}\right] \in A_{0}$ for all $\mathrm{w}_{0}, w_{1} \in A_{0}$ and all $w \in A$, is called a proper $C Q^{*}$-ternary algebra and denoted by $\left(A, A_{0},[\because, \cdot]\right)$.
Note that if $\left(A, A_{0}\right)$ is a proper $C Q^{*}$-algebra and $[z, x, w]=z x^{*} w$ for all $x \in A$ and all $z, w \in A_{0}$, then $\left(A, A_{0},[\because, \cdot]\right)$ is a proper $C Q^{*}$-ternary algebra.
Definition 1.3. A proper $C Q^{*}$-algebra (A, A_{0}), endowed with Jordan triple product

$$
\{z, x, w\}=\frac{z x^{*} w+w x^{*} z}{2}
$$

for all $x \in A$ and all $z, w \in A_{0}$, is called a proper JCQ*-triple and denoted by $\left(A, A_{0},\{\because \cdot ;\}\right)$.
Let A be a proper $C Q^{*}$-algebra with respect to the Jordan product $x \circ y=\frac{x y+y x}{2}$. Then we get the Jordan triple product

$$
\{z, x, w\}=\left(z \circ x^{*}\right) \circ w+\left(w \circ x^{*}\right) \circ z-(z \circ w) \circ x^{*}
$$

for all $x \in A$ and all $z, w \in A_{0}$.
Deflnition 1.4. Let $\left(A, A_{0},\{\because, \cdot ;\}\right)$ be a proper $J C Q^{*}$-triple. A \mathbb{C}-linear mapping $\delta: A_{0} \rightarrow A$ is called a proper JCQ*-triple derivation if for all $w_{0}, w_{1}, w_{2} \in A_{0}$.
We recall that a mapping $\rho: A \rightarrow B$ having a domain A and a codomain (B, \leq) that are both closed under addition. A mapping $\rho: A \rightarrow B$ is contractivelysubadditive if ther exists a constant L with $0<L<1$ such that $\rho(x+y) \leq L(\rho(x)+\rho(y))$ for all $x, y \in A$. A mapping ρ is expansively superadditiveif there exists a constant L with $0<L<1$ such that $\rho(x+y) \geq$ $\frac{1}{L}(\rho(x)+\rho(y))$ for all $x, y \in A$. Therefore, if a mapping ρ is contractively subadditive $(l=1)$ and expansively superadditive $(l=-1)$, then ρ satisfies the properties $\rho\left(\lambda^{n l} x\right) \leq(\lambda L)^{n l} \rho(x)$, respectively.
Let $k \in \mathbb{Z}^{+}$be fixed. A mapping ρ is a k-contractiuelysubhomogeneous if there exists a constant L with $0<L<1$ such that a mapping $\rho(\lambda x) \leq \lambda^{k} L \rho(x)$, and ρ is an k-expansively superhomogeneous if there exists a constant L with $0<L<$ 1 such that a mapping $\rho(\lambda x) \leq \frac{\lambda^{k}}{L} \rho(x)$ for all $x \in A$ and $\lambda \in \mathbb{Z}^{+}$.

Now, we consider a mapping $f: X \rightarrow Y$ satisfying the following functional equation:

$$
\begin{equation*}
\sum_{\substack{1 \leq i_{1}<\cdots<i_{m} \leq n, 1 \leq k_{l} \leq n \\ k_{l} \neq i_{j}, \forall j \in\{1, \cdots, m\}}} f\left(\frac{1}{m} \sum_{j=1}^{m} x_{i_{j}}+\sum_{l=1}^{n-m} x_{k_{l}}\right)=\frac{n-m+1}{n}\binom{n}{m} \sum_{i=1}^{n} f\left(x_{i}\right) \tag{1.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{n} \in X$, where n, m are fixed integers with $n \geq 2$ and $n \geq m \geq 1$. In case $m=1$, the functional equation (1.1) yields the Cauchy additive functional equation

$$
f\left(\sum_{l=1}^{n} x_{k_{l}}\right)=n \sum_{i=1}^{n} f\left(x_{i}\right) .
$$

Also, in case $m=n$, the functional equation (1.1) yields the Jensen additive functional equation

$$
f\left(\frac{1}{n} \sum_{j=1}^{n} x_{j}\right)=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

