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ABSTRACT 

This work concerns the peristaltic flow of a Carreau fluid model through porous medium under combined effects of MHD 
and wall properties. The assumptions of Reynolds number and long wavelength is investigated. The flow is investigated in 
a wave frame of reference moving with velocity of the wave. The perturbation series in terms of the Weissenberg number 
(We <1) was used to obtain explicit forms for velocity field and stream function. The effects of thermal conductivity, 
Grashof number, Darcy number, magnet, rigidity, stiffness of the wall and viscous damping force parameters on velocity, 
temperature and stream function have been studied. 
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1. INTRODUCTION 

Peristaltic flows have attracted the interest of a number of researchers because of wide applications in physiology and 
industry. The word peristaltic comes from a Greek word Peristaltikos which means clasping and compressing. The 
peristaltic transport is traveling contraction wave along a tube-like structure, and it results physiologically from neuron-
muscular properties of any tubular smooth muscle. Peristaltic motion of blood in animal or human bodies has been 
considered by many authors. It is an important mechanism for transporting blood, where the cross-section of the artery is 
contracted or expanded periodically by the propagation of progressive wave. It plays an indispensable role in transporting 
many physiological fluids in the body in various situations such as urine transport from the kidney to the bladder through 
the ureter, transport of spermatozoa in the ducts efferentes of the male reproductive tract and the movement of ovum in 
the fallopin tubes. Roller and finger pumps using viscous fluids also operate on this principle, gastro-intestinal tract, bile 
ducts and other glandular ducts. The principle of peristaltic transport has been exploited for industrial applications like 
sanitary fluid transport, blood pumps in heart lungs machine and transport of corrosive fluids where the contact of the fluid 
with the machinery parts is prohibited. Since the first investigation of Latham [1] and Shapiro et al. [2] extensive analytical 
studies have been undertaken which involve such fluids. Important studies to the topic include the works in [3-11]. 

Investigation of flow through a porous medium has many applications in various branches of science and technology. The 
applications in which flow through a porous medium is mostly prominent are filtration of fluids, seepage of water in river 
beds, movement of underground water and oils, limestone, wood, the human lung, bile duct, gallbladder with stones, and 
small blood vessels which are few examples of flow through porous medium [12]. Pandey and Chaube [13] have 
examined the peristaltic flow of micropolar fluid through a porous medium in the presence of external magnetic field. They 
pointed out that the maximum pressure is strongly dependent on permeability of porous medium. Reddy et al. [14] have 
recently given the idea that the sagittal cross-section of the uterus may be better approximated by a tube of rectangular 
cross-section than a two-dimensional channel and presented the influence of lateral walls on peristaltic flow in a 
rectangular duct. Reddy et al. [15] studied the effect of thickness of the porous material on the peristaltic pumping when 
the tube wall is provided with non-erodible porous lining. Lakshminarayana et al. [16] studied the peristaltic pumping of a 
conducting fluid in a channel with a porous peripheral layer. Radhakrishnamacharya and Srinivasulu [17] studied the 
influence of wall properties on peristaltic transport with heat transfer. 

Magnetohydrodynamic (MHD) peristaltic flows have acquired a lot of credence due to their applications. The effects of 
MHD on the peristaltic flow of Newtonian and non-Newtonian fluids for different geometries have been discussed by many 
researchers [18-21], with a view to understand some practical phenomena such as blood pump machine and Magnetic 
Resonance Imaging (MRI) which is used for diagnosis of brain, vascular diseases and all the human body. In the studies 
[18-21], the uniform MHD has been used. There are a few attempts in which induced magnetic field is used. They are 
mentioned in the works of [22-30]. Rathod et al. [31] studied the influence of wall properties on MHD peristaltic transport of 
dusty fluid. A new model for study the effect of wall properties on peristaltic transport of a viscous fluid has been 
investigated by Mokhtar and Haroun [32], Srinivas et al. [33] studied the effect of slip, wall properties and heat transfer on 
MHD peristaltic transport. Sreenadh et al. [34] studied the effects of wall properties and heat transfer on the peristaltic 
transport of food bolus through oesophagus. Al-Khafajy and Abdulhadi [35] analyzed the Effects of MHD and wall 
properties on the peristaltic transport of a Jeffrey fluid through porous medium channel. 

