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ABSTRACT 

In this review we study the elementary structure of Conformal Field Theory in 2d which is a recipe for further studies of 

critical behavior of various systems in statistical mechanics and quantum field theory. We briefly review CFT in d
dimensions which plays a prominent role for example in the well-known duality AdS/CFT in string theory where the CFT 
lives on the AdS boundary. We also describe the mappingof the theory from the cylinder to a complex plane which will 
help us gain an insight into the process of radial quantization and radial ordering. Finally we will develop the 
representation of the Virasoro algebra which is the well-known "Verma module".   
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INTRODUCTION 

Symmetry principles play an important role with respect to the laws of nature. They summarize the regularities of the laws 
that are independent of the specific dynamics. Thus invariance principles provide a structure and coherence to the laws of 
nature just as the laws of nature provide a structure and coherence to the set of events. With the development of quantum 
mechanics in the 1920s, symmetry principles came to play a fundamental role. In the latter half of the 20th century 
symmetry has been the most dominant concept in the exploration and formulation of the fundamental laws of physics. 
Today it serves as a guiding principle in the search for further unification and progress. 

Compared to ordinary quantum field theories in four dimensions, conformal field theories in two dimensions can be defined 
in a rather abstract way via operator algebras and their representation theory. In fact, there are many examples of CFTs 
where the usual description in terms of a Lagrangian action with resulting perturbative expansion is not even known. 
Instead, following a so-called boot-strap approach, one can define these theories without making reference to an action 
and sometimes one can even solve them exactly. Such a procedure is possible because the algebra of infinitesimal 
conformal transformations in two dimensions is very special in contrast to its higher dimensional counterparts - it is infinite 
dimensional and therefore highly constraining.  

The main feature of a conformal field theory is the invariance under conformal transformations. Roughly speaking, these 
are transformations leaving angles invariant and a particular example is the scaling x ax of a distance x  by some 

constant a . A field theory exhibiting such symmetry has no preferred scale and one can only expect a physical system to 

have this property, if there are no dimensionful scales involved. Polyakov [1] conjectured that systems (with assumptions 
such as isotropy and possibly locality of interactions) exhibiting scale invariance in 2D possess a symmetry larger than 
simple scaling. This symmetry group is called the conformal group.As an example, the field theory of a free boson 
encounters a conformal symmetry for the case of vanishing mass. And even for interacting theories it is known that at the 
fixed point of a renormalization group flow, there are only long-range correlations. Therefore, the natural mass scale at this 
point, that is, the inverse of the correlation length, vanishes and a conformal field theory description might be available. 
Physical systems with a conformal symmetry are thus more common than one would have naively expected.  

Another important instance featuring conformal symmetry is string theory, which is a candidate theory for the unification of 
all interactions including gravity. Here, the CFT arises as a two-dimensional field theory living on the world-volume of a 
string which moves in some background space-time. The dynamics of this string is governed by a non-linear sigma model 

whose condition for conformal invariance, that is, the vanishing of the   function, gives the string equations of motion. 

The sigma model perturbation theory is governed by an expansion in /s R , where s isthe natural string length and R a 

typical length scale of the background geometry. With the help of CFT techniques, one can sometimes solve such theories 
exactly to all orders in perturbation theory and one can sum all contributions of so-called worldsheet instantons. Therefore, 
conformal field theory is a very powerful tool for string theory, not only in the perturbative regime but also at small length 
scales where genuine string effects become important and geometric intuition often fails. 

CONFORMAL SYMMETRY IN D-DIMENSIONS 

In this section we discuss the conformal symmetry in arbitrary dimension. We investigate the generators and their 

commutation relations and further, the conformal group is identified with the non-compact group ( 1,1)SO d  . We study 

the action of a conformal transformation on fields at the classical level and relate the scale invariance to tracelessness of 
the energy momentum tensor. We then look at the consequences of conformal invariance at the quantum level on the 
structure of correlation functions and derive the form of two- and three-point functions and the Ward identities.  

Given a metric tensor g , a conformal transformation of the coordinates is an invertible mapping 'x x , such that the 

metric tensor is invariant up to a scale:  

' ( ') ( ) ( )g x x g x  
                                               (1.1)

 

The set of conformal transformations manifestly form a group. It has the Poincare group as a subgroup which corresponds 

to ( ) 1x  . Conformal field theories care only about angles and not about distances and the physics of the theory looks 

the same at all length scales.  

We begin with the consequence of the definition 1.1 on an infinitesimal transformation x x    x x    . 

Under 'x x , we have '
' '

x x
g g g

x x

 

   

 
 

 
. So to first order in  , the metric will transform in following 

manner:  

( )g g                   (1.2) 

For this transformation to be conformal, it requires that        is proportional to the metric. Hence 
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( )f x g       

         (1.3)
 

The proportionality factor can be derived by contracting both the sides with the metric:  

    

2
( )f x

d



 
         (1.4)     

 

For the sake of simplicity, we assume that the metric is the Cartesian metric g  , where (1,1,...,1)diag  . 

By applying an extra derivative  on 1.3, permuting the indices and taking a linear combination, one gets 

   
2 f f f                  

  (1.5)
 

And upon contracting with
 , this becomes 

    

22 (2 )d f    
         (1.6)

 

Using this and 1.3, we finally get 

     

2( 1) 0d f  
         (1.7)

 

We can get a good idea of the form of the function f using the above equation for different dimensions. When 1d  , no 

constraint is imposed on f  and therefore any smooth transformation is a conformal transformation in one dimension. It is 

quite obvious as the notion of angle doesn't exist in one dimension. For the case 2d  , above equations imply that

2 0f  . This is true if f is a linear function of coordinates:  

     
( )f x A B x

 
                       (1.8)

 

A and B  are constants. Now we insert this expression into 1.5 to get the general form of . As f is linear in x , ( )x can 

be at most quadratic in x . We can write the general expression  

    
a b x c x x  

      
                                    (1.9)

 

Here c is symmetric in  and  . Now we can consider each of the terms in the expansion separately. a   is 

ordinary translation independent of x . To get the properties of b , we insert b x    into the equation 1.3 which 

yields 

     

2
b b b

d



    
                     (1.10)

 

which implies that b is a sum of antisymmetric part and a pure trace:  

b m     

The trace part signifies a scale transformation while the antisymmetric part is an infinitesimal rigid rotation. Substitution of 
the quadratic term into eq 1.5 yields 

c b b b             
1

b c
d



            (1.11) 

This gives 
22 .x xb b x       which is called the special conformal transformation (SCT). This may also be viewed 

as
2 2' / ' /x x x x b    , a combination of inversion and translation. Note that the points on the surface 

2 21 2 . 1b x b x    have their distances from the origin preserved while the points on the exterior of this surface are 

sent to the interior and vice versa. Now the generators of the conformal group (discussed in Appendix A), take the 
following form  
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Translation P i     

                                                     Dilation D ix

  
        (1.12)

 

                                                     Rotation ( )L i x x L        

SCT 
2(2 )K i x x x

         

This admits a total of 1 (1/ 2) ( 1) (1/ 2)( 1)( 2)d d d d d d       generators which as we will shortly 

demonstrate, is isomorphic to ( 1,1)SO d  . These generators obey the following commutation rules: 

 

[ , ]D P iP   

[ , ]D K iK    

[ , ] 2 ( )K P i D L             (1.13) 

[ , ] ( )K L i P K         

[ , ] ( )P L i P P         

[ , ] ( )L L i L L L L                 

 

To make the above commutation rules more familiar, we define the following generators:  

J L    
1,

1
( )

2
J P K           (1.14) 

1,0J D    
0,

1
( )

2
J P K     

where ab baJ J  and a,b take values { 1,0,1,..., }d . These new set of operators obey the ( 1,1)SO d  commutation 

relations:  

[ , ] ( )ab cd ad bc bc ad ac bd bd acJ J i J J J J                         (1.15) 

where ab has Minkowski signature, ( 1,1,...,1) and is constructed by adding two dimensions of signature ( 1, 1)  to 

the d Euclidean dimensions. This shows the isomorphism between the conformal group in d dimensions and the group

( 1,1)SO d  . Note that the d dimensional Euclidean group along with dilations forms a subgroup ( ) (1,1)SO d SO of 

the full conformal group. Note that if we work in d dimension space-time with Minkowski signature, the conformal group 

will be ( ,2)SO d .  

