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ABSTRACT 

The bandhead spins of seventeen superdefomed bands in A = 80 – 104 region (38Sr, 39Y, 40Zr, 41Nb,42Mo, 43Tc, 46Pd) have 
assigned by an indirect method. The dynamical moment of inertia J

(2)
 as a function of rotational frequency ђω are 

extracted from Harris expansion and fitted to the experimental values by using a computer simulated search program.  

The calculated dynamic moment of inertia with the best optimized parameters are integrated to give the spins. The 
intrinsic aligned angular momentum (the integration constant) is assumed to be zero. The values of the spins resulting 
from our approach are consistent with all spin assignments of other approaches, and have been used to determine the 
kinematic moment of inertia J

(1)
. The systematic variation of J

 (2)
 and J

 (1)
 with rotational frequency ђω is investigated, 

which turns out to be helpful in the spin prediction. Most SD bands in this mass region exhibits decreasing in J
(1)

 and J
(2) 

with increasing ђω. The bandhead moment of inertia J0 which occur at J
(2)

 = J
 (1)

 has been sensitive guideline parameter to 
spin proposition. The relationship between the Harris expansion three parameter model and the four parameter Bohr-
Mottelson formula is derived.  
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1. Introduction 

Study of superdeformed (SD) nuclei has been one of the most exciting fields in nuclear spectroscopy since the discovery 
of SD states at high spins in 

152
Dy [1]. More than 330 SD bands have now been observed in the mass regions A ≈ 30, 60, 

80, 130, 150 and 190[2,3]. Many theoretical and experimental efforts were devoted to explore the nature of SD states in 
nuclei. The SD mass region A ≈ 80 – 100 is very interesting region because they exhibit highest rotational frequencies.  

In SD bands, gamma ray transition energies are the only spectroscopic information available till now. However, level 
spins, parities and excitation energies in most of these bands were not determined experimentally because linking 
transitions between the SD states and the normal deformed (ND) states were not observed. In the past few years several 
empirical and semiempirical approaches were proposed for the spin assignments in SD bands [4-7]. All these available 
approaches obtained mainly from the comparison of the calculated gamma transition energies or dynamical moments of 
inertia with experimental results. In previous papers we have used Harris ω

2
 expansion [8-12], Bohr- Mottelson I (I+1) 

expansion [13], ab expression [14, 15] and variable moment of inertia (VMI) model [16, 17] to assign spin. 

   The main purpose of the present work is to determine the spins of energy levels of some SD bands in the mass region 
80 ≤ A ≤ 104 and examine the behaviors of moments of inertia. We will use the Harris expansion and its relationship with 
the Bohr-Mottelson formula. The paper is arranged as follows: Following this introduction, the Harris and Bohr-Mottelson 
expansions employed to assign spins are presented  and discussed in the next section(2). Numerical calculations and 
discussion are performed in section (3) for even-even and odd – A SD nuclei in the mass region A = 80 – 104. The data 
set include 17 SD bands in Sr / Y / Zr / Nb / Mo / Tc / Pd nuclei. Conclusion and remarks are given in section (4). 

2. Spin assignment in SD bands using Harris and Bohr-Mottelson expansions 

For SD bands, γ-ray energies are the only spectroscopic information universally available. There are no direct 
experimental determinations of the spins in SD bands. Spin assignment is one of the most difficult and unsolved problems 
in the study of nuclear superdeformation. The spin assignments have received considerable attention. Several theoretical 
procedures were proposed [4-17]. 

 In this section, we will fit the experimental dynamical moment of inertia values with the Harris power series formula [18]. 
The expansions parameters obtained from the fitting will be used to assign the spins. In such parameterize the spin may 
be expressed as an expression in the rotational frequency. Also the relation between Harris expansion which depend on 
the rotational frequency and the Bohr-Mottelson formula which depends on the spin will be derived. 

The nuclear energy E of the nucleus can be expanded in powers of angular velocity ω by Harris expansion [18] as an 
extension of cranking model:  

   𝐸 =  
1

2
𝛼𝜔2 + 

3

4
𝛽𝜔4 +

5

6
𝛾𝜔6 +

7

8
𝛿𝜔8                                                                                (1) 

Where: only even powers of ω are present in systems invariant with respect to time reversal. 

 In general, the above Harris expansion converges faster than the Bohr-Mottelson expansion [19] in powers of I (I+1): 

𝐸 𝐼 =  𝐴  𝐼 𝐼 + 1  + 𝐵 𝐼 𝐼 + 1  2 + 𝐶 𝐼 𝐼 + 1  3 + 𝐷 𝐼 𝐼 + 1  4
                              (2) 

where A is the rotational constant parameter and B, C and D are the corresponding higher order constant parameters. 