Ali et al. [36] presented the analytic solution of the mathematical modeling for the flow of incompressible Carreau fluid in 
an asymmetric channel with sinusoidal wall variations. Hayat et al. [37] examined the MHD peristaltic flow of a Carreau 
fluid in a channel with different waveforms. Due to the non-linear dependence, the analysis of the behaviors of the non-
Newtonian Carreau fluids tends to be more complicated and subtle in comparison with that of the non-Newtonian fluids. In 
general, the equations of motion for non-Newtonian fluids are of higher complexity than the Navier-Stokes equations and 
thus one needs some conditions in addition to the usual adherence boundary condition. Hence, there is a need for a 
method which provides a means of obtaining other conditions necessary for the solution. 

Motivated by this, we consider a mathematical model to study the peristaltic flow of a Carreau fluid under the effect of 
MHD and wall properties through porous medium. In the laboratory frame under the assumptions of long wavelength and 
low Reynolds number, the solutions of the governing equations of Carreau fluid have been found by using perturbation 
method. The results are analyzed for different values of parameters namely Grashof number, Darcy number, thermal 
conductivity, magnet, rigidity, stiffness and viscous damping forces of the channel wall. 

2. MATHEMATICAL FORMULATION   

Consider the peristaltic flow of an incompressible Carreau fluid in a flexible channel with flexible induced by sinusoidal 
wave trains propagating with constant speed c along the channel walls. 

                                         Y                                                                            H(x) is the wall            

                                                                                                                                  c 

                                        a 

                                           

0                                                                      2                                                                    X                             

Figure1. Geometry of the problem 
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 The wall deformation is given by 

)(cos),( 2 tcxatxH 



                                                                                                                                   (1) 

where h , x , t ,  ,   and c represent transverse vibration of the wall, axial coordinate, time, half width of the channel, 

amplitude of the wave, wavelength and wave velocity respectively. 

The constitutive equation for a Carreau fluid [38] is   

    ])(1)([ 2

1
2

0



 
n

                                                                                                                     (2) 

where   is the extra stress tensor,   is the infinite shear rate viscosity, 0  is the zero shear rate viscosity,   is the 

time constant, n is the dimensionless power law index and   is defined as  

 
2

1

2

1

i j

jiij                                                                                                                                          (3) 

Here   is the second invariant stress tensor. We consider in the constitutive equation (2) the case for which  = 0 and 

  < 1 so we can write  

  ])(
2

1
1[ 2

0 



n

                                                                                                                                            (4) 

The above model reduces to Newtonian model for n = 1 or   = 0. 

The basic equations governing the non-Newtonian incompressible Carreau fluid are given by:   

The continuity equation is given by:  

0









y

v
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u
,                                                                                                                                                                  (5) 

The momentum equations are: 
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                                                                                        (7) 

The temperature equation is given by:  


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
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u
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 ,                                                                                                                   (8) 

where u  is the axial velocity, v  transverse velocity, y  transverse coordinate,   fluid density, p  pressure, 0  fluid 

viscosity,  g  acceleration due to gravity,   coefficient of linear thermal expansion of fluid, 0B  magnetic parameter,  T 

temperature, pc  specific heat at constant pressure, k is the thermal conductivity and   constant heat 

addition/absorption. 

The velocity and temperatures at the central line and the wall of the peristaltic channel are given as: 

0TT    at  0y  

1TT    at  hy   

where 0T  is the temperature at centre is line and 1T  is the temperature on the wall of peristaltic channel. 

The governing equation of motion of the flexible wall may be expressed as: 
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0

* ppL                                                                                                                                                                         (9) 

where 
*L  is an operator, which is used to represent the motion of stretched membrane with viscosity damping forces such 

that 

t
C

t
m

x
L
















2

2

12

2
*                                                                                                                                       

(10) 

where   is the elastic tension in the membrane, 1m  is the mass per unit area, C is the coefficient of viscous damping 

forces. 

Continuity of stress at hy   and using momentum equation, yield 
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                                  (11)     

In order to simplify the governing equations of the motion, we may introduce the following dimensionless transformations 
as follows: 
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where   is the length of the channel, We Weissenberg number, Da Darcy number, Re Reynolds number, Gr Grashof 

number,   dimensionless temperature, M  magnetic parameter,   dimensionless heat source/sink parameter and Pr  

Prandtl number. 