Conformal Invariance in Classical Field Theory 

We now define the effect of conformal transformations on classical fields. Given an infinitesimal conformal transformation 

paramerized by gw , a multicomponent field ( )x transforms as  

'( ') (1 ) ( )g gx iw T x   
       (1.16)

 

The generators gT are added to the space-time part given in 1.13 to obtain the full generator of the symmetry. The method 

to find the allowed form of these generators is to start by studying the subgroup of the Poincare group that leaves the 

origin 0x  invariant, which is the Lorentz group. The action of infinitesimal Lorentz transformation on (0) is given as:  
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(0) (0)L S   

                                                (1.17)
 

S is the spin associated with the field  . Next, by commutation relations of Poincare group, we translate L to a 

nonzero value of x :  

   

ix P ix P
e L e S x P x P

 
 

     


  

       (1.18)
 

where we used the Hausdorff formula to evaluate the lhs. We proceed in similar fashion to evaluate the whole group. We 
obtain the following form for all the generators:  

  

2

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) (2 2 ) ( )

P x i x

D x i x x

L x i x x x S x

K x i x x x x ix S x

 





     

 

     

    

      

       

         
     (1.19)

 

 is the scaling dimension of the field  . Under a conformal transformation 'x x , a spinless field  ( 0S  ) of 

scaling dimension , transforms as  

    
( ) '( ') ( )x x x    

                                  (1.20)
 

We can write this expression in terms of the scale factor  from 1.1 as 

/ 2'( ') ( )x x  
       (1.21)

 

which comes from the invariance of line element 
2ds . 

2 2

2

2

'

' ( ') ' ' ( )

( ) ( )

ds ds

g x dx dx g x dx dx

g x dx dx g x dx dx

   

 

   

 





 

 

   

     (1.22) 

Now since the infinitesimal volume element should be invariant under the conformal transformation, we have  

  

1/2 1/2'( '( ')) ( ( ))d dd x g x d x g x
                                 (1.23)

 

where ( )g x is the determinant of the metric, the above equation is equivalent to  

    

/ 2 1/ 2 1/ 2'
( ) ( ) ( )d d dx

d x x g x d xg x
x


 


      (1.24)

 

where '/x x  is the Jacobian of conformal transformation. This gives the following relation between the Jacobian and 

the scale factor: 

     
/ 2'

( ) dx
x

x


 


       (1.25)

 

We can use the above identity and rewrite 1.19 as  

    

/
'

'( ') ( )

d
x

x x
x

 







        (1.26)

 

A field transforming in above form is called a “quasi-primary” field.  
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The Energy-Momentum Tensor 

Under an arbitrary transformation ' ( )x x x  , the action changes as: 

 

1
( )

2

d dS d xT d xT 

             
     (1.27) 

 

whereT 
is the energy momentum tensor. We assume here that T 

is symmetric as we know it can always be made 
symmetric by transforming it to Belinfante form. Now using equation 1.3 and 1.4 for an infinitesimal conformal 
transformation, we reduce the above equation to the following form:  

    
1 dS d xT
d

 

        (1.28)  

The tracelessness of the energy momentum tensor implies the invariance of the action under conformal transformation. 

The converse is however not true as 


  is not an arbitrary function as 
  can only be of form shown in 1.9, i.e. at 

most quadratic in x .Current for a general infinitesimal transformation is given as: 

 

   
( ) ( )

a

a a

L x L F
j L

w w


 

 

 

 


 

  
                 (1.29) 

where    

'

'( ') ( ) ( )

a

a

a

a

x
x x w

w

F
x x w x

w


  







 

   

                                    (1.30) 

{ }aw is a set of infinitesimal parameters. For an infinitesimal dilation, we can write / ax w x     and 

/ aF w   . Inserting this in eq. 1.29, the associated dilation current can be written  

( ) ( )
D

L L
j Lx x  



 

 
      

     
 

( )
c

L
T x 






  

  
        (1.31) 

 

cT 

 being the canonical energy-momentum tensor. Now, one can show that by using the symmetries of a theory, we can 

write down a symmetric and traceless energy momentum tensor which is related to the dilation current as  

     Dj T x  


    (1.32)

 

We notice that 0j  since the energy-momentum tensor is traceless. It can be shown that in 2 dimensions no 

modification is required to the canonical energy-momentum tensor and it is already traceless and similarly related to the 
current as in above equation. 

Conformal Invariance in Quantum Field Theory 

Transformation of the Correlations Functions 

At Quantum level, correlation functions are the main object of study, and a continuous symmetry leads to constraints 

relating different correlation functions. Consider a theory involving a collection of fields  with action [ ]S   invariant 

under a transformation of type 'x x and ( ) '( ')x x  . A general correlation function is written as  

 

[ ]

1 2 1 2

1
( ) ( )... ( ) [ ] ( ) ( )... ( )exp S

n nx x x d x x x
Z

        
 (1.33)
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where Z is the vacuum functional. The consequence of the symmetry of action and of the invariance of the functional 
integration measure under the above transformation is the following identity.  

 1 2 1 2( ' ) ( ' )... ( ' ) ( ( )) ( ( ))... ( ( ))n nx x x F x F x F x      
 (1.34)

 

where the mapping F describes the functional change of the field under the transformation.  

2, 3 and 4-Point Functions 

Conformal invariance puts restriction on the form the two and three-point correlation functions of quasi-primary fields. We 
know how a quasi primary field should transform under conformal transformation and this will put a set of constraints on 
the structure of the correlation functions. Let us consider a two-point function  

  

[ ]

1 1 2 2 1 1 2 2

1
( ) ( ) [ ] ( ) ( ) Sx x d x x e

Z
      

  (1.35)

 

where 1 and 2 are quasi-primary fields and
[ ]Se 

is the action which is conformally invariant. We also assume that the 

functional integration measure is conformally invariant. The correlation functions will transform in the following manner 

  

1 2

1 2

/ /

1 1 2 2 1 1 2 2

' '
( ) ( ) ( ' ) ( ' )

d d

x x x x

x x
x x x x

x x
   

 

 

 


 
  (1.36)

 

Here i is the scaling dimension of field i . Now translation and rotation invariance require that  

    1 1 2 2 1 2( ) ( ) ( )x x f x x           (1.37) 

Under a scale transformation x x we get 

   

1 2

1 1 2 2 1 1 2 2( ) ( ) ( ) ( )x x x x       


      (1.38)
 

In other words we can write  

    

1 2

12
1 1 2 2

1 2

( ) ( )
C

x x
x x

 
 




       (1.39)

 

where 12C is a constant coefficient. Recall that the function should also be invariant under special conformal 

transformation. Under such a transformation  

 

