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Abstract 

A composite non-abelian model )()( NSUNSU   is proposed as possible extension of the Yang-Mills 

symmetry. We obtain the corresponding gauge symmetry of the model and the most general lagrangian invariant by 

)()( NSUNSU  . The corresponding Feynman rules of the model are studied. Propagators and vertices are derived in 

the momentum space. As physical application, instead of considering the color symmetry (3)cSU  for QCD , we 

substitute it by the combination (3)(3) cc SUSU  . It yields a possibility to go beyond QCD  symmetry in the sense that 

quarks are preserved with three colors. This extension provides composite quarks in triplets and sextets multiplets 
accomplished with the usual massless gluons plus massive gluons. We present a power counting analysis that satisfies the 
renormalization conditions as well as one studies the structure of radiative corrections to one loop approximation. Unitary 
condition is verified at tree level. Tachyons are avoided. For end, one extracts a BRST symmetry from lagrangian and 
Slavnov-Taylor identities. . 
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I. Introduction 

 A non-Abelian model for composite fields is presented for investigating an extension to the Yang-Mills case [1]. It yields the 
possibility to explore an extended symmetry having contributions that go beyond to the Yang-Mills symmetry [2]. For 
example, the possible insertion of mass terms into the lagrangian no need breaking gauge symmetry for non-abelian gauge 
fields. The description of the interactions by means of composite fields has already been considered by J. Schwinger [3]. 
Also, others approaches by means of group composition were discussed for a description of the Lepton-Hadron interaction 
beyond Weinberg-Salam-Glashow electroweak model, for details see [4]. An interesting search on description of massive 
non-abelian gauge fields is given by use the Stueckelberg formalism as alternative to description of the Standard Model, by 
including Higgs mechanism in breaking spontaneous symmetry [5]. 

The possibility to go beyond Yang-Mills symmetry is presented in this work by considering the group )(NSU  as 

the combination )()( NSUNSU  . Based on direct product we define this operation between two independent 

non-abelian groups [6]. Notice that it is an approach diverse from usual direct product in grand unification. Instead of taking 

the Cartesian product of two groups )()( NSUNSU  , it considers a common gauge group (3)SU  being rotated by 

two fundamental representation, which means that we are just tensoring two fundamental representations of the same 

)(NSU . Physically interpreting, we shall propose a composite Quantum Chromodynamics (3)(3) cc SUSU   model. 

This means that instead of only (3)cSU  as proposed by M. Gell-Mann [7] and others, it realizes an extension to QCD in 

the sense that preserves the experimental result that quarks contain three colors. At this way introduces the possibility of 
having triplets and sextets quarks and it yields the presence of massive gluons together with the usual massless gluons 
case. The study of possible exotics Quantum Chromodynamics was discussed by [8, 9] in which it can reveal the existence 
of exotic barions in hadron spectroscopy. 

The outline of the paper is organized as follows. The second section introduces the symmetry gauge of 

)()( NSUNSU   with non-abelian gauge fields and quarks sectors, and shows the complete lagrangian invariant by 

those symmetry transformations. In section 3 we begin a program for renormalization of this model by analyzing the power 
counting and radiative corrections to one-loop approximation. In section 4 one extracts a BRST symmetry from effective 

quantum lagrangian and such symmetry leads to an Slavnov-Taylor for )()( NSUNSU  . These quantities are 

necessaries to full renormalization of the model. Finally, section 5 is left for the concluding remarks on the prospected model 

LHC  possibilities. 

II. A non-abelian model for symmetry )()( NSUNSU   

A. Gauge fields sector of )()( NSUNSU   

Consider a fermionic matter field   composite by the direct product [2]  

 ,=    (1) 

 in which i  and )1,2,...,=( Nii  are independents spinors and scalars fields both in the fundamental representation 

of each )(NSU  in question, respectively. The fields ),(   have independent local transformation  

 

