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ABSTRACT

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is
established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are
also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-
type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the
computer algebra system coded from MATLAB R2011b.
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1. INTRODUCTION

In [VI], Fractional integrals were defined for ¢(x) e L, (a,b) by

( 5’+¢)(X)=ﬁ§(x—t)m¢(t)dt X>a (L.1)
(I§‘¢)(x)=ﬁ jl (t=x)""g(t)dt, x<b

= (1.2)

where o > 0 (a being the order). These integrals are also known as the Riemann-Liouville fractional integrals or the left -
sided and right - sided fractional integrals, respectively. The integrals given in (1.1) and (1.2) are extensions to half and

(or) whole axis finite interval [a, b]. These may be used on the half axis (@, 0) and (—oo, b), respectively, subject to
the variable limit of integration.

The Riemann-Liouville fractional derivatives are [IV]

(0:9)00 =[] (1)

(1.3)
3 1 d)' y(t) n= a)+Lx>a
) (o200
and
(03[~ (1)
1 d)'t vy _ -
‘r(n—a)(_&j I(t—yX)a_ml Hn=lre)xen) (14)

In [l1] authors introduced the Fractional Calculus and Fractional Differential Equations. In [lll], new integral transform and
associated distributions were introduced.
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2. BESSEL-TYPE OF FRACTIONAL ORDER FUNCTION ON FINITE OR INFINITE
INTERVAL OF THE HALF-AXIS

Let (a, b)(O <a<b< oo) be a finite or infinite interval of the half-axis [] *. Considering the left-sided and right-sided
integrals of fractional order Re( p) >0; Re(q) > 0 defined analogous as in [I]

(121) rlp j{x 07103, (1) (1)dt (a<x<b) @
(121)(00 =g (07 0, (0} (). (a<x<b) @2
respectively. When a=0 and b = oo, equation (1.1) and (1.2) are given by

(12000 =5y {00 2, 0] F (et (x>0 @3
(1:0)0) =g =009, 0} et (-0) 24

The fractional integrals in more general than (1.3) and (1.4) can be written as

(12..7)( (—f{(x 0P e, () (t)dt. (x>0)
o (2.5)
(12,1)(x)= %q)j{(t )", (O F (©)et. (x>0) y

Property 2.11f O0<a<b <oo and Re(v)> -1, then from (2.3)

(18 ((x=t"))(x) = o Pgl [V+1V2+3}_;(} 2.7)

2'T(v+2)

(Dg;((x_t)l-“))(x)= VJV(t)—JM(t).

t (2.8)
For X >0, from (2.4)

X;t+1 F |:/’l+1 |:1Ll+3 ﬂ+1j| _X2:|
(18 (t=%)"")(x) =1~ 212 i} (2.9)
2”F(/¢+2)
- ud (t
(28 (=) = 2,220
(2.10)

Property 2.2 Let Re(v) <-1, then
(Im((x t“’))(x = [3, (tyt

0 (2.11)
Property 2.3 For (Re(x)<0 and x>0 or x<0)and x<0
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©

(15 (=% ) (x)= [ 3, (1)t

(2.12)
Property 2.4 If 0<a<b<oo and Re(ﬂ)+Re( p)>—1, then from (1.5)
X”p+llF2[V+2p+l,{v+1,V+§+3},_4X2}
1P ((x=t)""t" = 213
(12.(0=0" 7)) 2 v+ p<D) I (p)T(v+1) e
p
(02 (-t 19)) 0 = PP oy ),
t (2.14)
For X >0, from (1.6)
2
Xq+y+1lF2|:,U;'1,|:1u;_ ’ +1},_ i|
19 (t—x)"*x¢ =x9— 2.15
(1 (6=)x7) () =x 2'T(q)T(p+2) @1
(DO— ((t_x)l_q Xq))(x)z_xp{‘]ﬂu(t)_y‘]ﬂ (t)}
t (2.16)
Property 2.5 Let Re(v)+Re(p)<-1, then
_ 1
12 ((x=t) " t°))(x) = = [t"3, (t)dt.
(0 )=gy] o
Property 2.6 For ( Re(v)<0 and x>0 or x<0)and x<0
_ 1 %
(18 (6= %) () === [ "3, ().
r'(q)s (2.18)
Property 2.7 If Re( p) >0, Re(q) >0,0<a<b<ow; then
3. (g ((x—=t)" 7)) (x)= BE. (D4, ((x~1) ")} (x)
=t" ()3, (1) —t" " (u+2p+q-1)J,(t)J,..(t)
(e ), (03,41
+tP72g ()3, (t)(,uv— P—v+up+2vp+vq+ pq+v:+p? —tz). 219
D¢ (D¢ ((x~1)"t*))(x) = DL (D& ((t-%)"t"))(x)
-1
‘]/1+l (t)Jv+l (t)_v‘]v (t)‘];ﬁl (t)+(':l )‘]Hl (t)‘]y (t)
— xP+a
(v—vz—v,u+t2)\]ﬂ (t)J, (1)
t* (2.20)
If Re(u)+Re(p)>-1, and x>0 or x<O then
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um(um((x—o )

jth Ut‘u dt]dt+

|:V+q+1,[l/+l,v+q+3 }F{,u+p+1 1,u+p+3}—x }

+V+p+Q+2
X#VPQ 1|:2

2 2 4
21 (e + p+l)(v+q+1)F(p C(q)T(u+1)r(v+1)