Therefore, the functional equation $(1,1)$ is a generalized form of the Cauchy-Jensen additive equation and every solution of the functional equation (1.1) may be analogously called the general (m, n)-Cauchy-Jensen additive functional equation. Recently, the generalized Hyers-Ulam stability of homomorphisms and derivations in several Banachalgebras associated to the functional equation (1.1) have investigated by[1],[7],[17],[25].
Let X, Y be linear spaces. For each $m \in \mathbb{Z}^{+}$with $1 \leq m \leq n$, a mapping $f: X \rightarrow Y$ satisfies the functional equation (1.1) for all $n \geq 2$ if and only if $f(x)-f(0)=A(x)$ is Canuchy additive, where $f(0)=0$ if $m<n$. In particular, $f(n-m+1) x)=$ $(n-m+1) f(x)$ and $f(m x)=m f(x)$ for all $x \in X$.

Throughout this paper, let A be a unital proper $J C Q^{*}$-triple, $\lambda=n-m+1$ be a fixed positive integer with $n \geq 2, n \geq m \geq$ 1 and $T^{1}=\{\mu \in \mathbb{C}:|\mu|=1\}$. For any mapping $f: A \rightarrow A$, we define

$$
\begin{equation*}
\Delta_{\mu} f\left(x_{1}, \cdots, x_{n}\right)=\sum_{\substack{1 \leq i_{1}<\cdots<i_{m} \leq n, 1 \leq k_{l} \leq n \\ k_{l} \neq i_{j}, \forall j \in\{1, \cdots, m\}}} f\left(\frac{1}{m} \sum_{j=1}^{m} \mu x_{i_{j}}+\sum_{l=1}^{n-m} \mu x_{k_{l}}\right)-\frac{n-m+1}{n}\binom{n}{m} \sum_{i=1}^{n} f\left(\mu x_{i}\right) \tag{1.2}
\end{equation*}
$$

for all $\mu \in T^{1}$ and all $x_{1}, \cdots, x_{n} \in A$.

STABILITY OF PROPER JCQ*-TRIPLES DERIVATIONS

In this section, we investigate the generalized Hyers-Ulam stability results for proper $J C Q^{*}$-triple derivations associated to the functional equation (1.2) in proper $J C Q^{*}$-triples.
Theorem 2.1. Assume that there exist a contractively subadditive mapping $\varphi: A_{0}^{n} \rightarrow[0, \infty)$ and a 3-contractively subhomogeneous mapping $\psi: A_{0}^{3} \rightarrow[0, \infty)$ with a constant $L<1$ such that a mapping $f: A_{0} \rightarrow A$ satisfies

$$
\begin{align*}
& \left\|\Delta_{\mu} f\left(x_{1}, \cdots, x_{n}\right)\right\|_{A} \leq \varphi\left(x_{1}, \cdots, x_{n}\right), \tag{2.1}\\
& \left\|f\left(\left\{w_{0}, w_{1}, w_{2}\right\}\right)-\left\{f\left(w_{0}\right), w_{1}, w_{2}\right\}-\left\{w_{0}, f\left(w_{1}\right), w_{2}\right\}-\left\{w_{0}, w_{1}, f\left(w_{2}\right)\right\}\right\|_{A} \leq \psi\left(w_{0}, w_{1}, w_{2}\right) \tag{2.2}
\end{align*}
$$

for all $\mu \in T^{1}$ and all $x_{1}, \cdots, x_{n}, w_{0}, w_{1}, w_{2} \in A_{0}$. Then there exists a unique proper $J C Q^{*}$-triples derivation $\delta: A_{0} \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leq \frac{1}{\binom{n}{m}(n-m+1)(1-L)} \varphi(x, \cdots, x) \tag{2.3}
\end{equation*}
$$

for all $x \in A_{0}$.
Proof.Letting $\mu=1$ and $x_{1}=\cdots=x_{n}=x$ in (2.1), we get

$$
\begin{equation*}
\left\|f(x)-\frac{1}{\lambda} f(\lambda x)\right\|_{A} \leq \frac{1}{\binom{n}{m} \lambda} \varphi(x, \cdots, x) \tag{2.4}
\end{equation*}
$$