2 2

2 2 1/2 2 2

' 1

(1 2 . )

' '
' '

(1 2 . ) (1 2 . )

d

i j i j

i j

i i j j i j

x

x b x b x

x x x x
x x

b x b x b x b x  




  

 
  

   
     (1.40)

 

Covariance of 1.39 under special conformal transformation implies  

   

1 2

1 2 1 21 2

( )/2

12 12 1 2

1 21 2 1 2

( )C C

x x x x

 

 

 

    


 
      (1.41)

 

This is true only when 1 2   . This means that two quasi-primary fields are correlated only if they have same scaling 

dimensions. Similarly we can argue that a three-point correlation function should have the following form:  

    

( )

123
1 1 2 2 3 3

12 23 31

( ) ( ) ( )
abc

a b c

C
x x x

x x x
   

      (1.42)

 

where 
ij i jx x x and a,b,c are such that  
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    1 2 3a b c     
       (1.43)

 

Demanding invariance under special conformal transformation, we have  

   
31 2

( ) ( ) /2 /2 /2

123 123 1 2 2 3 1 3

12 23 31 1 2 3 12 23 31

( ) ( ) ( )abc abc a b c

a b c a b c

C C

x x x x x x

     

    


     (1.44)

 

This is true when we have the following set of constraints 

     

1 2 3

2 3 1

3 1 2

a

b

c

    

    

    
       (1.45)

 

Therefore the correlator of three quasi-primary fields can be written as  

   
1 2 3 2 3 1 3 1 2

123
1 1 2 2 3 3

12 23 31

( ) ( ) ( )
C

x x x
x x x

  
        



     (1.46)

 

The conformal invariance however does not provide enough constraints to fix the structure of four-point correlation 
function or beyond. This is because the global conformal transformations only allow us to fix threecoordinates, so the best 

we can do is to take say 1 2 3 4, , , ,1, ,0x x x x x . Indeed, with four points, it is possible to construct conformal 

invariants, the anharmonic ratios 

1 2 3 4 1 2 3 4

1 3 2 4 2 3 1 4

&
x x x x x x x x

x x x x x x x x

   

   
      (1.47) 

and the residual x will be a function of these ratios. The best we can do is write the four-point correlation function in terms 

of these ratios 

   

4
/312 34

1 1 2 2 3 3 4 4

13 24

( ) ( ) ( ) ( ) ( ) i j

ij

i j

x x
x x x x f x

x x
   

  



 
     (1.48)

 

where
4

1i i    and the function f is undetermined.  

Ward Identities 

The Ward identities are used to exhibit the consequence of the symmetry of action and measure on the correlation 

functions. As shown in the appendix [C], the ward identity for a current aj


is given as  

1 2 1 2( ) ( )... ( ) ( ) ( )... ( )... ( )a n i a n
i

j x x x i x x x G x x
x







         

      (1.49)

 

aG is the generator of symmetry transformation. We use this equation to write down the Ward identity for translation 

invariance. The energy momentum tensor is the current associated with translation invariance and the corresponding 

generator isG
x

 





. Hence if we define X as a product of n local fields, we have  

   

( )i
i

i

T X x x X
x



  



   


       (1.50)

 

Now we find the Ward identity associated with Lorentz invariance. The current is written as  

    
j T x T x     

        (1.51)
 

whereT 
is the symmetrized tensor. The generator of Lorentz transformation is given as 
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( )L x x S        

       (1.52)
 

S 
is the spin generator. Consequently the Ward identity is  

( ) ( )[ ]i i i i i i
i

T x T x X x x x x X iS X        

         
     (1.53)

 

Index i is for the 
thi field in X . On the lhs, we use 1.50 to reduce the above identity to 

   ( ) ( )i i
i

T T X i x x S X         (1.54)  

which states that the energy-momentum tensor is symmetric within correlation functions except at the positions of the 
fields.  

 

Finally we derive the Ward identity for the scale invariance. As shown in 1.19 and 1.32, the dilation current is
Dj T x  



and the dilation generator D ix i

      respectively. We insert these in 1.49 

  

( )( )i i i
i

i

T x X x x x X X
x

  

  



    


      (1.55)

 

Again using the 1.47, this reduces to  

  

( )i i
i

T X x x X

    
       (1.56)

 

 

The trace of the energy-momentum tensor vanishes except at the location of the fields. The 3 equations 1.50, 1.54 and 
1.56 are the Ward identities associated with the conformal symmetry.  

CONFORMAL TRANSFORMATIONS IN 2 DIMENSIONS 

Unlike other dimensions, where the conformal group is finite dimensional and global, in 2D , it is local as well as infinite 
dimensional. The condition for a transformation to be conformal is the same as the Cauchy-Riemann condition for an 
analytic function. Since there are an infinite number of analytic functions on a plane, this implies that the conformal group 
is infinite dimensional. We develop the language of holomorphic and antiholomorphic coordinates on a plane which is a 

prominent tool in 2 D CFT. We exhibit the distinction between local and global transformations and introduce 

generators for local conformal transformations.  

Conformal Group in 2D  

In 2 dimensions, it is convenient to work with complex coordinates. We introduce complex coordinates   

    
1 2 1 2,z x ix z x ix   

         (2.1)
 

In this coordinate system, the metric tensor and its inverse look like  

   

0 1/ 2 0 2
,

1/ 2 0 2 0
g g



   
    
             (2.2)

 

where  takes the values z and z . Hence, the line element can be written as
2ds dzd z .  

Also the antisymmetric tensor  and 
  are 

   

0 / 2 0 2
,

/ 2 0 2 0

i i

i i



 
   

    
             (2.3)

 

Now under a conformal transformation 'x x , the metric tensor transforms as  
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( ) ( )
w w

g z g w
z z

 
 

 

   
  

            (2.4)

 

Now using the form of metric tensor as in eq. 2.2, we find  

   

2 2 2 2
0 0 1 1

0 1 0 1

w w w w

z z z z

          
         

                   (2.5)

 

0 1 0 1

0 0 1 1
0

w w w w

z z z z

   
 

   
 

Solving these equations, we find they are equivalent either to  

1 0 0 1

0 1 0 1
&

w w w w

z z z z

   
  

   
 

Or                (2.6) 

1 0 0 1

0 1 0 1
&

w w w w

z z z z

   
  

   
 

We notice these are the Cauchy-Riemann equations for holomorphic and antiholomorphic equations. In terms of the 
complex coordinates these equations are written as  

     

( , ) 0

( , ) 0

z

z

w z z

w z z

 

 
          (2.7)

 

The solutions to these two equations are any anti-holomorphic or holomorphic mapping respectively.  

     

( )

( )

z w z

z w z




          (2.8)

 

Two dimensional conformal transformations thus coincide with the analytic coordinate transformations, the local algebra of 
which is infinite dimensional.  

Conformal Generators 

To find the commutation relations of the generators of the conformal algebra, i.e. the mapping of the form 2.8, we take the 
infinitesimal transformation 

   

' ( ) ' ( )nn n nz z z c z z z z c z 
 

 

      
       (2.9)

 

where  

 

 

The corresponding infinitesimal generators are  

    

11
nn

nn

z z
l z l z

     
       (2.10)

 

These generators obey the following commutation relations:  

     

[ , ] ( )

[ , ] ( )

[ , ] 0

n m n m

n m n m

n m

l l n m l

l l n m l

l l





 

 


       (2.11)

 

1
1( ) ( )

n
n

nn z z z z 


   
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In quantum case the algebra will be corrected by adding an extra term related to the central charge. This is called the 

Witt's algebra. Since nl commute with ml , the conformal algebra is direct sum of two isomorphic algebras.   