Substituting (12) into equations (1)-(11), we obtain the following non-dimensional equations and boundary conditions: 

)(cos1),( 2 txtxh                                                                                                                              (13) 
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where 
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The corresponding boundary conditions are 

y

u




= 0    at   y = 0   (the regularity condition)                                                                                                                    (20) 

u = 0       at    y = h   (the no slip condition)                                                                                                                        (21) 
v = 0       at    y = 0    (the absence of transverse velocity)                                                                                                 (22) 

  = 0      at    y = 0   and      = 1     at    y = h                                                                                                                  (23)  

3. SOLUTION OF THE PROBLEM 

The general solution of the governing equations (14)-(18) in the general case seems to be impossible; therefore, we shall 

confine the analysis under the assumption of small dimensionless wave number. It follows that  << 1. In other words, we 

considered the long-wavelength approximation. Along to this assumption, equations (13)-(18) become:  
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(29)     The corresponding Stream function ( yu   , xv   ) with boundary condition 0 at 0y .  

The exact solution of equation (28) with boundary condition equation (23) is  

)(
2

2yhy
h

y



                                                                                                                                                  

(30) Equation (27) shows that p dependents on x only. Equation (29) is non-linear and it is difficult to get a closed form 

solution. However for vanishing We, the boundary value problem is agreeable to an easy analytical solution. In this case 

the equation becomes linear and can be solved. Nevertheless, small   suggests the use of perturbation technique to 
solve the non-linear problem. Accordingly, we write 



  ISSN 2347-3487                                                           

 

1111 | P a g e                                                                                                                                  November  11, 2014 











)(

)(

6

2

4

1

2

0

6

2

4

1

2

0

WeOWeWe

WeOuWeuWeuu


                                                                                                                   (31) 

Substituting equations (31) into equation (29) with boundary conditions (20) and (21), then equating the like powers of We, 

we obtain 

3.1 Zeroth-order system (
0We ) 

tx

h
E

tx

h
E

x

h
EGru

Da
M

y

u


















 2

32

3

23

3

10

2

2

0

2

)
1

(                                                                               
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(33) The associated boundary conditions are  
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3.3 Second-order system (
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 dyu22                                                                                                                                                                     (39)  

The associated boundary conditions are  

0)(21

0

2 






hu
y

u

y

 and 02   at 0y                                                                                                              (40) 

3.4 Zeroth-order solution 

The solutions of equations (32) and (33) subset to the associates boundary conditions (34) are found to be of the form; 
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where 1D and 2D  are constants to be determinate by using the boundary conditions equation (34).  

3.5 First-order solution 

The solutions of equations (35) and (36) subset to the associates boundary conditions (37) are found to be of the form; 
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The formula of 1u , 2u  and 2  is a very long. The attendant constants 3D , 4D , 5D  and 6D  can be determinate by 

using the boundary conditions equations (37) and (40).  

Finally, the perturbation solutions up to second order for u and   are given by 

2
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1

2

0 uWeuWeuu                                                                                                                                            (44) 

2

4

1

2

0  WeWe                                                                                                                                     (45) 

4. RESULTS AND DISCUSSION  

In this section, the numerical and computational results are discussed for the problem of an incompressible non-
Newtonian the peristaltic flow of a Carreau fluid model through porous medium under combined effects of MHD and wall 
properties through the graphical illustrations. The numerical evaluations of the analytical results and some important 
results are displayed graphically in figures 2 - 18. MATHEMATICA program is used to find out numerical results and 
illustrations. The analytical solutions of the momentum equation and temperature equation are obtained by using 
perturbation technique. All the obtained solutions are discussed graphically under the variations of various pertinent 
parameters in the present section. The trapping bolus phenomenon is also incorporated through sketching graphs of 
streamlines for various physical parameters. 

Based on equation (44), figures 2 - 7 illustrates the effects of the parameters 1E , 2E , 3E , We, Gr,  , M, Da,   and n 

on the velocity. Figure 2 illustrates the effects of the parameters 1E  and 2E  on the velocity distribution function u vs. y. It 

is found that the velocity profile u rising up with the increasing effects of both the parameters 1E  and 2E , when y < 

0.8643, and attains its maximum height at y = 0, the fluid velocity starts increasing and tends to be constant at the 

peristaltic wall )(xh as specified by the boundary conditions. From figure 3 One can depict here that velocity decreases 

with increasing of 3E , while that velocity profile is rising up with increasing of the parameters We, when y < 0.8643. 