for all $x \in A_{0}$, where $\lambda=n-m+1$. Using the induction method, we get

$$
\begin{align*}
& \left\|\frac{f\left(\lambda^{k} x\right)}{\lambda^{k}}-\frac{f\left(\lambda^{j} x\right)}{\lambda^{j}}\right\|_{A}=\sum_{i=k}^{j-1}\left\|\frac{f\left(\lambda^{i} x\right)}{\lambda^{i}}-\frac{f\left(\lambda^{i+1} x\right)}{\lambda^{i+1}}\right\|_{A} \\
& \quad \leq \frac{1}{\binom{n}{\mathrm{~m}}} \sum_{i=k}^{j-1} \frac{1}{\lambda^{i}} \varphi\left(\lambda^{i} x, \cdots, \lambda^{i} x\right) \leq \frac{1}{\binom{n}{\mathrm{~m}}} \sum_{i=k}^{\infty} L^{i} \varphi(x, \cdots, x) \tag{2.5}
\end{align*}
$$

for all $x \in A_{0}$ and all integers j, k with $j>k \geq 0$. Then, the sequence $\left\{\frac{f\left(\lambda^{j} x\right)}{\lambda^{j}}\right\}$ is a Cauchy sequence in A for all $x \in A_{0}$. Since A is complete, it converges in A. So, we can define a mapping $\delta: A_{0} \rightarrow A$ by

$$
\begin{equation*}
\delta(x)=\lim _{j \rightarrow \infty} \frac{f\left(\lambda^{j} x\right)}{\lambda^{j}} \tag{2.6}
\end{equation*}
$$

for all $x \in A_{0}$. Passing the limit $j \rightarrow \infty$ in (2.5) with $k=0$, we get

$$
\|f(x)-\delta(x)\|_{A} \leq \frac{1}{\binom{n}{m} \lambda(1-L)} \varphi(x, \cdots, x)=\frac{1}{\binom{n}{m}(n-m+1)(1-L)} \varphi(x, \cdots, x)
$$

for all $x \in A_{0}$. Now, we show that δ is \mathbb{C}-linear mapping. It follows from (2.1) and (2.6) that

$$
\begin{equation*}
\left\|\Delta_{\mu} \delta\left(x_{1}, \cdots, x_{n}\right)\right\|_{A} \leq \lim _{j \rightarrow \infty} \frac{1}{\lambda^{j}}\left\|\Delta_{\mu} f\left(\lambda^{j} x_{1}, \cdots, \lambda^{j} x_{n}\right)\right\|_{A} \leq \lim _{j \rightarrow \infty} L^{j} \varphi\left(x_{1}, \cdots, x_{n}\right)=0 \tag{2.7}
\end{equation*}
$$

forall $x_{1}, x_{2}, \cdots, x_{n} \in A_{0}$. Then, letting $\mu=1$, the mapping δ satisfies (1.1). So, $\delta: A_{0} \rightarrow A$ is Cauchy additive. Also, taking $x_{1}=x$ and $x_{2}=\cdots=x_{n}=0$ in (2.1), we get $\delta(\mu x)=\mu \delta(x)$ for all $x \in A_{0}$. By the same reasoning as that the proof of Theorem 2.1 of [20], the mapping $\delta: A_{0} \rightarrow A$ is \mathbb{C}-linear. Since 3 -contractively subhomogeneityof ψ, (2.2) and (2.6), we obtain that

$$
\begin{aligned}
& \left\|\delta\left(\left\{w_{0}, w_{1}, w_{2}\right\}\right)-\left\{\delta\left(w_{0}\right), w_{1}, w_{2}\right\}-\left\{w_{0}, \delta\left(w_{1}\right), w_{2}\right\}-\left\{w_{0}, w_{1}, \delta\left(w_{2}\right)\right\}\right\|_{A} \\
& =\lim _{j \rightarrow \infty} \frac{1}{\lambda^{3 j}}\left\|f\left(\left\{\lambda^{j} w_{0}, \lambda^{j} w_{1}, \lambda^{j} w_{2}\right\}\right)-\left\{f\left(\lambda^{j} w_{0}\right), \lambda^{j} w_{1}, \lambda^{j} w_{2}\right\}-\left\{\lambda^{j} w_{0}, f\left(\lambda^{j} w_{1}\right), \lambda^{j} w_{2}\right\}-\left\{\lambda^{j} w_{0}, \lambda^{j} w_{1}, f\left(\lambda^{j} w_{2}\right)\right\}\right\|_{A} \\
& \leq \lim _{j \rightarrow \infty} \frac{1}{\lambda^{3 j}} \psi\left(\lambda^{j} w_{0}, \lambda^{j} w_{1}, \lambda^{j} w_{2}\right) \leq \lim _{j \rightarrow \infty} L^{j} \psi\left(w_{0}, w_{1}, w_{2}\right)=0
\end{aligned}
$$