We notice that the above algebra is a local algebra as the generators are not all well-defined globally on the Riemann 
sphere. Holomorphic conformal transformations are generated by  

    

1( ) n

n n n zv z a l a z
 



 

   
       (2.12)

 

Non-singularity of ( )v z as 0z  allows non-zero na only for 1n   . To check the behavior of ( )v z as z  , we 

carry out a transformation 1/z w  . 

  

1 1

11 1
( ) ( ) ( ) ( )

n n

n w n w

dz
v z a a

w dw w

  


 

      
      (2.13)

 

Absence of singularity at 0w demands that 0na  only for 1n  . Hence we find that only conformal transformations 

generated by n na l for 0, 1n   are defined globally. These transformations form a subgroup of the whole conformal 

group which are well-defined and invertible over the Riemann sphere (i.e. the whole complex plane plus the point at 

infinity). The globally defined generators are 1 0 11 0 1{ , } { , }l l l l l l  and they form the special conformal group. From 

2.10, we can identify the 1l and 1l as generators of translations, 00l l and 00( )i l l as generators of scale 

transformation and rotation and 1 1,l l as generators of special conformal transformations. A complete set of such global 

conformal transformations can be written as  

    

( ) , 1
az b

f z ad bc
cz d


  

        (2.14)

 

where a,b,c,d are complex numbers. These mappings are called the projective transformations and they form the 

(2, )SL C group .To each global conformal transformation we can associate the matrix,  

     

a b
A

c d

 
  
          (2.15)

 

In (2, )SL C language, we can write the transformations as  

 

  

/ 2

/ 2

1

1 0
: :

0 1 0

0 1 0
: :

0 1

i

i

A e
Translations Rotation

e

Dilations Special Conformal
B













  
  

   

   
   
   

      (2.16)

 

where 
1 2A a a  and 

1 2B b b  .  

Primary fields 

The global conformal algebra generated by 1 0 11 0 1{ , } { , }l l l l l l   is useful for characterizing properties of physical 

states. If we work in a basis of eigenstates of the two operators 0l and 0l , and denote their eigenvalues by h and h

respectively (here h and h are meant to indicate independent (real) quantities, not complex conjugates of one another), 

they are known as the conformal weights of the state. Since 00l l and 00( )i l l generate dilatations and rotations 

respectively, the scaling dimension  and the planar spin s of the state are given by h h   and s h h  . Or we 
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can say for given a field with scaling dimensions  and spin s , we write the holomorphic conformal dimension h and its 

anti-holomorphic counterpart h as 

    

1 1
( ) ( )

2 2
h s h s   

       (2.17)

 

Under a conformal map ( ), ( )z w z z w z  , a quasi-primary field transforms as  

    

'( , ) ( , )

hh
dw dw

w w z z
dz d z

 


  

   
          (2.18)

 

If the map z w is close to the identity, i.e. ( )w z z  and ( )w z z  with  and  very small, the variation of 

the quasi-primary field is   

  ,
'( , ) ( , ) ( ) ( )z z z z
z z z z h h

 
                    

     (2.19)
 

A field whose variation under any local transformation is given by above equations is called a primary field. All primary 
fields are quasi-primary but reverse is not true.  

Correlation Functions 

Expressed in terms of holomorphic and anti-holomorphic coordinates, the conformal transformation of correlation function 

of n primary fields i with conformal dimensions ih and ih is written as: 

1 1 1 1 1 1

1

( , )... ( , ) ( ) ( ) ( , )... ( , )i i

i i

n
h h

n n n w w n n nw w
i

dw dw
w w w w z z z z

dz d z
    

 



 (2.20)

 

This relation fixes the form of two- and three-point functions. We can use the conformal constraints similar to how we did 
in earlier sections and find the two- and three-point functions. However here we follow another method just to get a better 

insight. Now a two-point function (2)

1 1 1 2 2 2( , ) ( , ) ( , )i iG z z z z z z   will satisfy the following equation under 

infinitesimal transformation: 

 

(2)

1 1 1 2 1 2 2 2, , ,
( , ) ( , ), , ( , ) 0i iG z z z z z z

     
        

     (2.21)
 

Now using 2.19, this gives 

1 2 1

2

11 1 1 2 2 2 1 1

(2)
22 2

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

( ( ) ( )) ( , ) 0

(

)

z z z

i iz

z h z z h z z h z

z h z G z z

     

 

          

    
  (2.22)

 

We know and are at most quadratic in the coordinates. Let us first take ( ) 1z  and ( ) 1z  . This shows that 
(2)G

depends only on 12 1 2z z z  and 12 1 2z z z  . Then we use ( )z z  and ( )z z  to find 

1 2 1 2(2)

12 12 12/ ( )
h h h hG C z z 

  . Finally we use 
2( )z z  and 

2

( )z z  which puts a constraint 1 2h h h  and 

1 2h h h  . This results in the following form of the two-point function 

    

(2) 12

2 2

12 12

( , )i i h h

C
G z z

z z


       (2.23)

 

For a spinless field, from 2.17, we get / 2h h   .Then the above equation is equivalent to  

    

(2) 12

2

12

( , )i i

C
G z z

z




       (2.24)
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We can similarly find the three-point function 
(3)

1 2 3G      to take the form [3] 

   

1 2 3 2 3 1 3 1 2

1 2 3 2 3 1 3 1 2

(3)

123

12 23 31

12 23 31

1
( , )

1

{ }

{ }

i i h h h h h h h h h

h h h h h h h h h

G z z C
z z z

z z z

     

     

 

      (2.25)

 

Note that any three points 1 2 3, ,z z z can always be mapped to three reference points ,1,0 using the (2, )SL C

transformation or the global conformal transformations, which will reduce the above equation to

1
1

1

22 (3)

1 1 123lim
hh

z z z G C  . 

As earlier, for higher dimensions, conformal invariance doesn't fix the precise form of four-point function and beyond. The 

four-point function can be written down as a real function of ratios of the four variables 12 23 34 41, , ,z z z z also known as 

anharmonic ratios . The general expression for four-point function can be written as  

   

4
/3/3

1 1 4 4( )... ( ) ( , )
i j

i j
h h hh h h
ijij

i j

x x f z z   
  



 
     (2.26)

 

where 12 34 13 24/z z z z  . Now we can use a global conformal map to send 1z to 1 , 2z to and 3z to 0 and this will 

make 4z   and a generic four-point function will depend on this last point. 

