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Abstract 
Trivial logic of collisionless plasma waves is reduced usually to using non-linear complex exponentially damping/growing 

wave functions to obtain a complex dispersion equation for their wave number 
1k  and the decrement/increment  

2k  (for a 

given real frequency   and complex wave number 
1 2k k ik  ),  whose solutions are ghosts 

1 2,  k k  which do not have 

anything to do at 
2 0k   with the  solution of the real dispersion equation for the initial exponentially damping/growing real 

plasma waves with the physically observable quantities 
1 2,  k k , for which finding should be added, in this case, the second 

equation of the energy conservation law. Using a complex dispersion equation with non-linear complex wave functions for 

the simultaneous determination of 
1k  and 

2k  violates the law of energy conservation, leads to a number of contradictions, 

is logical error, and finally also the mathematical error leading to both erroneous statement on the possible existence of 

exponentially damping/growing harmonic wave solutions and to erroneous values 
1k  and 

2k . Mathematically correct 

conclusion about the damping/growing of virtual complex non-linear waves of collisionless plasma is wrongly attributed to 
the actual real plasma waves. A brief discussion is also on formalism of complex conductivity and dielectric permittivity 
with the ability to use their real values. 
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1. Introduction 
Dispersion properties of the real and non-linear complex wave functions are not comparable, because are properties of 
physically observable and abstract mathematical objects of entirely different nature. 
Simple calculations to obtain the real dispersion equation for the real exponentially damping/increasing harmonic wave 
functions (only single equation with two unknowns!) lead to the conclusion that a complex solution of the complex 
dispersion equation for the non-linear complex wave functions, which reduces to the solution (now of  two equations with 
two unknowns for the real and imaginary parts) have completely different physical meaning of procedure, and the use of 
non-linear complex wave functions with complex dispersion equation leads to different disparate results and thus is a 
logical and finally mathematical error. It is shocking, that collisionless Landau damping/growing does not exist as a real 
physical phenomenon. 
But this does not mean that all articles with the usually negligibly small additional terms of  “Landau damping” are wrong, if 
there are used the correct energy balance equations, be it pair collisions of particles or “collisionless” energy exchange of 
the type of collective collisions, of by radiation, or any quantum-mechanical process, or any other way of energy 
exchange. In the case of the real dispersion equation with two unknowns there must be added the equation of energy 
conservation. In the second case, we obtain two ghosts solutions without the energy conservation.  
 

2. Relation of averaged over period exponentially damping/growing plasma waves 
with the collision term of kinetic equation 
It is assumed that the longitudinal in direction x  electron wave functions, both real and complex, should satisfy the same 

equations: (1) the linearized kinetic equation 
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and Maxwell equation relating the electric field  ,E x t  and the charge density  
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and as the standard approach adopted for the full distribution function 
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where  e e   is electron charge, em  is electron mass,   is real frequency, and  
,  ev v

 are electron velocities. From 

physical considerations, it is assumed that at the points where the condition (3) may be violated it is necessary to carry out 

cutting off the function
1f .                                     

In the case of testing complex wave functions, ones use as solution the expression 
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and 

 
necessary condition for the existence of solution 
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Similarly, in the case of real wave functions to receive a real tested solution ones must use the solution in the form 
 

                       2 2
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Both cases are discussed in [1], so the further results are given only for the case of physically observable real functions 
and variables. 
Substitution of the real expressions (6) into the real wave equations (1) and (2) leads to the real dispersion relation [1] 
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where 
0  is Langmuir frequency  

2 2
0 4 .ee m   

It means that hypothetical solutions of Eq. (7) with constant 1 2; 0k k   that would not depend on ,x t do not exist. 

However, one can try to obtain some average values  1 2;  0k k   over the wave period introducing the collision term S  

on the right hand side of the kinetic equation with the dispersion equation of the form 



ISSN 2347-3487                                                           

1293  | P a g e                                                      D e c e m b r e  2 0 ,  2 0 1 4  

 

 
 

                                             
 

 
02

0
1 2 1 2

1
x

x
x x

f v vab
dv

ak bk k v b ak v A




 
 

                                                        (8) 

 
taking                                         

                                                              2
2 1;   .

k x
x xA ak v S Af v e


                                                                   (9) 

 
In this case the dispersion equation takes the form [1], [2]: 
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with the need of correction of Eq. (18) in [2] and   
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where all integrals can be taken, including improper integrals (10) , in the principal value sense.  Besides that , due to 

singularity of the function   1 xf v  at the point  1xv k  in Eq. (11)  near which the kinetic equation does not apply, it is 

necessary cutting off   1 xf v  in (11) nearby this point in accordance with the condition of positivity the total distribution 

function f in (3)                                                  

                                                 1 0, ,xf v x t f v .                                                                      (13) 