for all $w_{0}, w_{1}, w_{2} \in A_{0}$. So, we have

$$
\delta\left(\left\{w_{0}, w_{1}, w_{2}\right\}\right)=\left\{\delta\left(w_{0}\right), w_{1}, w_{2}\right\}+\left\{w_{0}, \delta\left(w_{1}\right), w_{2}\right\}+\left\{w_{0}, w_{1}, \delta\left(w_{2}\right)\right\}
$$

for all $w_{0}, w_{1}, w_{2} \in A_{0}$. Thus, the mapping δ is a proper $J C Q^{*}$-triples derivation on A_{0}.
Finally, let $\delta^{\prime}: A_{0} \rightarrow A$ be another proper $J C Q^{*}$-triples derivation satisfying (2.3). Then, we have

$$
\begin{aligned}
\left\|\delta(x)-\delta^{\prime}(x)\right\|_{A} & =\frac{1}{\lambda^{j}}\left\|\delta\left(\lambda^{j} x\right)-\delta^{\prime}\left(\lambda^{j} x\right)\right\|_{A} \\
& \leq \frac{1}{\lambda^{j}}\left(\left\|\delta\left(\lambda^{j} x\right)-f\left(\lambda^{j} x\right)\right\|_{A}+\left\|\delta^{\prime}\left(\lambda^{j} x\right)-f\left(\lambda^{j} x\right)\right\|_{A}\right) \\
& \leq \frac{2 \varphi(x, \cdots, x) L^{j}}{\binom{n}{m}(n-m+1)},
\end{aligned}
$$

which tends to zero as $j \rightarrow \infty$ for all $x \in A_{0}$. Thus, we can conclude that $\delta(x)=\delta^{\prime}(x)$ for all $x \in A_{0}$. This completes the proof.
Theorem 2.2. Assume that there exists an expansively superadditive mapping $\varphi: A_{0}^{n} \rightarrow[0, \infty)$ and a 3 -expansively superhomogenus mapping $\psi: A_{0}^{3} \rightarrow[0, \infty)$ with a constant $L<1$ such that a mapping $f: A_{0} \rightarrow A$ satisfies (2.1) and (2.2). Then there exists a unique perper $J C Q^{*}$-triples derivation $\delta: A_{0} \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leq \frac{L}{\binom{n}{\mathrm{~m}}(1-L)} \varphi(x, \cdots, x) \tag{2.8}
\end{equation*}
$$

for all $x \in A_{0}$.
Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique \mathbb{C}-linear mapping $\delta: A_{0} \rightarrow A$ such that (2.8). The mapping $\delta: A_{0} \rightarrow A$ is given by

$$
\begin{equation*}
\delta(x)=\lim _{j \rightarrow \infty} \lambda^{j} f\left(\frac{x}{\lambda^{j}}\right) \tag{2.9}
\end{equation*}
$$

for all $x \in A_{0}$. Since a 3-expansively superhomogeneity of ψ, (2.2) and (2.9), we get

$$
\begin{aligned}
&\left\|\delta\left(\left\{w_{0}, w_{1}, w_{2}\right\}\right)-\left\{\delta\left(w_{0}\right), w_{1}, w_{2}\right\}-\left\{w_{0}, \delta\left(w_{1}\right), w_{2}\right\}-\left\{w_{0}, w_{1}, \delta\left(w_{2}\right)\right\}\right\|_{A} \\
&=\lim _{j \rightarrow \infty} \quad \lambda^{3 j}\left\|f\left(\left\{\frac{w_{0}}{\lambda^{j}}, \frac{w_{1}}{\lambda^{j}}, \frac{w_{2}}{\lambda^{j}}\right\}\right)-\left\{f\left(\frac{w_{0}}{\lambda^{j}}\right), \frac{w_{1}}{\lambda^{j}}, \frac{w_{2}}{\lambda^{j}}\right\}-\left\{\frac{w_{0}}{\lambda^{j}}, f\left(\frac{w_{1}}{\lambda^{j}}\right), \frac{w_{2}}{\lambda^{j}}\right\}-\left\{\frac{w_{0}}{\lambda^{j}}, \frac{w_{1}}{\lambda^{j}}, f\left(\frac{w_{2}}{\lambda^{j}}\right)\right\}\right\|_{A} \\
& \leq \lim _{j \rightarrow \infty} L^{j} \psi\left(w_{0}, w_{1}, w_{2}\right)=0
\end{aligned}
$$