Ward Identities 

In previous chapter we derived the Ward identities corresponding to translation, rotation and scale invariance in 1.50, 1.54 
and 1.56 respectively. Let us assemble the three equations here:  

 

   

( )i
i

i

T X x x X
x



  



   


       (2.27)

 

   

( ) ( )i i
i

T T X i x x s X 

     
      (2.28)

 

   

( )i i
i

T X x x X

    
       (2.29)

 

 

Here is stands for the spin of the field i . Now we want to rewrite these equations in terms of complex coordinates and 

complex components. We use the expressions 2.2 and 2.3 for the metric and antisymmetric tensor. For the delta function 

( )x , we use the identity [C] 

    

1 1 1 1
( ) zz
x

z z


 
   

       (2.30)

 

 

One may in principle use either one of the above representations but we will use the first one if the integrand is 
holomorphic and vice-versa. The Ward identities can now be written as  
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1

1

1

1

1
2 2

1
2 2

2 2 ( )

2 2 ( )

i

i

n

z zz wzz z z
i i

n

z zz z z z z w
ii

n

i iz z zz
i

n

i iz z zz
i

T X T X X
z w

T X T X X
z w

T X T X x x X

T X T X x x s X

 

 













      


      


     

   








     (2.31)

 

We add and subtract the last two equations to get  

    

1

1

1
2

1
2

n

izz z
i i

n

izz z
ii

T X h X
z w

T X h X
z w









  


  





      (2.32)

 

where now the holomorphic and anti-holomorphic separate and we use the appropriate definition of delta function from 
2.30 and conformal dimensions from 2.17. Inserting these relations into the first two equations from 2.32, we get 

 

 

 

2
1

2
1

1
( , ) 0

1
( , ) 0

i

i

n
i

wz
i i i

n
i

z w
ii i

h
T z z X X X

z w z w

h
T z z X X X

z w z w





  
      

   

  
         

 





     (2.33)

 

where we have introduced the normalized energy-momentum tensor  

   
( , ) 2 ( , ) 2zz z z

T z z T T z z T    
       (2.34)

 

Now by definition, the expressions inside braces in the above equations are holomorphic and anti-holomorphic 
respectively. Hence we can write 

  

2
1

1
( ) .

( )i

n
i

w

i i i

h
T z X X X reg

z w z w

 
    

  


     (2.35)

 

where reg. refers to holomorphic functions of z, regular at iz w . And we will have a similar expression for anti-

holomorphic term too.  

Conformal Ward Identity 

We can bring all the derived Ward identities 2.27, 2.28 and 2.29 into a single equation as follows. Given a conformal 

transformation ( )x x x  , we can write 

 

1 1
( ) ( ) ( )

2 2

1 1
( )

2 2

T T T T

T T T

   

           

    

      

     

     

         

     
           (2.36)

 

where we have used 
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1 1
( ) ( )

2 2

1 1
( )

2 2



     



      

   

    

    

   
      (2.37)

 

We note here, the first term is the translation transformation, (1/ 2) 

 is the local scaling while (1/ 2) 

   is the 

local rotation angle. Integrating both sides of the equation above, the three Ward identities can be encapsulated into  

   

2 ( ) ( )
M

X d x T x x X

    
      (2.38)

 

where X  is the variation of X under local conformal transformation. Here integral is taken over a domain M which 

contains the position of all the fields in the string X . Since the integrand is a divergence, we use the Gauss's theorem to 
reduce this to the form  

   
 , 2

z z zz

zzC

i
X dz T X d z T X

 
    

     (2.39)

 

where we have used 2.2 and 2.3. Further using the 2.34, we write down the conformal Ward identity: 

  
,

1 1
( ) ( ) ( ) ( )

2 2c c
X dz z T z X d z z T z X

i i 
  

 
   

     (2.40)

 

The contour C needs to include all the positions ( , )i iw w of the fields contained in X .  

Operator Product Expansion 

The equation 2.35 delivers important information about the product of energy momentum tensor with primary fields. It 

yields a singular behavior of the correlator of the field ( )T z with a primary field ( , )i i iw w , as iz w . For a single 

primary field of conformal dimensions h and h , this is written as 

  

2

2

1
( ) ( , ) ( , ) ( , )

( ) ( )

1
( ) ( , ) ( , ) ( , )

( ) ( )

w

w

h
T z w w w w w w

z w z w

h
T z w w w w w w

z w z w

  

  

 
 

 
 





      (2.41)

 

Here "~" means equality up to terms which are regular as z w . The operator product expansion (OPE) implies that two 

local operators inserted at nearby points can be closely approximated by a strings of operators at one of these points [5]. 

In general language, if we denote all the operators of CFT by iO , then the OPE is  

  

( , ) ( , ) ( , ) ( , )k

i j ij k

k

O z z O w w C z w z w O w w  
      (2.42)

 

here
k

ijC are a set of functions which on ground of translation invariance depend only on the separation between two 

operators. It is important to note that the above equations are always to be understood as operator insertions between 
correlation functions. Also the correlation functions are always assumed to be time-ordered. The singular behavior of OPE 
as z w will really be the only thing we care about! It will turn out to contain the same information as commutation 

relations, as well as telling us how operators transform under symmetries. We now proceed with specific example to 
familiarize ourselves with simple but important systems and basic techniques.  

The Free Boson 

A simplest example of CFT is a free massless bosonic theory. The action for such a bosonic field is  

    

21

2
S d x 

   
       (2.43)
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The two-point function or the propagator for this action is given by  

   

21
( ) ( ) ln( ) .

4
x y x y const 


   

       (2.44)

 

This can be rewritten in terms of complex coordinates as  

  
 

1
( , ) ( , ) ln( ) ln( ) .

4
z z w w z w z w const 


     

     (2.45)

 

The log means ( , )z z doesn't have any interesting property under conformal transformation and for this reason the field 

( , )z z is not really the object of interest in this theory. Instead we separate the holomorphic and the anti-holomorphic 

parts of above equation by taking derivative with respect to holomorphic and anti-holomorphic coordinates, z and 
z

,and in the process we will discover important aspects of the theory 

   

2

2

1 1
( , ) ( , )

4 ( )

1 1
( , ) ( , )

4 ( )

z w

z w

z z w w
z w

z z w w
z w

 


 


   


   


    (2.46)

 

This OPE reflects the bosonic character of the field as interchanging the two fields doesn't change the correlator. The 
energy momentum tensor for this theory is given by  

    

1

2
T 

        
 

      
        (2.47)

 

In terms of complex coordinates, we write the energy-momentum defined in 2.34 as 

     
( ) 2 : :T z      

       (2.48)
 

where we have normal ordered the fields. More explicitly, the above expression means 

   
( ) 2 lim( ( ) ( ) ( ) ( ) )

w z
T z z w z w    


      

     (2.49)
 

We now find the OPE of ( )T z with  . This is written as  

   
( ) ( ) 2 : ( ) ( ) : ( )T z w z z w         

      (2.50)
 

Using Wick's theorem and 2.46, this is 

     
2

( )

( )

z

z w






        (2.51)

 

Thenexpanding ( )z around w , we get 

    

2

2

( )( )
( ) ( )

( ) ( )

w ww
T z w

z w z w





 

 


      (2.52)

 

This tells us  is a primary field with conformal dimension 1h  which is true as  has spin 0s  and scaling 

dimension 0  and the derivative operator  has spin 1s  and 1  . We can also find the OPE of the energy-

momentum tensor with itself 

   

2

4 2

( ) ( ) 4 : ( ) ( ) :: ( ) ( ) :

1/ 2 4 : ( ) ( ) :

( ) ( )

T z T w z z w w

z w

z w z w

    

  

    

 


 


     (2.53)
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We get the first term by two double contractions and second term by four single contractions. Again by expanding the 
second term around w , we find the above equation is equivalent to 

   
4 2

1/ 2 2 ( ) ( )

( ) ( ) ( )

T w T w

z w z w z w


 

  


   (2.54)

 

We note that the energy-momentum tensor is not a primary field as its OPE has an anomalous term which doesn't appear 
in 2.41. 

The Central Charge 

In CFT, the most prominent example of an operator which is not primary is as we saw earlier, the energy-momentum 
tensor. We worked it out for the free scalar model, but it remains true for all CFT. It is in fact a quasi-primary operator of 

weight ( , ) (2,0)h h  . Generally in any CFT, the TT OPE takes the following form 

  
4 2

/ 2 2 ( ) ( )
( ) ( ) ...