Figure 4 contains the behavior of u under the variation of Gr and  , one can depict here that u go down with the 

increasing effects of both the parameters Gr and  , when y < 0.8643. Figure 5 illustrates the effects of the parameters 

M and Da on velocity profile. One can depict here that velocity decreases with increasing of Da, while that velocity profile 

is rising up with increasing of M, when y < 0.8643. Figure 6 show that velocity distribution decreases with the increasing 

of . Also at   = 0.15, u > 0 when y < 0.8643 and u(0.8643) = 0. At   = 0.175, u > 0 when y < 0.8417 and u(0.8417) 

= 0. At   = 0.2, u > 0 when y < 0.8191 and u(0.8191) = 0. And at   = 0.225, u > 0 when y < 0.7965 and u(0.7965) = 

0, as specified by the boundary conditions. And Figure 7 show that velocity distribution decreases with the increasing of n. 
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Figure2. Velocity profile for different values of 1E  and 2E  with 

9.0,7.0,1,15.0,1,1.0,5.0,05.0,1.0,0 3  MDaGrEnWetx   

     

Figure3. Velocity profile for different values of  We and 3E  with 

9.0,7.0,1,15.0,1,2.0,3.0,5.0,1.0,0 21  MDaGrEEntx   

     

Figure4. Velocity profile for different values of Gr and  with 

9.0,7.0,15.0,1.0,2.0,3.0,5.0,05.0,1.0,0 321  MDaEEEnWetx   
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Figure5. Velocity profile for different values of Da and M with 

1,15.0,1,1.0,2.0,3.0,5.0,05.0,1.0,0 321  GrEEEnWetx  

                                       

      

Figure6. Velocity profile for different values of   with 

9.0,7.0,1,1,1.0,2.0,3.0,5.0,5.0,1.0,0 321  MDaGrEEEnWtx   

 

   

Figure7. Velocity profile for different values of n and We with 

9.0,7.0,1,1,15.0,1.0,2.0,3.0,1.0,0 321  MDaGrEEEtx   
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     Figure8. Temperature distribution for different values of    with  15.0,1.0,0  tx  

 

Based on equation (30), figure 8 shows that effects of the parameter   on the temperature distribution function . The 

temperature increases with the increase in  , when y < 0.8643, and  (0.8643) = 1 (at y = h = 0.8643) as specified by 

the boundary conditions.   

5. TRAPPING PHENOMENON  

The formation of an internally circulating bolus of fluid by closed streamlines is called trapping and this trapped bolus is 
pushed ahead along with the peristaltic wave. 

Based on equation (45), the effects of 1E , 2E , 3E , Gr,  , Da, M, We,   and n on trapping can be seen through 

Figures 9 - 18, it is observed that the bolus move near the side walls. Figure 9 show that the size of the trapped bolus 

increase with the increase in 1E . Figure 10 is plotted the effect of 2E on trapping, the size of the trapped bolus increase 

with the increase in 2E . Figure 11 show that the size of the left trapped bolus increases with increase in 3E  where as the 

size of the right trapped bolus decreases with increase in 3E . The effect of Grashof number Gr on trapping is analyzed in 

Figure 12. It can be concluded that the size of the trapped bolus in the left side of the channel decreases when Gr 
increases where as it has opposite behavior in the right hand side of the channel. Figure 13 show that the size of the left 

trapped bolus decreases with increase in   where as the size of the right trapped bolus increases with increase in  . 