for all $w_{0}, w_{1}, w_{2} \in A_{0}$. The rest of proof is the similar way to the proof of Theorem 2.1. This completes the proof.
Corollary 2.3. Let s, θ be nonnegative real numbers with $s<3$. Suppose that a mapping $f: A_{0} \rightarrow A$ satisfies

$$
\begin{align*}
& \left\|\Delta_{1} f\left(x_{1}, \cdots, x_{n}\right)\right\|_{A} \leq \theta, \tag{2.10}\\
& \left\|\delta\left(\left\{w_{0}, w_{1}, w_{2}\right\}\right)-\left\{\delta\left(w_{0}\right), w_{1}, w_{2}\right\}-\left\{w_{0}, \delta\left(w_{1}\right), w_{2}\right\}-\left\{w_{0}, w_{1}, \delta\left(w_{2}\right)\right\}\right\|_{A} \\
& \leq \theta\left(\left\|w_{0}\right\|_{A_{0}}^{s}+\left\|w_{1}\right\|_{A_{0}}^{s}+\left\|w_{2}\right\|_{A_{0}}^{s}\right)(2.11)
\end{align*}
$$

for all $x_{1}, \cdots, x_{n}, w_{0}, w_{1}, w_{2} \in A_{0}$. Then there exists a unique proper proper $J C Q^{*}$-triple derivation $\delta: A_{0} \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leq \frac{\theta}{\binom{n}{m}(n-m)} \tag{2.12}
\end{equation*}
$$

for all $x \in A_{0}$.
Corollary 2.4. Let $r, s \in \mathbb{R}$ and θ be nonnegative real numbers with $r \neq 1, s \neq 3$. Suppose that a mapping $f: A_{0} \rightarrow A$ satisfies

$$
\begin{aligned}
& \left\|\Delta_{\mu} f\left(x_{1}, \cdots, x_{n}\right)\right\|_{A} \leq \theta \sum_{i=1}^{n}\left\|x_{i}\right\|_{A_{0}}^{r} \\
& \left\|\delta\left(\left\{w_{0}, w_{1}, w_{2}\right\}\right)-\left\{\delta\left(w_{0}\right), w_{1}, w_{2}\right\}-\left\{w_{0}, \delta\left(w_{1}\right), w_{2}\right\}-\left\{w_{0}, w_{1}, \delta\left(w_{2}\right)\right\}\right\|_{A} \\
& \leq \theta\left(\left\|w_{0}\right\|_{A_{0}}^{s}+\left\|w_{1}\right\|_{A_{0}}^{s}+\left\|w_{2}\right\|_{A_{0}}^{s}\right)(2.14)
\end{aligned}
$$

for all $x_{1}, \cdots, x_{n}, w_{0}, w_{1}, w_{2} \in A_{0}$. Then there exists a unique proper $J C Q^{*}$-triple derivation $\delta: A_{0} \rightarrow A$ such that

$$
\|f(x)-\delta(x)\|_{A} \leq \begin{cases}\frac{n \theta\|x\|_{A_{0}}^{r}}{\binom{n}{m}\left((n-m+1)-(n-m+1)^{r}\right)}, & r<1, s<3 \tag{2.15}\\ \frac{n \theta\|x\|_{A_{0}}^{r}}{\binom{n}{m}\left((n-m+1)^{r}-(n-m+1)\right)}, & r>1, s>3\end{cases}
$$

for all $x \in A_{0}$.
Proof. Let $\varphi\left(x_{1}, \cdots, x_{n}\right)=\theta \sum_{i=1}^{n}\left\|x_{i}\right\|_{A_{0}}^{r}$ and $\psi\left(w_{0}, w_{1}, w_{2}\right)=\theta\left(\left\|w_{0}\right\|_{A_{0}}^{s}+\left\|w_{1}\right\|_{A_{0}}^{s}+\left\|w_{2}\right\|_{A_{0}}^{s}\right)$ for all $x_{1}, \cdots, x_{n}, w_{0}, w_{1}, w_{2} \in$ A_{0}. If we can choose $L=(m-m+1)^{r-1}$ if $r<1, s<3$ and $L=(m-m+1)^{1-r}$ if $r>1, s>3$, respectively and by applying Theorem 2.1 and 2.2, then we obtain the desired results. This completes the proof.
Corollary 2.5. Let r_{i}, s, θ be nonnegative real numbers with $0 \leq \sum_{i=1}^{n} r_{i}<1$ and $s<1$. Suppose that a mapping $f: A_{0} \rightarrow A$ satisfies