( ) ( ) ( )

c T w T w
T z T w

z w z w z w


   

  
  (2.55)

 

and similarly  

4 2

/ 2 2 ( ) ( )
( ) ( ) ...

( ) ( ) ( )

c T w T w
T z T w

z w z w z w


   

  


 

The constants c and c


are called the central charges. They are perhaps the most important numbers characterizing a CFT. 

We can already get some intuition for the information contained in these two numbers. Looking back at the free scalar 

field, we see thatit has 1c c 


.If we instead considered D non-interacting free scalar fields, we would get c c D 


. 

This gives us a hint: c and c


are somehow measuring the number of degrees of freedom in the CFT. Note that c is not 

necessarily an integer i.e. 1/ 2c  for a free fermion theory.  

From the definition it seems natural that the energy-momentum tensor should transform as a rank-2 covariant tensor,  

    

2

( ) '( ) ( )
dw

T z T w T z
dz



 
   

         (2.56)

 

under a transformation ( )z z w . However it turns out, because of the presence of the anomalous term in the TT
OPE, the above equation is corrected to  

   

2

'( ) ( ) { ; }
12

dw c
T w T z w z

dz



   
    
          (2.57)

 

Where c is the central charge and  

   

 
2

3 3 2 2/ 3 /
;

/ 2 /

d w dz d w dz
w z

dw dz dw dz

 
   

        (2.58)

 

iscalled the Schwarzian derivative. This additional term appearing during the transformation of T is called the Schwinger 
term. Notice that the Schwarzian derivative vanishes for a global conformal map which is true for a quasi-primary field. 

Now the Schwinger term is independent of T and only effects the constant term or the zero mode in the energy. In other 

words, it is the Casimir energy of the system.  

We look at an example to understand the physical significance of the central charge. Consider a Euclidean cylinder, 
parameterized by  

    
, [0,2 ]w i     

       (2.59)
 

We make a conformal transformation from cylinder to a complex plane by 
iwz e  
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Figure 3.1: Conformal mapping from cylinder to complex plane 

The fact that the cylinder and the plane are related by a conformal map means that if we understand a given CFT on the 
cylinder, then we immediately understand it on the plane. Notice that constant time slices on the cylinder are mapped to 

circles of constant radius. The origin, 0z   is the distant past,  . Now the Schwarzian for this mapping can be 

calculated and it gives ( , ) 1/ 2S z w  . This gives us the way T  transforms  

   

2( ) ( )
24

cylinder plane

c
T w z T z  

       (2.60)

 

Now suppose the ground state energy vanishes when the theory is defined on the plane. We then calculate the energy on 
the cylinder 

   
( )wwwwH d T d T T            (2.61)

 

The conformal transformation then tells us that the ground state energy on the cylinder is 

    

2 ( )

24

c c
E

 
 



        (2.62)

 

This is indeed the (negative) Casimir energy on a cylinder. For a free scalar field, we have 1c c 


and the energy 

density / 2 1/12E    . 

THE OPERATOR FORMALISM  

Throughout the previous sections, all our manipulations were assumed to hold inside correlation functions. The 
consequences of conformal symmetry on two-dimensional field theories were embodied in constraints imposed on these 
correlation functions via the Ward identities. These Ward identities were most easily expressed in the form of an OPE of 
the energy-momentum tensor with local fields. Up to now, we only used the path-integral representation of the theory in 
which all correlation functions could in principle be obtained. We would now like to give an operator interpretation in terms 
of states in a Hilbert space. 

Radial Quantization 

The operator formalism distinguishes a time direction from a space direction. This in natural in Minkowski space-time, but 
somewhat arbitrary in euclidian space. This allows choosing the radial direction from the origin as time direction, and the 
space direction being orthogonal to it. This choice leads to the so-called radial quantization of two-dimensional conformal 
field theories. 

We may start from a two-dimensional Minkowski space with coordinates t and . One usually takes the space direction 

 to be periodic, 2[0, ]L  , defining this way the theory on a cylinder. We continue to Euclidian space, t i  and 

then perform the conformal transformation 

    
( )2 / ( )2 /,i L i Lz e z e       

         (3.1)
 

which maps the cylinder onto the complex plane { }C  , topologically the Riemann sphere. Surfaces of equal Euclidian 

time  on the cylinder will become circles of equal radii on the complex plane. This means that the infinite past   

gets mapped onto the origin of the plane ( 0)z  and the infinite future becomes z  . Time reversal becomes 

( )iz z e      on the complex plane. 
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Mapping sends constant time to constant radii 

We assume the existence of a vacuum state 0 upon which a Hilbert space is constructed by application of creation 

operators. In free field theories, the vacuum may be defined as the state annihilated by the positive frequency part of the 

field. For an interacting field , we assume the same Hilbert space except that the actual energy eigenstates are different. 

We suppose then that the interaction is attenuated as t   and the asymptotic field  

    
lim ( , )
t

x t 



          (3.2)

 

is free. Within radial quantization, this asymptotic field reduces to a single operator, which upon acting on 0 creates a 

single asymptotic "in" state: 

    , 0
lim ( , ) 0in
z z

z z 



         (3.3)

 

We define a bilinear product in this Hilbert space. This can be done by defining an asymptotic "out" state together with 
action of Hermitian conjugation on the conformal fields. In Minkowski space, Hermitian conjugation does not effect the 

space-time coordinates. However in Euclidian space since the time it  , it must be reversed upon Hermitian 

conjugation if t is to be left unchanged. In radial quantization this can be done by mapping 
*1/z z . This will justify the 

following definition of Hermitian conjugation on the real surface 
*z z .  

    

† 2 2( , ) (1/ ,1/ )
h hz z z z z z 

             (3.4)
 

where  is a quasi-primary field of dimensions h and h . The above equation can be justified by demanding that the 

asymptotic "out" state 

     

†

out in 
          (3.5)

 

has a well-defined inner product with the 
in . Using the above defined formula for Hermitian conjugation, we get the 

inner product to be 

   

†

, , , , 0

2
2

, , , , 0

2
2

,

lim 0 ( , ) ( , ) 0

lim (1/ ,1/ ) ( , ) 0

lim 0 ( , ) (0,0) 0

out in
z z w w

h h

z z w w

h h

z z w w

z z z z w w

 

   

 

     















       (3.6)

 

Now according to form of two-point function as shown in 2.23, the above expression is independent of  . This justifies the 

presence of the prefactors in defining the Hermitian conjugate for if they were absent, the inner product out in  would 

not have been well defined as   . 
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Mode Expansion 

A conformal field ( , )z z of dimensions ( , )h h can be expanded in modes in following manner: 

   

,

11

( , )

1 1
, ( , )

2 2

n hm h

m n

m Z n Z

m hm h

z z z z

m n dzz d zz z z
i i

 

 
 

  

 

  







  
        (3.7)

 

Taking the Hermitian conjugate, we get 

   

† †

,( , )
m h n h

m n

m Z n Z

z z z z 
   

 


         (3.8)

 

However the definition 3.4 gives 

 

   

2
† 2

2
2

,

,

( , ) (1/ ,1/ )
h h

h m hh n h

m n

n Z m Z

m h n h

m n

n Z m Z

z z z z z z

z z z z

z z

 








 
 

 

 
 

 

 










                                     (3.9)

 

For the above two expression for the Hermitian conjugate of modes to match, we must have 

     

†

, ,m n m n  
        (3.10)

 

Also if the "in" and "out" are to be well-defined, the vacuum state must satisfy 

   , 0 0 ( 0, 0)m n m h n h     
      (3.11)

 

We use the fact that holomorphic and anti-holomorphic degrees of freedom decouple and we will drop the dependence of 
fields upon the anti-holomorphic coordinates for sake of ease. We rewrite the mode expansion in simplified form 

( ) m h

m

m Z

z z  



  

and               (3.12) 

11
( )

2

m h

m dzz z
i

 


  
 

Radial Ordering 

In a quantum field theory, we are interested in time-ordered correlation functions. Time ordering on the cylinder becomes 
radial ordering on the plane. Operators in correlation functions are ordered so that those inserted at larger radial distance 
aremoved to the left.  