,=)(=)(,)(=)(=
)(

22
2

)(
11

121

xaaitxaait'' exUandexUwithxUandxU


  (2) 

 where ),( 21

aa tt  are two independents generators of two non-abelian groups )(NSU , satisfying the commutation 

relations  

 ,11,2,...,=,=],[=],[ 2

222111 Nawithtifttandtiftt cabcbacabcba
 (3) 

 and 1  and 2  are real functions. Notice that we have considered the same structure constant of group 
abcf  for the 

two independents groups. Using properties of the direct products and the transformations above, we obtain the local 

transformation )()( NSUNSU    

 .=)(,)(= 21 UUxUxU'   (4) 

 Clearly, the spinor   only belongs to )(NSU -left and scalar   belongs to )(NSU -right of the product 

)()( NSUNSU  , and   is a fermion that belongs to full symmetry )()( NSUNSU   whose components are 
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)1,2,...,=( 2Nii  . 

Nextly one shall be interested in establish a dynamic for these fermions  . For introducing the non-abelian gauge 

fields, a composite covariant derivative based on representation product is proposed  

 ,)()(=),( BDADBAD   11  (5) 

 where each covariant derivative )(AD  and )(BD  act on   and  , respectively  

 .)(=)()(=)( 21   BigBDandAigAD   (6) 

 It is remarkable to notice that the covariant derivative of (5) fulfills the requirement of satisfying the Jacobi identity. This is 

why we can undertake that ),( BAD  is actually a covariant derivative. Notice that we adopt here a different and 

alternative procedure instead of grouping the different gauge potentials inside a single covariant derivative. We propose a 
combined covariant derivative built up from a different covariant derivative for each group factor. 

The gauge fields ),(  BA  transform in accord with  

 ,)(=)(= 1

22

2

1

22

1

11

1

1

11

  UU
g

i
UBUBandUU

g

i
UAUA ''

  (7) 

 in which ),( 21

aa tt  are basis of ),(  BA   

 ,== 2

12

1=

1

12

1=

aa
N

a

aa
N

a

tBBandtAA  


 (8) 

 respectively. The constants coupling 1g  and 2g  are associated to gauge fields ),(  BA , respectively. By using the 

definition (5) and some properties of direct product one gets the following transformation  

 .),(=),( 1UBAUDBAD '

  (9) 

 Therefore a symmetry )()( NSUNSU   based on construction of direct product is established for gauge fields 

),(  BA  and fermions  . If one carries on the fields ),(  BA , it will be possible to introduce mass terms by already 

known mechanisms, like Higgs mechanism and Stueckelberg fields. However we intend to follow a different procedure. 

As a next step we make the variable change  

 ,== 212211

aaaaaa CgGgBgandCgGgAg    (10) 

 in which ),(  CG  will be the physical fields that we are interested. Substituting (10) in (5), it yields  

 .)(=),(=),( 21   CigGigCGDBAD   (11) 

 where the new fields ),(  CG  are Lie algebra valued on a new basis of generators, }{ aT  and }{ at , as  

 ,==
12

1=

12

1=

aa
N

a

aa
N

a

tCCandTGG  


 (12) 

 where  

 .== 2121

aaaaaa tttandttT  1111  (13) 

 Notice these new generators satisfy the commutation relation  

 ,=],[=],[,=], cabcbacabcbacabcba tiftTandTifttTifTT  (14) 

 which is just the same Lie algebra, but rewritten in another basis of generators. Consequently, }{ aT  and }{ at  are the 
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independents generators basis for symmetry )()( NSUNSU  . 

Now one needs to obtain the symmetry transformations for the physical fields ),(  CG , then we consider the 

transformation  

 ,),(=),( 1UCGUDCGD '

  (15) 

 and using the equations above, one case is interested for us in which one chooses 
aaa  == 21 , it seems to write the 

above transformation as solution in terms of transformations for ),(  CG   

 .=)(= 11

1

1   UUCCandUU
g

i
UUGG ''

  (16) 

 The infinitesimal transformations of the components ),( aa CG   are  

 .=
1

=
1

cbabcaa'acbabcaa' CfCCand
g

GfGG     (17) 

 The first transformation of (16) is just the usual case of a non-abelian gauge field. The second for C  is an unitary and 

homogeneous transformation that has interpretation of rotation of the field C  in the isospin space of the composite group 

)()( NSUNSU  . We will analyze the consequences of those transformations dictated by symmetry 

)()( NSUNSU  . 