$$
\begin{aligned}
& \left\|\Delta_{1} f\left(x_{1}, \cdots, x_{n}\right)\right\|_{A} \leq \theta \prod_{i=1}^{n}\left\|x_{i}\right\|_{A_{0}}^{r}, \\
& \begin{aligned}
\| \delta\left(\left\{w_{0}, w_{1}, w_{2}\right\}\right)-\left\{\delta\left(w_{0}\right), w_{1}, w_{2}\right\} & -\left\{w_{0}, \delta\left(w_{1}\right), w_{2}\right\}-\left\{w_{0}, w_{1}, \delta\left(w_{2}\right)\right\} \|_{A} \\
& \leq \theta\left(\left\|w_{0}\right\|_{A_{0}}^{s} \cdot\left\|w_{1}\right\|_{A_{0}}^{S} \cdot\left\|w_{2}\right\|_{A_{0}}^{s}\right)(2.17)
\end{aligned}
\end{aligned}
$$

for all $x_{1}, \cdots, x_{n}, w_{0}, w_{1}, w_{2} \in A_{0}$. Then f is a proper $J C Q^{*}$-triple derivation A_{0}.
Proof. Putting $x_{1}=\cdots=x_{n}=0$ in (2.16), we obtain $f(0)=0$. Replacing $\mu=1$ and $x_{1}=\mathrm{x}, x_{2}=\cdots=x_{n}=0$ in (2.16), we get $f(x)=\frac{f((n-m+1) x)}{(n-m+1)}$. By induction, we get

$$
f(x)=\frac{f\left((n-m+1)^{j} x\right)}{(n-m+1)^{j}}
$$

for all $x \in A_{0}$ and all $j \in \mathbb{Z}^{+}$. It follows from Theorem 2.1 that f is a proper $J C Q^{*}$-triple derivation A_{0}. This completes the proof.
Corollary 2.6. Let r, r_{i}, s, θ be nonnegative real numbers with $r<1,0 \leq \sum_{i=1}^{n} r_{i}<1$ and $s<1$. If a mapping $f: A_{0} \rightarrow A$ satisfies

$$
\begin{align*}
& \left\|\Delta_{1} f\left(x_{1}, \cdots, x_{n}\right)\right\|_{A} \leq \theta\left[\sum_{i=1}^{n}\left\|x_{i}\right\|_{A_{0}}^{r}+\prod_{i=1}^{n}\left\|x_{i}\right\|_{A_{0}}^{r}\right] \tag{2.18}\\
& \left\|\delta\left(\left\{w_{0}, w_{1}, w_{2}\right\}\right)-\left\{\delta\left(w_{0}\right), w_{1}, w_{2}\right\}-\left\{w_{0}, \delta\left(w_{1}\right), w_{2}\right\}-\left\{w_{0}, w_{1}, \delta\left(w_{2}\right)\right\}\right\|_{A} \\
& \quad \leq \theta\left(\left\|w_{0}\right\|_{A_{0}}^{3 s}+\left\|w_{1}\right\|_{A_{0}}^{3 s}+\left\|w_{2}\right\|_{A_{0}}^{3 s}+\left\|w_{0}\right\|_{A_{0}}^{s} \cdot\left\|w_{1}\right\|_{A_{0}}^{s} \cdot\left\|w_{2}\right\|_{A_{0}}^{s}\right)(2.19)
\end{align*}
$$

for all $x_{1}, \cdots, x_{n}, w_{0}, w_{1}, w_{2} \in A_{0}$, then there exists a unique a proper $J C Q^{*}$-triple derivation $\delta: A_{0} \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leq \frac{n \theta\|x\|_{A_{0}}^{r}}{\binom{n}{m}\left((n-m+1)-(n-m+1)^{r}\right)} \tag{2.20}
\end{equation*}
$$

for all $x \in A_{0}$.

ACKNOWLEDGMENTS

The authors are greateful to the editors and the reviewers for their valuable commonets and suggestions. The first author was supported by Dong-eui University (2014AA482).