The required for finding averaged  1k  and  2k  the second integral energy conservation equation can be written, for 

example, as relation of the type  
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(with further integration over 
xv ) and with possible resonances of  2k  in dependence on    and arising excited 

molecules, where   1 xv  is energy loss per electron associated with a decrease in the number of electrons with an 

additional wave propagation velocity  xv
; 

   2 2,   ,  ...x xv v  
. are portions of transmitted energy;   n xv  are 

collision cross sections;  en  is electron  density;  mn  is density of atoms and molecules. In this expression 
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where  xMv  is proper velocity of electron along the axis  x  in Maxwell distribution   0f v  independent on the wave 

speed. To expression (14) one can add also any other actual arbitrary energy exchange process terms. 
Note that the complex dispersion equation with the substitution of complex wave functions (3), (4) into (1), (2) at enough 

large 2 0k   has nothing to do with the real dispersion equation of the real Eq. (7) and leads to collisionless damping in 

violation of the law of energy conservation [1]. 

 

3. Inadequacy of the direct application of the concepts of complex electric 
conductivity/dielectric permittivity and other complex parameters 
The laws of nature are determined by relations between the physically observable quantities, but in the case of complex 
values with their mathematical transformations, besides simple linear relationships, to extract the true relationships 
between physically observable quantities may be impossible, since the complex non-linearity arises even in the simplest 

cases, for example, in differentiating  expikxd dx , as at real and all the more complex .k  
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This is confirmed by results obtained above with completely different meaning of the dispersion equations for the real and 
non-linear complex wave functions, with the “discovery” of the collisionless damping of the real plasma waves, which is 
attributed them from entirely mathematically correct collisionless damping of non-linear complex waves. 
This raises the question of obtaining the true relationship between real physically observed values from commonly used 
quantities such as the complex conductivity, that is not reducible to the simple use of its real or imaginary parts. 

For example, in the case of the complex tensor conductivity  ,ij k 


(see [2]), to obtain the real current density 

 ,ij k


 without a separate computation of the real and imaginary parts of constituent complex terms one must use 

compound expressions in (16), but not the real (or imaginary) parts separately of incoming expressions. 
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with the integration       , , expij jk E k i t kr    
 

  
  over   in accordance with the Fourier transform at  0 t    

and inverse Fourier transform at     with analytical continuation  to complex    in the lower and upper complex 

half–plane   [6].  

For real  ,j r t
 

 and its Fourier transforms with real ,  using relation (16) results in identically the same result with and 

without complex conjugation. The difference arises only in the case of the Fourier transforms of non-linear complex 

 ,j r t
 

 that may occur, as shown in Sec. 2, at using "wild" non-linear wave functions with complex ,k


 in the function of 

the complex conductivity. This leads to a collisionless damping of plasma waves or to elicitation the real part with 

neglecting imaginary part of the type discussed in Appendix 1, pp 6, 8 of [5] which also leads to erroneous values 1 2,k k in 

the expression 1 2.k k ik   

Collisionless damping is a consequence of this particular, local error of “wild” non-linear complex wave functions, with 
correctness of the general linear theory of complex plasma conductivity and complex dielectric permittivity only when using 
Fourier transforms of real boundary and initial conditions including boundary electric field and real non-damping wave 
functions. 

As it follows from Sec. 2, exact damping solution can exist only as an integrated set of waves ,k with different dispersion 

relations. It requires an entirely new approach to the calculation of the complex conductivity and dielectric permittivity in 
the presence of collisional energy exchange and to the calculation of real wave functions. 

In the case of the component of Fourier expansion ~ ikxe  with real k ( 2 0k   with the single root  k f   of dispersion 

equation (7)), the dispersion equation coincides with the real dispersion equation for the real wave functions, moreover, it 

contains only one parameter to be finding: the wave number k of non-damping waves. Thus the need for the energy 

conservation equation is eliminated (non-damping waves).  

If the direct and inverse Fourier transforms are possible, both dispersion relations in the input variables , ,r t


as well as 

variables ,k


 in correspondingly  direct and inverse Fourier transforms must be real in order to avoid the appearance of 

two-parameter complex roots. Reality of both equations is the criterion of correctness of carried out mathematical 
transformations. However, there may be severe error, in addition to using the dispersion equation for the non-linear 
complex wave functions of the type (4), (5), when the approximate equality of the product of the Fourier transforms of the 
real functions may differ significantly from the product of the Fourier transforms of these functions in violation of the 
generally accepted theory of the complex conductivity and dielectrical permittivity.  