The case above mentioned 
aaa  == 21  it is important in order to introduce a mass term for the vector field 

C  into the lagrangian by respecting the invariance principle dictated by transformations (16), while the field G  remains 

massless like in the usual Yang-Mills symmetry. Therefore these model shows the introduction of a mass term with no 
necessity to establish a sector of Higgs scalar field. 

Perhaps at this moment it should be more precise to change nomenclature. Instead of non-abelian 

)()( NSUNSU   to consider a double )(NSU  under a common gauge parameter 
a . By double )(NSU  one 

means to consider fields i  and i  given by (1,2) as two fundamental representation rotating under the same group. One 

step ahead, we should also say that, by identifying 
a

1  and 
a

2 , the two quantum numbers of the different )(NSU  

factors collapse into a unique quantum number. This then means that i  and i  carry the same )(NSU -quantum 

number. Prior to identification, i  and i  carrying quantum numbers of different natures. With 
aa

21 = , the composite 

field   and its charge is given by a combination of charges of same nature. In other words : i , i  and i  have all the 

same type of color, though their colours have different values. 

For constructing the most general lagrangian invariant by those transformations (16) one catalogues all tensors 
that transform as  

 ,= 1UTUTT '  (18) 

 like the strength field tensor F  in usual Yang-Mills symmetry. At this way one derives the following fields strength 

tensors  

 ,=)(]),([=),(,)](),([=)( 31  CCgCCandCGDCGfGDGDGFig  (19) 

 where we have defined the usual covariant derivative  

 .=)( 1  GigGD   (20) 

 By rewriting those tensors into the basis generators components notation we obtain  

 .== 1

cbabcaaaaa GGfgGGFwhereTFF    (21) 
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 The second tensor has the mix between G  and C   

 ,=,= 1

cbabcaaaa CGfgCfwithtff    (22) 

 in which it is split into the antisymmetric and symmetric parts  

 ,= 11][

cbabccbabcaaa GCfgCGfgCCf    (23) 

 and  

 ,= 11)(

cbabccbabcaaa GCfgCGfgCCf    (24) 

 respectively. The symmetrical part of f  reveal a longitudinal propagation for the field C  beyond a transversal as a 

consequence of transformations (16). Indeed, the vector field C  can be interpreted as a Proca field with a longitudinal 

propagation beyond a transversal one. The third tensor is defined only in terms of C  for antisymmetric part 

 

 ,=,= 3][][][

cbabcaaa CCfgCwithTCC   (25) 

 and the symmetric part  

     ,)22(4=,=,= 2121333)(

cabcabbaabbababa TdttttCCgttCCgCCgC   (26) 

 in which 3g  is the constant coupling associated to self-interactions of massive non-abelian gauge field. 

Now we can define a general tensor Z  as linear combination of the tensors defined in (19), and we split in their 

antisymmetric and symmetric parts. Therefore we split Z  in antisymmetric and symmetric parts  

  ,== )

(

)

()()()(][][][





 fzefgdzcfZandbCafFZ   (27) 

 in which ),,,,,( fedcba  are real parameters, thus  

 ,= )(

][

)(

][][

aataaT tZTZZ    (28) 

 where  

 .== ][

)(

][][

)(

][

aataaaT afZandbCFZ    (29) 

 Similarly  

 ,= )(

)(

)(

)(

)(

)()(

ababaataaT ZtZTZZ  

  (30) 

 where  

 ,=,= )

()(

)(

)(33

)(

)(

aaatcbabccbabcaT fegcfZCCgdfgCCddgZ 



   

 .224== 212133

)(

)(

abbaababbabaab ttttandCCgfgCCdgZ  
  (31) 

 The real parameters ),,,,,( fedcba  have introduced for a better control of all terms that contribute into the lagrangian, 

it will be important when one analyze the aspect of unitarity directly from the vector propagators. Here it was been 

convenient to define another base }{ ab , beyond }{ aT  and }{ at , in which it satisfy to commutation relations  