REFERENCES

[1]Gh. Asgri, Y.J. Cho, Y.W. Lee and M.E. Gordji, Fixed points and stability of functional equations in fuzzy ternary Banach algebras, J. Inequal. Appl. 2013, 2013:166.
[2] A. Cayley, On the 34 concomitants of the ternary cubic, Am. J. Math. 4 (1881), 1-15.
[3] F. Bagarello, A. Inoue, C. Trapani, *-Derivations of quasi-*-algebras, Int. J. Math. Sci. 21 (2004),1077-1096.
[4] F. Bagarello, C. Trapani and S. Triolo, Quasil-*-algebras of measure operators, Studia Math. 172 (2006), 289-305.
[5] P. Găvruta, A generalization of the Hyers-Uiam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[6] M.E. Gordji, A. Ebadian, N. Ghobadipour, J. M. Rassias and M.B. Savadkouhi, Approximately ternary homomorphisms and derivations on C*-ternary algebras, Abs. Appl. Anal. 2012, Article ID 984160, 10pp.
[7] F. Hassani, A. Ebadian, M.E. Gordji and H. Kenary, Nearly n-homomorphisms and n-derivations in Fuzzy ternary Banach algebras, J. Inequal. Appl. 2013, 2013:71.
[8] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), 222-224.
[9] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
[10] J.R. Lee and D.Y. Shin, Homomorphisms in proper Lie CQ*-algebras, J. Korean Math. Soc. 19 (2011), 87-99.
[11] J.R. Lee, C. Park and D.Y. Shin, Stability of an additive functional inequality in proper CQ*-algebras, Bull. Korean Math. Soc. 48 (2011), 853-871.
[12] Y. Li and Y. Shen, Hyers-Ulam stability of linear diflerential equations of second order, Appl. Math. Lett. 23 (2010), 306-309.
[13] N. Lungu and C. Craciun, Ulam-Hyers-Rassias stability of a hyperbolic partial differential equation, ISRN Math.Anal. 2012 (2012), Article ID 609754, 10pp.
[14] M. Kapranov, IM. Gelfand and A. Zelevinskil, Discriminants, Resultants and Multidimensional Determinants.BirkhauserBerilin (1994).
[15] R. Kerner, Ternary algebraic structures and their applications in physics, Pierre et Marie Curie University, Paris (2000).
[16] R. Kerner, The cubic chessboard: geometry and physis, Class Quantum Gravity 14 (1977), A203-A225.
[17] S.S. Kim, J.M. Rassias, Y.J. Cho and S.H. Kim, Generalized Hyers-Ulam stability of derivations on Lie C*-algebras, J. Adv. Phys. 3 (2013), 176-185.
[18] A. Najati and A. Ranjbari, Stability of homomorphisms for a 3D Cauchy-Jensen type functional equation on C*-ternary algebras, J. Math.Anal. Appl. 341 (2008), 62-79.
[19] C. Park, Homomorphisms between Lie JC*-algebras and Cauchy-Rassias stability of Lie JC*-algebra derivations, J. Lie Theory 15 (2005), 393-414.
[20] C. Park, Homomorphisms between Poisson JC*-algebra, Bull. Brazil. Math. Soc. 36 (2005), 79-97.
[21] C. Park, Proper CQ*-ternary algebras, J. Nonlinear Sci. Appl. 7 (2014), 278-287.
[22] C. Park and Th.M. Rassias, Homomorphisms and derivations in proper JCQ*-triple, J. Math. Anal. Appl. 337 (2008), 1404-1414.
[23] C. Park, G.Z. Eskandan, H. Vaezi and D.Y. Shin, Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras, J. Inequal. Appl. 2012.2012:114.
[24] J.M. Rassias and H.M. Kim, Approximate hommomorphisms and derivations berweenC*-ternary algebras, J. Math.Phys. 49 (2008), 063507.
[25] J.M. Rassias, K.W. Jun and H.M. Kim, Approximate (m, n)-Cauchy-Jensen additive mappings In C*-algebras, Acta Math. Sinica, 27 (2011), 1907-1922.
[26] Th. M. Rassias, On the stability of the linear mapping in Bannch spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[27] R. Saadati, Gh. Sadeghi and Th.M. Rassias, Approximate generalized additive mappings in proper multi-CQ*algebras, Filomat 28:4 (2014), 677-694.
[28] C. Trapani, Quasi-*-algebras of operators and their applications, Rev. Math. Phys. 7 (1995), 1303-1332.
[29] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley \& Sons, New York, USA, 1940.