In framework of nuclear collective rotational model, two types of moments of inertia are usually discussed, which are 
related to the first and second order derivatives of the excitation energy with respect to the angular momentum. We define 
the second order derivative dynamical moment of inertia by: 

 
𝐽 (2)

ℏ2
=   

𝑑2𝐸

𝑑  𝐼(𝐼+1 
2 

−1

=  
1

𝜔

𝑑𝐸

𝑑𝜔
=  

1

ℏ

𝑑 𝐼 𝐼+1 

𝑑𝜔
                                                                           (3) 

The use of  𝐼(𝐼 + 1)rather than angular momentum I provide the proper limiting case for an ideal rotor with energy 

proportional to the quintal square I (I+1) rather than I
2
.  

The corresponding expression for formulae (1) and (2) are: 

𝐽(2)

ℏ2
=  𝛼 + 3𝛽𝜔2 +  5𝛾𝜔4 +  7𝛿𝜔6

 

     =   2𝐴 + 12𝐵 𝐼(𝐼 + 1)  30𝐶 𝐼(𝐼 + 1) 2 + 56𝐷 𝐼(𝐼 + 1) 3 −1
                                      (4) 

The parameter  α  corresponds to the bandhead moment of inertia.  

 Integrating J
 (2) 

yields the intermediate level spin: 
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ℏ 𝐼 𝐼 + 1  =  𝑑𝜔𝐽(2) =  𝛼𝜔 +  𝛽𝜔3 + 𝛾𝜔5 +  𝛿𝜔7 + 𝑖0                                                             (5) 

Where: the intrinsic alignment i0 appears as a constant of integration. 

The first order derivative, kinematic moment of inertia is defined as: 

𝐽 (1)

ℏ2
=   𝐼(𝐼 + 1)  

𝑑𝐸

𝑑 𝐼(𝐼+1)
 
−1

=  
 𝐼(𝐼+1)

ℏ𝜔
                                                                                                 (6) 

The corresponding expression for formulae (1) and (2) are  

𝐽(1)

ℏ2
=  𝛼 +  𝛽𝜔2 +  𝛾𝜔4 +  𝛿𝜔6

 

       =   2𝐴 + 4𝐵 𝐼(𝐼 + 1) 3/2 +  6𝐶 𝐼(𝐼 + 1) 5/2 +  8𝐷 𝐼(𝐼 + 1) 7/2 
−1

                         (7) 

Now, J
 (1)

 is equal to the inverse of the slope of the curve of energy E versus I (I+1) times ђ
2
/ 2, while J

 (2)
 is related to the 

curvature in the curve E versus 𝐼(𝐼 + 1). In case of a rigid rotor where the energy is directly proportional to I (I+1), 

both definitions for J
(1)

 and J
(2)

 coincide. That is, J 
(2)

 is a quantity defined locally; while J 
(1)

 is a more global quantity since 
the spin I itself is not a local quantity. 

Squaring equation (5) four times, yield 

 𝐼(𝐼 + 1) =  𝛼2𝜔2 + 2𝛼𝛽𝜔4 +  2𝛼𝛾 + 𝛽2 𝜔6 +  2𝛼𝛿 + 2𝛽𝛾 𝜔8 + ⋯                        (8) 

 𝐼(𝐼 + 1) 2 =  𝛼4𝜔4 + 4𝛼3𝛽𝜔6 +  4𝛼3𝛾 + 6𝛼2𝛽2 𝜔8 + ⋯                                                   (9) 

 𝐼(𝐼 + 1) 3 = 𝛼6𝜔6 + 6𝛼5𝛽𝜔8 + ⋯                                                                                                       (10) 

 𝐼(𝐼 + 1) 4 = 𝛼8𝜔8 + ⋯                                                                                                                                 (11) 

Substituting from equations (8-11) into equation (2), yield 

𝐸 𝐼 =  𝐴𝛼2 𝜔2 +  2𝐴𝛼𝛽 + 𝐵𝛼4 𝜔4 +  𝐴 2𝛼𝛾 + 𝛽2 + 4𝐵𝛼3𝛽 + 𝐶𝛼6 𝜔6
 

 + 𝐴 2𝛼𝛿 + 2𝛽𝛾 + 𝐵 4𝛼3𝛿 + 6𝛼2𝛽2 + 6𝐶𝛼5𝛽 + 𝐷𝛼8 𝜔8
                                               (12) 