    ,)()(2=, 21212121

bddbacddccdabdbca ttttfttttfiT   

    .)()(2=, 21212121

bddbacddccdabdbca ttttfttttfit   (32) 
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Now we are enable to write the most complete lagrangian invariant by symmetry transformations (16) as  

 ,)
~

(
4

1
)(

2

1
)(

2

1
)(

4

1
= 22 







 


ZZtrGtrCCtrmZZtr L  (33) 

 where we have taken into account the semi-topological term 


  ZZ
2

1
=

~
, that give us a non-trivial contribution 

and invariant by (16 ), and the lasts terms are contributions that is not presents in the earlier definitions of the tensors 

(19)-(??), with R1 . Clearly, the semi-topological term brings out a CP violation in the model, but on general aspects we 

look for complete symmetry with the presence of all terms. The parameter   of (33) sets a parity violating regime. The 

mass term for gauge field C  has been introduced due to transformations (16), and one has chosen the gauge fixing term  

 ,)(
2

1
= 2a

gf G



L  (34) 

 convenient to quantize the model hereafter, where  . Using the traces relations  

 0=)(=)(=)(,=)(=)( bcabcabaabbaba ttrTtrtTtrNtttrTTtr   

 ,224=)( bcadbdaccdabcdabtrand    (35) 

 we can obtain all the free and interaction terms from the lagrangian (33). The lagrangian free part of the vector fields 

),(  CG  is given by  

 andGGG aaa

G

22

0 )(
2

1
)(

4

1
= 




L  

 

  ,
2

1
)(22)(

4
)(

4
= 222

2
2

2

0

aaaaaaa

C CCmCeceCC
c

CC
a 




 L  (36) 

 respectively. The Faddeev-Popov ghost lagrangian can be added by the usual methods using the infinitesimal 
transformations (17) and the gauge fixing term (34), then one gets  

 ,)(= 1

bcaabcbaba

FP Gfg  
WL  (37) 

 where ),(   are Faddeev-Popov fields. From the lagrangian free part we calculate the ),( aa CG   vector fields 

propagators by writing it into the form  

 

,])))2(2((2))[((
2

1
)(

2

1
= 222221

0

aaaa CmececmcaCGG 





    WWWWL

 (38) 

 in terms of projection operators  

 .==
WW







 


 andg  (39) 

 We invert the operators from (38) between fields to obtain the propagators in the momentum space. In the case of massless 
gauge fields is exactly like the propagator in Yang-Mills. For massive vector fields one gets  

 ,
))2(2(2

1

)(

1
=

222222222 























k

kk

mkececk

kk
g

mkca
iCC abba 

   (40) 

 in which one has observed two masses  
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 ,
)2(22

==
2

2
2

222

2
2

1
ecec

m
and

ca

m


  (41) 

 for transversal part of spin-1 , and another mass for longitudinal part of spin- 0 . The expressions of all propagators are 

showed in the figure (1).  

 

 

 Fig.  1: Feynman propagators of the vector fields and Ghosts. 

In order to show an initial consistency of the model one should to observe the behavior of those propagators when 

k , it goes to zero in ultraviolet regime. Differently from usual Proca’s case, the massive field C  has a health 

behavior. Considering the unitarity one guarantees the positivity of the propagators residue if one imposes the following 

inequalities : 1>22 ca   and 1<422 22 ecec  , on those conditions the model is unitary at the tree level. Since 

),( ca  are real parameters, by imposing the above conditions there is no any possibility for emergence of tachyons 

propagation here. 

It is also interesting to see the independency of the massive field propagator in relation to any parameters if we had 
introduced the most general gauge fixing  

 ,)(
2

1
= 2aa

gf CG 



 


L  (42) 

 with R . 