It is necessary to exclude the possibility of relationships with complex  ,k 


 that are specific for using “wild” wave 

functions and lead to erroneous relations between physically observable parameters of the problem of the type discussed 
above in Sec. 2.  Eq. (16) is equivalent to using only real part of the complex dispersion equation in the case of complex 

.k


  

The wave damping corresponds to the Fourier transform in which for each real frequency  corresponds the spectrum of 

waves with different real k


’s. This can significantly hinder or prevent the application of the theory of complex electrical 

conductivity and permittivity with the need to consider the totality of waves with different dispersion dependences 

 .nk f  This is clearly demonstrated by Eq. (10) in Sec. 2, when the collisional kinetic equation with fixed   is 

followed by a set of dispersion equations in (10) with a variety of 1k  in the terms ,  a b  and equation of energy 

conservation. 
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4. Expansion of the wave solutions in the case of the collisionless kinetic equation 
with a nonlinear term, which is due to the perturbation of distribution function, in 
overtones 

When substituting the electron distribution function in the form    0 1 , ,xf f v f v x t   in the kinetic equation of 

longitudinal waves in a collisionless plasma (1) it is usually neglected nonlinear term of second order of smallness  
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                                                                      (17)     

in the right hand side of the kinetic equation. It may seem that this "collision" term will result in a loss of waves energy, 
respectively, to their damping.  However, attempts were made to obtain non-damping solutions in the form of expansions 
in the overtones of the form 
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with recurrent relations between nF  and preceding parameters ,  n nf E  with indices 3n  . 

Amplitudes ,  n nE F  are proportional to  1 ,
n

E  what provides the convergence of expansions at any enough small 1E  

or more precisely, convergence parameter 
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                                                     (20) 
It should be noted that the rather cumbersome transformations given in [3] were made without the use of complex 

variables and are brought to 3.n    

All the details can also be found in Appendix 6 of the easily accessible work [5].  Calculations are made for both the 
longitudinal and transverse plasma waves, although in the process of calculation it should be made successive cutting off, 

according to the condition of positivity the function ,f  that involves some uncertainty in the result. 

An interesting fact would be the experimental discovery of multiple overtones, that does not seem an insurmountable task. 
 

5. Polarization estimation hypothesis 
The distribution function of charged particles in the plasma is characterized by the collective distribution of particle swarm  
on the coordinates and velocities in the created by them (or external) electric field, neglecting the individual interactions of 
each particle with its nearest neighbors, therefore, as a measure of the applicability of the collisionless approximation one 

can take comparison impact force  ,eE x t   of electric field  ,E x t on the particle and the Coulomb force of interaction 

between two nearest particles. Conventionally, one can assume that the collisional interaction can be neglected, starting 

with the value   2 2,  >  aveE x t or e r  where 
1 3~av er n  is average distance between charged particles in plasma, i.e. 

actual interacting of  ,E x t with the charged particles is equivalent to the replacing  

      2 3
0, , , ,   ~ ~ const;  0  < 1;   if 1,  then ~1eff eE x t E x t E x t E e n or        

                  (21) 

where 0E is amplitude of the  ,E x t  and  en  is average electron density. 

The polarization hypothesis allows to estimate the parameters of electron waves in collisional plasmas with 1  ,  and 

can be a useful tool for the study of plasma waves. 
The polarization hypothesis underlies the estimates of the parameters in the dipole-dynamic model of ball lightning (DDM 
BL) in [4]. 
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6. Conclusion 
  There is proposed the fundamentally new approach to basic concepts of electron waves in a low-temperature plasma 
including: 
- discussion of the possible existence of exponentially damping/growing sinusoidal waves in collisionless and weakly 
collisional plasma, non existence of damping/growing waves in collisionless plasma [1]; 
- inadmissibility of using complex dispersion equations obtained for the non-linear complex wave functions, instead of the 

real dispersion equations obtained for the real wave functions [1] or real ,k ; 

- non-linearity of  kinetic equations due to the perturbation of the electron distribution function  0f v by perturbation 

 1 , ,xf v x t  in collisionless plasma, leads to the appearance of multiple (integer ,n    sin[ ],  cos[ ]n t kx n t kx   ) 

overtones without showing any effects of increasing-damping of waves [3]; 
- polarization hypothesis with the possibility of simple estimates with transport the parameters of plasma waves in weakly 
collisional plasma to a more collisional plasma by introducing such a parameter as the effective electric field strength 

 ,effE x t  [4]. 

The polarization hypothesis was actively used when creating a dipole dynamic model of ball lightning [4], but it was 

entirely distinct from the parameter estimates of the plasma waves with const  and variable  ,E x t ,  wherever in 

DDM BL  the constant was the atmospheric electric field envE with variable .  

Dispersion properties of actual real and virtual non-linear complex wave functions are not comparable, because are 
properties of physically observable and abstract mathematical objects of entirely different nature. 
The foregoing results are presented collectively and discussed in detail in the cumulative work [5].  
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