Comparing equation (12) with equation (1), yield the relations: 

𝐴 = ℏ2  
1

2𝛼
                                                                                                                                                               (13) 

𝐵 = −ℏ4  
𝛽

4𝛼4                                                                                                                                                         (14) 

𝐶 = ℏ6  
𝛽2

2𝛼7
−

𝛾

6𝛼6                                                                                                                                                (15) 

𝐷 = ℏ8  
𝛽𝛾

𝛼9
−

3𝛽3

2𝛼10
−

𝛿

8𝛼8                                                                                                                                 (16) 

If we truncate the expressions (1) and (2) at the second term only, we obtain: 

𝐸 =
1

2
𝛼𝜔2 +

3

4
𝛽𝜔4 = 𝐴 𝐼 𝐼 + 1  + 𝐵 𝐼(𝐼 + 1) 2

                                                                       (17) 

𝐽 (2)

ℏ2
= 𝛼 + 3𝛽𝜔2 =  2𝐴 + 12𝐵𝐼(𝐼 + 1) −1

                                                                                         (18) 

ℏ 𝐼(𝐼 + 1) = 𝜔 𝛼 + 𝛽𝜔2                                                                                                                            (19) 

𝐽 (1)

ℏ2
= 𝛼 + 𝛽𝜔2 =

1

2𝐴
 1 +

2𝐵

𝐴
𝐼(𝐼 + 1) 

−1
                                                                                              (20) 
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Eliminating  ω  from the two equations (17) and (18), we get a cubic equation for the energy 

𝑒3 + 2𝑒2 +  1 + 36𝑑 𝑒 − 4 1 + 27𝑑 𝑑 = 0                                                                              (21) 

where 

𝑑 =
𝛽

3𝛼3
𝐼(𝐼 + 1)                                                                                                                                               (22) 

𝑒 =
4𝛽

𝛼2
𝐸                                                                                                                                                                 (23) 

Putting X = 2d we obtain: 

𝐸 𝐼 =
ℏ2

2𝛼
𝐼(𝐼 + 1) 1 − 𝑋 + 4𝑋2 − 24𝑋3 + ⋯                                                                          (24) 

Equation (24) is an expression for the energy levels in terms of α, β and I. 

   For SD bands experimentally, the rotational frequency ђω, the dynamic J
(2)

 and kinematic J
(1)

 moments of inertia are 
usually extracted from the observed transition energies Eγ between two consecutive quadruple transition within a band 
from the following finite difference approximations,  

ℏ𝜔 =
1

4
 𝐸𝛾 𝐼 + 2 → 𝐼 + 𝐸𝛾 𝐼 → 𝐼 − 2                                                                                        (25) 

𝐽  2 (𝐼)

ℏ2
=

4

𝐸𝛾  𝐼+2→𝐼 −𝐸𝛾 (𝐼→𝐼−2)
                                                                                                 (26) 

𝐽  1 (𝐼)

ℏ2
=

2𝐼−1

𝐸𝛾 (𝐼→𝐼−2)
                                                                                                                                             (27) 

where, the experimental γ- transition energies of the SD band is in MeV. 

It is seen that while the extracted J
(1)

 depends on the spin I proposition, J
 (2)

 does not (see equations 27, 26). Thus, if the 
dynamic moments of inertia J

 (2)
 were a constant, the transition energy difference would be the same for all values of spin. 

Often this is not the true and J
 (2)

 is found to change with increasing spin. The two moments of inertia can related as 
follows: 

𝐽 (2)

ℏ2
=

1

ℏ

𝑑 𝐼(𝐼+1)

𝑑𝜔
=

1

ℏ

𝑑

𝑑𝜔
 

1

ℏ
𝐽(1)𝜔 =

1

ℏ2  𝐽(1) + 𝜔
𝑑𝐽 (1)

𝑑𝜔
                                                (28) 

Solving for J
 (1)

, yield:  

𝐽(1) = 𝐽(2) +
𝑐𝑜𝑛𝑠𝑡 .

𝜔
                                                                                                               (29) 

3. Numerical Calculations and Discussion  

For SD bands, gamma-transition energies Eγ are the only spectroscopic information universally available. The information 
about Eγ are commonly translated into values of rotational frequency ђω equation (25) and dynamical moment of inertia 
J

(2)
 equation (26). One of the most supervising characteristic of data on SD bands is the different behavior of J

(2)
 as a 

function of ђω. 