(2.21)

Property 2.8 If Re(u)+Re(p)<-1, and x>0 or x<O0 then
I&(Ioi((x—t)l“’tp))(x)
J't"J [Ith j 2.22)
0

+0+3| =X
x R 8]
+ [P, ()xee dt.

2 ( ,u+q+1) (+1)T(p)r(q)

Property 2.9 If X =0 then

I(‘)L(IO”+ ((x—t)l_pt"))(x):o (2.23)

Property 2.10. For X >0;

ng(lop(a—x_)“’tp))(x) _
prua-eelp s} 7)),

_{zvr(wz) xR, {V;Fl {Hl’v;ﬂ,‘:z}}
) 2T (u+1)T(v+2)T(p)T(a) )

Property 2.11 And for Re(y) >0andx=0

|g_(|g’_((t_x)1—ptp))(x):0. 025

3. BESSEL-TYPE OF FRACTIONAL ORDER FUNCTION ON FINITE OR INFINITE
INTERVAL OF THE REAL-AXIS

Let [a,b] be a finite or infinite interval of the real-axis [] . Considering the left-sided and right-sided integrals of fractional

order Re(p)>0;Re(q)>0.

Xp+q

[ERN
x

(12 1)) === [{(x-)""t°3,(0)} f ()dit. (a<x<b) (3.1)

r(p)s
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1 j‘{t X quqJ (t)} (t)dt. (a<x<b) (3.2)

respectively. When a =0 and b =1, equation (3.1) and (3.2) are given by

(120000 = gy [ {007 00,0} (x>0 &8
(12.1)(x) :FLODI{(“X)HWIJ (O} f (Bt (x>0) (3.4)

The function which is considered in the study in this paper is f =(x_a)p J, (x—a),where p is initially arbitrary and

J, (x—a) is Bessel function of order v, with variable ‘X" and constant 'a". It is observed that p must exceed -1 for
differintegration to have the properties of the operator as in [V].

Property 3.1 If [a, b] and Re(v)> -1, then from (3.3)

s F v+1 V+1v+3 —x?
2 2 | 4

(12 ((x=1)))(x) = T3 @5)
X (v+1),F, V—Jrl, I/Jrl,V—Jr3 ,_—XZ
(02 ((x-1))(x)= Lﬁ(v[ﬂ) ki
(3.6)

X, v+3 v+2v+5 -x°
2 "2 |4

2" (v+3)T(v+2)

Property 3.2 For X > 0, equation (3.4) gives

1

(I(‘,’f(t—x))(x):J‘Jﬂ(t)dt. (3.7

X

(D3 ((t=x)))(x) ==, (x):

(3.8)
Property 3.3 Let Re(v)ﬁ—l, then
(18 ((=)"")) )= [ 9, (B
0 (3.9)

Property 3.4 For(Re(,u)SO and x>0 or x<0) and x<0

1
(18 (t=)"")(x) = 3, (t)tt.

X (3.10)
Property 3.5 1f 0 <a<b <o and Re(u)+Re(p)> -1, then from (3.3)
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2
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(3.11)

2
XV*"(1/+1)1F{VJr erl,[v+1,VJr p+3}—: }

2 2

(Do'i((x—t)lfpt"))(x)= 2'T(v+2)T(p)

_ 2
Xv+p+le{v+ p+3’[v+2,v+ p+5} x}

2 2
2" (v+p+3)I'(v+2)(1-p)

Property 3.6 For X >0, equation (3.4) becomes
1
(18 (=) %) (x) = === 143, ().

x1J (X

(D2 (17" x") )= ri-q)

Property 3.7 Let Re( )+ Re( p) 1, then

(1 (0 )00 = s

Property 3.8 For Re(v)+1<Im(p);

(12 (et e ))(x)zﬁitip\]v(t)dt.