 

Subtraction of Contours 

The definition of radially ordered correlation functions becomes 
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1 2

1 2

2 1

( ) ( )

( ) ( )

( ) ( )

z w if z w

R z w

z w if z w

 

 

 






      (3.13)

 

If the two fields are fermions, a minus sign is added in front of the second expression. Since all fields within correlation 
functions must be radially ordered, so must be the l.h.s. of any OPE if it is to have an operator meaning. 

We now relate OPEs to commutation relations. Let ( )a z and ( )b z be two holomorphic fields and consider the integral 

    
( ) ( )

w
dz a z b w

        (3.14)
 

wherein the integration contour circles counterclockwise around w . This expression has an operator meaning within 

correlation function as long as it is radially ordered. Accordingly we split the contour into two fixed time circles going in 
opposite directions. Then the above integral resembles a commutator:  

   
 

1 2

( ) ( ) ( ) ( ) ( ) ( )

, ( )

w C C
dz a z b w dz a z b w dzb w a z

A b w

 



    

     (3.15)

 

where 1C and 2C are the fixed time contour of radii respectively equal to | |w  and | |w  ,  being infinitesimal and 

the operator A is the integral over fixed time of the field ( )a z : 

    
( )A dz a z          (3.16)

 

We take 0  as ( )b w should be the only field present between the two contours as there can be arbitrary number of 

fields between ( )a z and ( )b w . This makes the commutator an equal-time commutator. In practice, the integral in 3.14 

can be evaluated by substituting the OPE of ( )a z and ( )b w , of which on the term 1/ ( )z w contributes, by theorem of 

residues.  

The commutator [ , ]A B of two operators, each the integral of a holomorphic field is obtained by integrating 3.16 over w : 

    0
[ , ] ( ) ( )

w
A B dw dz a z b w   

       (3.17)
 

where the integral over $z$ is taken around w and the integral over w is around the origin. Also  

   
( ) ( )A dz a z B dwb w          (3.18)

 

We have managed to find a relation between OPEs to commutators and this allows us to translate into operator language 
the symmetry statements contained in the OPEs.  

Virasoro Algebra and Conformal Generators 

Let ( )z be the holomorphic component of an infinitesimal conformal change in the coordinates. We define the conformal 

charge as 

    

1
( ) ( )

2
Q dz z T z

i
 


 

       (3.19)

 

Now from the conformal Ward identity 2.40,  

   

1
( ) ( ) ( ) ( )

2 w
w dz z T z w

i
 


  

       (3.20)

 

Using 3.16, this identity translates into 

    
 ( ) , ( )w Q w     

       (3.21)
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which means that the operator Q is the generator of conformal transformation.  

We expand the energy-momentum tensor according to 3.7: 

  

2 1

2 1

1
( ) ( )

2

1
( ) ( )

2

n n

n n

n Z

n n

n n

n Z

T z z L L dz z T z
i

T z z L L d z z T z
i





  



  



 

 

 

 




      (3.22)

 

We also expand the infinitesimal conformal change ( )z as  

    

1( ) n

n

n Z

z z 




        (3.23)

 

We can then write the conformal charge 3.19 in terms of these modes as 

     

n n

n Z

Q L 



        (3.24)

 

This displays that the mode operators nL and nL of the energy momentum operator are the generators of the local 

conformal transformations on the Hilbert space, exactly like the nl and nl of 2.12are generators of conformal mappings on 

the space of functions. Similarly 1L , 0L and 1L are the generators of (2 )SL C . In particular the operator 00L L

generates dilation ( , ) ( , )z z z z which is in fact time translation in radial quantization. Thus 00L L is proportional to 

the Hamiltonian of the system. These quantum generators obey the following algebra 

   

  2

,0

2

,0

, ( ) ( 1)
12

, 0

, ( ) ( 1)
12

m n m n m n

nm

m n m n m n

c
L L n m L n n

L L

c
L L n m L n n





 

 

   

   

      
      (3.25)

 

which is similar to the classical Witt algebra except for the appearance of central charge of the theory. This is called the 

Virasoro algebra. Notice that only the global subgroup (2, )SL C is not effected by the central charge.  

The Hilbert Space and Verma Module 

The vacuum state 0 must be invariant under global conformal transformation. This means that it must be annihilated 1L

, 0L and 1L which in turn can be recovered by requiring the regularity of ( ) 0T z at $z=0$. Evidently only the terms with 

1n   are allowed. So we learn that 

    

0 0, 1

0 0, 1

n

n

L n

L n

  

  
        (3.26)

 

This includes the invariance of vacuum 0 with respect to the global conformal group. It also implies the vanishing of the 

vacuum expectation value of the energy momentum tensor: 

    
0 ( ) 0 0 ( ) 0 0T z T z 

       (3.27)
 

Action of primary fields on vacuum state creates asymptotic states which are eigenstates of the Hamiltonian. To show this, 

let us first find the commutator of nL with a primary field ( , )z z of conformal dimensions ( , )h h .  
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1

1

2

1

1
, ( , ) ( ) ( , )

2

1 ( , ) ( , )
.

2 ( )

( 1) ( , ) ( , )

n

n
w

n

w

n n

L w w dz z T z w w
i

h w w w w
dz z reg

i z w z w

h n w w w w w w

 


 



 







   

 
   

  

   









     (3.28)

 

The anti-holomorphic counterpart of this equation gives,   

  

1, ( , ) ( 1) ( , ) ( , )
n

n
nL w w h n w w w w w w               (3.29)

 

Now using the fact 

    
, (0,0) 0h h 

        (3.30)
 

we apply both sides of 3.28 on the vacuum 0 for 0n  :      

 

 0

0 0

0

, (0,0) 0 (0,0) 0

(0,0) 0 (0,0) 0 ,

, ,

L h

L L h h h

L h h h h h

 

 



  

 
      (3.31)

 

And similarly  

     
0 , ,L h h h h h

       (3.32)
 

Thus ,h h is an eigenstate of the Hamiltonian. Similarly, we have  

     

, 0

, 0

n

n

L h h

L h h




        (3.33)

 

for 0n  . Now to find the ladder operators which on application give the excited states above the asymptotic state ,h h

, we compute the commutator of the modes of a holomorphic field ( )w with nL s. We find  ,n mL  by multiplying 3.28 

with 
1m hw  
and then integrating over w . This gives 

    
   , ( 1)n m m nL n h m    

       (3.34)
 

which, for 0n  gives 

     
 0 , m mL m  

       (3.35)
 

This means that  

    
0 , ( ) ,m mL h h h m h h  

       (3.36)
 

m reduces the conformal dimension of the state by m . Similarly m acts as a raising operator.  

The generators mL , ( 0)m  also increase the conformal dimension as we have from 3.25. 