The optimized expansion parameters α, β, γ of J
(2)

 values in the Harris parameterization for each SD band have been 
calculated from best fit method [12] to the experimental J

(2)
values extracted from Eγ. The quality of the fit is indicated by 

the common χ quantity 

𝜒 =  
1

𝑁
  𝐽𝑒𝑥𝑝

(2)  𝑖 − 𝐽𝑐𝑎𝑙
(2) 𝑖  

2
𝑁

𝑖=1

 

1/2

 

in order to obtain a minimum root – mean square (rms) deviation. N is the total number of experimental points entering into 
the fitting procedure. It was found that the rms deviation of the calculated results with experiments, χ, depends on the 
number of transitions involved, and in some cases χ is insensitive to the suggested spin, that is the rms deviations may be 
close to each other for two or more spin propositions in this case, it is difficult to make a unique spin proposition. 
 
The best adopted optimized parameters α, β and γ obtained from the fitting procedure have been used to determine the 
spins with the help of equation (5). The constant of integration i0 which represent the aligned angular momentum at zero 
frequency has been taken to be zero. The resulting best parameters α, β and γ and values of the lowest bandhead spin I0 
and the bandhead moment of inertia J0 = α are listed in Table (1). The data set include 17 SD bands in A = 80- 104 mass 
region for Strontium (38Sr), Yttrium (39Y), Zirconium (40Zr), Niobium (41Nb), Molybdenum (42Mo), Technetium (43Tc) and 
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Palladium (46Pd). The experimental data of transition energies are taken from references [1, 2]. Table (2) lists the 
optimized parameters A,B,C and D of the Bohr – Mottelson four expansion.  
  
Using our assigned spin values, the Kinematic moment of inertia J

(1)
 of the SD bands can be consequently determined. 

The evolution of dynamic J
(2)

 
 
moments of inertia as a function of rotational frequency ђω are illustrated in Figure(1). It is 

seen that most SD bands exhibits decreasing J
(2)

 with increasing ђω. 
 
Table (1): The bandhead spin proposition I0 and the best adopted Harris expansion, three                                                                                                                                                                                                                                                                                                        
parameters α, β and γ for the SD bands in the A= 80 – 104 mass region. Nγ denote the number of observed γ- ray 
transition energies included in fits. 
 

Nuclide I0 (ђ) α (ђ
2 

MeV
-1

) β (ђ
4 

MeV
-3

) γ (ђ
6 

MeV
-5

)  Nγ 

80
Sr(SD1) 

81
Sr(SD2) 

      (SD3) 

      (SD4) 

82
Sr(SD1) 

83
Sr(SD1) 

82
Y(SD1) 

83
Zr(SD2) 

84
Zr(SD1) 

86
Zr(SD1) 

87
Nb(SD4) 

88
Mo(SD1) 

       (SD2) 

       (SD3) 

89
Tc(SD1) 

91
Tc(SD1) 

104
Pd(SD1) 

20 

34 

31.5 

37.5 

11 

13.5 

17 

16 

25 

27 

26.5 

31 

20 

23 

22 

23.5 

22 

32.1730 

47.8842 

40.0343 

51.9122 

13.9105 

21.3843 

25.5827 

24.0201 

37.2858 

40.4403 

38.0647 

61.1494 

30.5872 

42.7575 

43.4085 

37.6403 

34.4727 

-6.1996 

-13.4868 

-7.6329 

-16.9938 

7.5991 

3.7615 

-0.1437 

-0.8493 

-5.5342 

-6.7342 

-9.5649 

-26.3033 

0.0903 

-10.6713 

-10.3209 

-1.9334 

0.8903 

 

1.9108 

3.60224 

1.6390 

4.7869 

-2.1220 

-1.0107 

-0.0613 

0.4037 

1.0711 

1.3607 

2.6942 

7.9670 

-1.2453 

2.8096 

2.4376 

1.0853 

-2.5341 

 

10 

6 

7 

5 

9 

10 

9 

8 

9 

9 

6 

8 

6 

8 

11 

11 

7 

 

 

Table (2): The same as in table (1) but for Bohr – Mottelson four parameters  A, B, C and D expansion (in KeV) 

Nuclide I0 (ђ) A B C D 

80
Sr(SD1) 

81
Sr(SD2) 

      (SD3) 

      (SD4) 

82
Sr(SD1) 

83
Sr(SD1) 

82
Y (SD1) 

83
Zr(SD2) 

84
Zr(SD1) 

86
Zr(SD1) 

87
Nb(SD4) 

88
Mo(SD1) 

        (SD2) 