N—"

(D2 (=) 17))(x) LA U)

I'(1-ip)

Property 3.9 Let Re(v)+1> Im(p); then

Xv+ip+llF v+|p+1 vl v+|p+3,
2 4

(I(i”‘)*((x o) "t ))(X)= 2" (v+ip+1)I(ip)T(v+1)

P)
() v+ip+1 1y v+|p+3 2
(0 (=) %)) )= o { o g() 54

2
N v+|p+3’[v+2’v+|p+5]
2 2 4

2" (v+ip+3)L(v+2)T(1-ip)

(18 (t=%)""x) () = j L(t)dt.
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(D&((t—xf‘“ﬂq»(x)=f§ﬁﬁfl-

(1-ai) (3.20)

4. GRAPHICAL REPRESENTATIONS OF DERIVATIVES OF BESSEL-TYPE OF FRACTIONAL
ORDER FUNCTION ON FINITE OR INFINITE INTERVAL

In [VI], the authors have published Fractional Integrals and Derivatives, Theory and Applications. In [VII], authors have
developed theory and applications of fractional differential equations. The graphical representation studied in this paper
are from the developments of fractional integrals and derivatives of Bessel-type and may be used in developing the study
in applications of fractional differential equations. The wider applications are found in the Mathematical Physics which also
helps researchers for the future scope and developments from this study.

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 1 plot of (x,y); y= (besselj(nu, x - a).*(x - a).*p)./gamma(l - p); nu,p<201;x=[-10,10];
for Re(nu)+ Re(p)>-1; a<25.

Figure 2 plot (x,y); y=- ((besselj(mu, a - x).*(a - x).*q)./gamma(l - q)); nu,p<201;x=[-10,10];a<20.
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Figure 3 plot (x,y) nu,p<201;x=[-10,10]; for Re(nu)+ Re(p)>-1; a<25

In Figure 3 the derivative is obtained from (1/gamma(1-p))*diff(int((x-t)*((p-1))*((x-t)*(-p+1))*((t-a)"(p))*besselj(nu,t-
a),'t,a,x),'x,2). y=- ((besselj(nu+l, x-a) + (nu.*besselj(nu, x-a))./(a-x)).*(x-a).p - p.*besselj(nu, x-a).*(x-a)."(p-
1))./gamma(1-p);

_4 1 1 1 1 1 1 1 1 1
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 4 plot (x,y) where nu,p<201;x=[-10,10];a<20.
The derivative of Dbminus2=(1/gamma(1-q))*diff(int((t-x)"*((g-1))*((t-x)*(-g+1))*((a-t)(q))*besselj(mu,a-t),'t',x,1),'x',2) where

y=-(((besselj(mu + 1, a - x) - (mu.*besselj(mu, a - x))./(a - X)).*(a - X).*q - g.*besselj(mu, a - x).*(a - x).~(q - 1))./gamma(1l -
q)) in figure 4.
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Figure 5 plot (x,y), nu,p<201;x=[-10,10]; for Re(nu)+ Re(p)>-1; a<25.

Figure 5 is obtained from the calculation of Daplus3=(1/gamma(1-p))*diff(int((x-t)*((p-1))*((x-t)(-p+21))*((t-
a)*(p))*besselj(nu,t-a),'t',a,x),'x’,3) considering nu,p<201;x=[-10,10]; for Re(nu)+ Re(p)>-1; a<25.

The value of y=-(((x - a)."p.*(besselj(nu, x - a) - (hu.*(besselj(nu + 1, x - a) + (nu.*besselj(nu, x - a))./(a - x)))./(a - X) +
(nu.*besselj(nu, x - a))./(a - x)."2 + (besselj(nu + 1, x - a).*(nu + 1))./(a - X)) + 2.*p.*(besselj(nu + 1, x - a) + (nu.*besselj(nu,
X - a))./(a - x)).*(x - a).Np - 1) - p.*besselj(nu, x - a).*(x - a).(p - 2).*(p - 1))./gamma(l - p));

Figure 6 plot (x,y) where nu,p<201;x=[-10,10];a<20.
In Figure 6 Dbminus3=(1/gamma(1-q))*diff(int((t-x)*((g-1))*((t-x)*(-g+1))*((a-t)(q))*besselj(mu,a-t),'t',x,1),'x’,3); where

y= (((a - x).”q.*(besselj(mu, a - x) + (mu.*(besseljmu + 1, a - xX) - (mu.*besselj(mu, a - x))./(a - x)))./(a - x) +
(mu.*besselj(mu, a - x))./(a - x).*2 - (besselj(mu + 1, a - x).*(mu + 1))./(a - X)) + 2.*g.*(besselj(mu + 1, a - X) -
(mu.*besselj(mu, a - x))./(a - xX)).*(a - X).(q - 1) - g.*besselj(mu, a - x).*(a - x).(q - 2).*(q - 1))./gamma(l - q)).
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5. CONCLUSION

The properties of fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of
fractional order are established on finite and infinite interval of the real-line, half axis and real axis. The fractional
derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are
comprising of results from MATLAB R2011b.
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