The influence of Darcy number Da on trapping is analyzed in Figure 14. It shows that the size of the trapped bolus 
decreases with increase in Da. Figure 15 show that influence of M on trapping. It shows that the size of the trapped bolus 
increases with increase in M. The influence of Weissenberg number We on trapping is analyzed in Figure 16. It shows that 

the size of the trapped bolus increases with increase in We. The effect of   on trapping is analyzed in figure 17. We 

notice that the size of the trapped bolus increases with increase  . And figure 18 show that the size of the trapped bolus 

decreases with increase in n. 
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Figure9. Graph of the streamlines for three different values of
1E ; (a) 

1E = 0.25, (b) 
1E = 0.3 and (c) 

1E = 0.35 at 

1,15.0,1,9.0,8.0,1.0,2.0,5.0,05.0,1.0 32  GrMDaEEnWet  

 

 

Figure10. Graph of the streamlines for three different values of
2E ; (a) 

2E = 0.15, (b) 
2E = 0.2 and (c) 

2E = 0.25 at 

1,15.0,1,9.0,8.0,1.0,3.0,5.0,05.0,1.0 31  GrMDaEEnWet  

 

  

Figure11. Graph of the streamlines for three different values of
3E ; (a) 

3E = 0.1, (b) 
3E = 0.2 and (c) 

3E = 0.3 at 

1,15.0,1,9.0,8.0,2.0,3.0,5.0,05.0,1.0 21  GrMDaEEnWet  

 

Figure12. Graph of the streamlines for three different values of Gr ; (a) Gr = 1, (b) Gr = 2 and (c) Gr = 3 at 

1,15.0,9.0,8.0,1.0,2.0,3.0,5.0,05.0,1.0 321  MDaEEEnWet  
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Figure13. Graph of the streamlines for three different values of  ; (a)  = 1, (b)  = 2 and (c)  = 4 at 

15.0,1,9.0,7.0,1.0,2.0,3.0,5.0,05.0,1.0 321  GrMDaEEEnWet  

 

Figure14. Graph of the streamlines for three different values of Da; (a) Da = 0.8, (b) Da = 0.85 and (c) Da = 0.9 at 

1,15.0,1,9.0,1.0,2.0,3.0,5.0,05.0,1.0 321  GrMEEEnWet  

 

 

Figure15. Graph of the streamlines for three different values of M; (a) M = 0.8, (b) M = 0.9 and (c) M = 0.95 at 

1,15.0,1,8.0,1.0,2.0,3.0,5.0,05.0,1.0 321  GrDaEEEnWet  
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Figure16. Graph of the streamlines for three different values of We; (a) We = 0, (b) We = 0.025 and (c) We = 0.05 at 

1,15.0,9.0,8.0,1,1.0,2.0,3.0,5.0,1.0 321  MDaGrEEEnt  

 

 

Figure17. Graph of the streamlines for three different values of ; (a)  = 0.15, (b)  = 0.175 and (c)  = 0.2 at 

1,1,9.0,8.0,1.0,2.0,3.0,5.0,05.0,1.0 321  GrMDaEEEnWet  

 

 

Figure18. Graph of the streamlines for four different values of n; (a) n = 0.5, (b) n = 0.75, and (c) n = 1 at 

1,15.0,9.0,7.0,1,1.0,2.0,3.0,05.0,1.0 321  MDaGrEEEWet  

6. CONCLUDING REMARKS  

The present study deals with the combined effect of MHD and wall properties on the peristaltic transport of a Carreau fluid 
in a two dimensional channel through porous medium. We obtained the analytical solution of the problem under long 
wavelength and low Reynolds number assumptions. The perturbation series in the Weissenberg number (We < 1) was 
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used to obtain explicit forms for velocity field and stream function per one wavelength. The results are analyzed for 
different values of pertinent parameters namely Grashof number, Darcy number, thermal conductivity, rigidity, stiffness, 
magnet and viscous damping forces of the channel wall through porous medium. From wall properties and type of fluid 
(Carreau), we observed that the bolus move near the side walls. The main findings can be summarized as follows:  

1. The axial velocity increases with the increase in 1E , 2E , We and M, when y < 0.8643. Further, the axial velocity 

decreases with increase in 3E , Gr,  , Da,   and n. 

2- The size of the trapped bolus increase with the increase in 1E , 2E , M,   and We. While the size of the trapped bolus 

decreases with increase in Da and n.  

3- The size of the left trapped bolus increases with increase in 3E  where as the size of the right bolus decreases with 

increase in 3E . And the size of the trapped bolus in the left side of the channel decreases when Gr and   increases 

where as it has opposite behavior in the right hand side of the channel.  

4. The coefficient of temperature increases with increasing values of thermal conductivity. 
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