20 

34 

31.5 

37.5 

11 

13.5 

17 

16 

25 

27 

26.5 

31 

21 

15.540 

10.442 

12.489 

9.630 

35.944 

23.413 

19.544 

20.816 

13.409 

12.363 

13.135 

8.176 

16.346 

1.446x10
-3 

6.414x10
-4

 

7.525x10
-4

 

5.847x10
-4 

-5.073x10
-2

 

-4.517x10
-3

 

8.392x10
-5

 

6.378x10
-4

 

7.158x10
-4

 

6.294x10
-4

 

1.139x10
-3

 

4.703x10
-4

 

-2.580x10
-5

 

2.514x10
-7

 

1.078x10
-7

 

1.150x10
-7

 

1.012x10
-7

 

3.352x10
-4

 

5.241x10
-6

 

3.792x10
-8

 

2.7124x10
-7

 

8.641x10
-8

 

7.634x10
-8

 

2.474x10
-7

 

8.280x10
-8

 

2.536x10
-7

 

-1.995x10
-11

 

2.137x10
-11

 

1.760x10
-11

 

2.205x10
-11

 

-3.253x10
-6

 

-8.099x10
-9

 

1.917x10
-12

 

-1.444x10
-10 

6.399x10
-12

 

7.482x10
-12

 

5.193x10
-11

 

1.981x10
-11

 

-4.802x10
-12
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       (SD3) 

89
Tc (SD1) 

91
Tc (SD1) 

104
Pd (SD1) 

23 

22 

23.5 

20 

11.693 

11.518 

13.292 

14.504 

7.981x10
-4

 

7.267x10
-4

 

2.385x10
-4

 

-1.576x10
-4 

 

1.412x10
-7

 

1.226x10
-7

 

-4.628x10
-8

 

2.585x10
-7

 

2.648x10
-11

 

2.344x10
-11

 

-1.181x10
-11

 

-3.326x10
-11

 

 

   

   

   

Figure (1) The calculated dynamic J
(2)

  moments of inertia are platted a function of rotational frequency ћω. The 
experimental J

(2)
  are labeled by closed circles. 

20

22

24

26

28

30

32

34

36

0.6 0.8 1 1.2 1.4 1.6

J(2
)
(ℏ

2
M

eV
-1

)

80Sr(SD1)

ћω
22

24

26

28

30

0.8 1 1.2 1.4

J(2
)
(ℏ

2
M

eV
-1

)

ћω

81Sr(SD2)

20

22

24

26

28

0.8 1 1.2 1.4 1.6

J(2
)
(ℏ

2
M

eV
-1

)

ћω

81Sr(SD3)

20

22

24

26

28

30

32

0.8 1 1.2 1.4

81Sr(SD4)

J(2
)
(ℏ

2
M

eV
-1

)

ћω
20

22

24

26

28

0.6 0.8 1 1.2 1.4

82Sr(SD1)

J(2
)
(ℏ

2
M

eV
-1

)

ћω 25

26

27

28

29

0.6 0.8 1 1.2 1.4

83Sr(SD1)

J(2
)
(ℏ

2
M

eV
-1

)

ћω

22

23

24

25

26

27

0.6 0.8 1 1.2 1.4

ћω

82Y(SD1)

J(2
)
(ℏ

2
M

eV
-

1
)

22.5

23

23.5

24

24.5

25

25.5

0.6 0.8 1 1.2 1.4

ћω

83Zr(SD2)

J(2
)
(ℏ

2
M

eV
-1

)

23

24

25

26

27

28

29

30

0.6 0.8 1 1.2 1.4

ћω

84Zr(SD1)

J(2
)
(ℏ

2
M

eV
-1

)



  ISSN 2347-3487                                                           

1257 | P a g e                                                                                                                                 December  12 , 2014 

   

   

  

 

 

Figure (1)  Continued 

4. Conclusion 

The main conclusion of the present work can be summarized as follows: The transition energies of SD nuclei in the mass 
region A = 80 – 104 can be quantitatively described excellently by Harris expansion to third term. The dynamical moment 
of inertia J

(2)
 has been derived in terms of Harris parameters. The optimized parameters have been adjusted by using a 

computer simulated search program to fit the calculated theoretical J
(2)

 with the corresponding experimental values. The 
bandhead spins have been assigned by integrating J

(2)
 and using the best optimized parameters. The bandhead spins of 

our selected SD bands from the present study are excellent consistent with all spin assignments of other approaches. The 
calculated transition energies, level spins, rotational frequencies, kinematic and dynamic moments of inertia and 
bandhead moments of inertia are analyzed as a function of rotational frequency. It was found that the bandhead moments 
of inertia are helpful guide line in the spin prediction. 
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