    
 0 , m mL L mL 

        (3.37)
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This means that excited states can be obtained by successive applications of these operators on the asymptotic state h . 

This results in an infinite tower of states and all the states obtained in this way are called the 'descendants' of state h . 

From this initial primary state, the tower fans out:  

    

1

2

1 2

3

1 1 2 3

,

, ,

h

L h

L L h

L L L L h



 

            (3.38)

 

The whole set of states is called the 'Verma module'. They are the irreducible representations of the Virasoro algebra. This 
means that if we know the spectrum of primary states, then we know the spectrum of the whole theory. We are not 
guaranteed however that all the above states are linearly independent. That depends on the structure of the Virasoro 

algebra for given values of h and c . A linear combination of states that vanishes is known as a null state, and the 

representation of the Virasoro algebra with highest weight is constructed from the above Verma module by removing all 
null states (and their descendants). 

At thN level in this tower, there will be ( )P N fields with conformal dimension h N , where ( )P N is the number of 

partitions of N  into positive integer parts. ( )P N is given in terms of generating function 

    
0

0

1
( )

(1 )

N

n
N

N

P N q
q














       (3.39)

 

where (0) 1P  .  

DISCUSSION 

In this review, we investigated the elementary structure of Conformal Field Theory in 2d which is a recipe for further 

studies of critical behavior of various systems in statistical mechanics and quantum field theory. We briefly reviewed CFT 

in d dimensions which plays a prominent role for example in the well-known duality AdS/CFT in string theory where the 

CFT lives on the AdS boundary.  

We studied the generators of conformal transformations and derived their commutation relations. The commutation group 

in $d$ dimensions was identified with the non-compact group ( 1,1)SO d  . The notion of a "quasi primary field" was 

developed which are covariant under global conformal transformations. Using the constraints of conformal symmetry, we 

derived the forms of 2 , 3 and 4 point correlation functions. We further derived the Ward identities associated with 

the translation, rotation and scale invariance of the theory.   

Main goal of our study was to understand the development of the structure of a conformal field theory in 2 dimensions. 2 
dimension case is special as the conformal symmetry becomes a local symmetry of theory and we have an infinite set of 

mapping from the 2d complex plane onto itself. The earlier derived group of global conformal symmetry turns out to be a 

subset of the 2d CFT algebra. We developed the essential language of holomorphic and anti-holomorphic coordinates 

which is a very helpful tool in the study of 2d CFT. We defined the notion of "primary fields" and calculated their 

correlation functions. We also introduced the concept of short-distance product of operators and applied this language to 
specific example of free bosons. Transformation properties of the energy-momentum tensor were explored for this 
example and the idea of central charge c was explained in brief.   

In the last section, we mapped our theory from the cylinder to a complex plane which helped us gain an insight into the 
process of radial quantization and radial ordering. Then carrying out the mode expansion of fields led to development of 
the "Virasoro algebra". Once we had the algebra and the generators in Hilbert Space, we could develop the whole tower of 
descendant fields given a primary field. This infinite tower of states generated from a given asymptotic state form a 
representation of the Virasoro algebra which is the well-known "Verma module".   

The last section ends with an introduction to the Verma module which provides the basic tool to study particularly simple 
conformal field theories called 'minimal models'. These theories are characterized by a Hilbert space made of a finite 
number of representations of Virasoro algebra and are used to describe discrete statistical models (e.g.Ising model) at 
their critical points.  
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APPENDIX 

A: Conformal Generators 

Let us write down the change in the distance x under the earlier discussed infinitesimal conformal transformations:  

   

22( . )

Translation x a

Dilation x x

Rotation x w x

SCT x x b x b x

 

 

  



  



 











 
         (A.1)

 

Now we will demonstrate how the conformal generators when exponentiated and operated on the coordiates reproduce 

exactly the above given expressions. Given a generator ( )G x , we know the coordinates transform as: 

( )' iaG xx e x   

which for an infinitesimal transformation gives us 

     
( )x iaG x x 

          (A.2)
 

We first check for the translation generator P by inserting its form in the above equation. Now 

     
P i   

          (A.3)
 

which when inserted in 2 gives, 

    
( )x ia i x a   

    
         (A.4)

 

which is what we expect. Now let us work out the same steps with other generators. Dilation generator D ix

   , 

which gives 

    
( )x ia ix x ax   

    
         (A.5)

 

again, as we expected. Repeating the steps using rotation generator, ( )L i x L x L      : 

   
( )x iw ix ix x W x   

         
        (A.6)

 

whereW is introduced to absorb the factor of 2 and the minus sign. The above equation is similar to the form of x for 

rotation showed above. Finally we verify the generator formula for the special conformal transformation. SCT generator is 

given as 
2(2 )K i x x x

        . Inserting this in eq. 2,  

   

2

2

2

( (2 ))

(2 )

2( . )

x ib i x x x x

b x x x

b x x b x

   

  

  

 

 





    

 

 
        (A.7)

 

which displays the correctness of the generator formula.  

B: Ward Identity for current 

An infinitesimal transformation may be written in terms of the generators as 

   
'( ) ( ) ( )a ax x iw G x   

         (B.1)
 

where aw is a set of infinitesimal constant parameters. For a given correlation function, if we make a change of functional 

integration variables in the above defined manner, the function changes as 
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 
 [ ] ( )1

' ' ( )exp
a aS dx j w x

X X X
Z





     

       (B.2)

 

We assume the functional integration measure is invariant under local transformation ( . . [ '] [ ])i e d d   . Expanding 

the equation above to first order in ( )aw x ,we get: 

   
( ) ( )a aX dx j x X w x

            (B.3)
 

Now the variation of X can also be explicitly written as 

  

 

1

1

1

1

( )... ( )... ( ) ( )

( ) ( )... ( )... ( ) ( )

n

a i n a i

i

n

a a i n i

i

X i x G x x w x

i dx w x x G x x x x









    

     




       (B.4)

 

Now B.3 satisfies for any infinitesimal function ( )aw x , so we can write, using eqs. B.3 and B.4, the Ward identity for aj


 

1 1

1

( ) ( )... ( ) ( ) ( )... ( )... ( )
n

a n i a i n

i

j x x x i x x x G x x

 


        
           (B.5)

 

C: Delta Function in complex coordinates 

In terms of holomorphic and anti-holomorphic coordinates, delta function ( )x can be written in following way 

    

1 1 1 1
( ) zz
x

z z


 
   

         (C.1)

 

To justify this identity, let us consider a vector F 
whose divergence is integrated within a region M of the complex 

plane bounded by a contour M . Applying the Gauss's theorem this gives us 

    

2

M M
d x F d F 

 


  
         (C.2)

 

where  is an outward-directed differential of circumference, orthogonal to the boundary M . Let us use a 

counterclockwise differential ds , parallel to M d ds     . In terms of complex coordinates we write the above 

equation as 

   

 

 

2

1

2

z z

zz z zM M

z z

M

d x F dz F d z F

i dzF d zF



  




  

  

 


        (C.3)

 

wherethe contour M circles counterclockwise. We now consider a holomorphic function ( )f z and check if the above 

defined delta function works fine by integrating it against ( )f z within a neighborhood M of the origin:  

   

2 2

2

1 1
( ) ( ) ( )

1 ( )

1 ( )

2

(0)

zM M

zM

M

d x x f z d x f z
z

f z
d x

z

f z
dz

i z

f






 

 

 
   

 





 





        (C.4)
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which displays the correctness of our delta function. We can similarly prove the second representation by using an 

antiholomorphic function ( )f z instead.  
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