The vector fields and Faddeev-Popov interaction terms are given through the lagrangian terms  

       aaaaa

I GCCGCgaGGGg 



 ,,,= 1

2

1

(3) L  

       aaaaa GCCGCgcCCGbg 



 ,,, 1

2

3   

   ,,)(4 1

aa CGCgece 



  (43) 

 and  

           aaaaa

I GCCGCGg
a

GGGGg 



 ,,,

2
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4

1
= 2

1

2
2

1

(4) L  
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b
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b
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4
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2

3

2
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


   

   aaaaa CGCGgeGCCGCGg
c

],[],[4],[],[],[
2

2

1

22

1

2






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   
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     bababbaa CCCCgfdf
d

N
CCCCgfdf

d

N





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2

3

2
2

3

2
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1
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2
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
















  

 .
44

2

3

2
2

2

3

2
edcbadeabcedcbadeabc CCCCddgf

d
CCCCddg

d 






 








  (44) 

 for the three-line and four-line vertex, respectively. The Feynman rules for vertex are obtained in the momentum space  

 Fig. 2: Three and four lines vertices for massless gauge fields. It is just usual Yang-Mills vertices. 
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Fig. 3: New vertices of the )()( NSUNSU   symmetry mixing massless and massive vector fields. 

 

Fig. 4: Contributions of the semitopological terms. 
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 Fig. 5: The Faddeev-Popov vertex. 

B. Quarks sector for symmetry (3)(3) cc SUSU   

 In the last subsection we have seen the construction of a composite gauge symmetry )()( NSUNSU   and 

one has concentred just in the sector of vector fields ),(  CG . Here one shall present the fermions sector to complete the 

lagrangian (33) by adding the fermionic fields. Our construction initial was based on a fermionic field  , that is a 

composition of a fermion   and a scalar  , but we will be interested in establishing a dynamic for field  . Therefore the 

lagrangian for fermions sector of )()( NSUNSU   is coupling those fermions represented by   to covariant 

derivative (11)  

   ,),(=  


1mCGDifermions L  (45) 

 where m  is the fermion mass, and clearly   is a fermion field of 
2N  components. In accord with the symmetry 

)()( NSUNSU  , the field   can be split into the components  

 ,
2

1)(
1,2,...,=

2

1)(
1,2,...,=

 NN
iwithQand

NN
iwithq ii  (46) 

 where 
2

1)(

2

1)(
=







NNNN
NN . The components of q  and Q  have the following transformations  

 ,)(=)(= jij

aai'

iijij

atai'

ii QeQQandqeqq    (47) 

 in which 
at  and 

a  are square matrices 
2

1)(

2

1)( 


 NNNN
 and 

2

1)(

2

1)( 


 NNNN
, both in the 

fundamental representation of )(NSU . Now one wishes introducing different masses for the two sets of fermions q  and 

Q , but the massive term of (45) is incompatible with this requirement because the field   is a mixing of q  and Q . 

Consequently, the set of transformations (47) and (2) form our fermionic sector of )()( NSUNSU  , so we propose the 

lagrangian invariant by those transformations  

 ,),(= QQmqqmCGDi Qqfermions  
L  (48) 

 where qm  and Qm  are masses of q  and Q , respectively.  

  

Fig. 6: Fermions vertices interacting with massless and massive vector fields. 
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Now we will apply it to the particular case (3)(3) cc SUSU   which can be interesting due to preserve the QCD 

color symmetry. The vector fields sector is like those showed earlier, but now we have eight massless gauge field plus eight 

massive vector fields ),( aa CG   with 1,2,...,8=a . Both can be interpreted as eight massless gluons plus eight massive 

gluons. The sixteen matrices }{ aT  and }{ at  1,2,...8)=(a  build up the basis for gluons massless and massive 

gluons, respectively, being the combinations (13) of the Gell-Mann matrices [11] of group (3)SU  in the fundamental 

representation  

 ,
22

=
22

=
aa

a
aa

a tandT


 1111  (49) 

 satisfying the commutation relation (14), and the structure constant of group 
abcf  listed by table in [11]. 

The sector of the composite quarks is defined by the direct product [2]  

 ,=
3

2

1

3

2

1























































  (50) 

 in which the quark is a composition of fermions ),,(= 321   and scalars ),,(= 321  , of three colors each, 

both in the fundamental representation. Clearly, these product is a column matrix of nine components. It can be split in 
quarks triplets  

 ,1,2,3=,,,
2

1
= kjiwithq kjijki   (51) 

 where ijk  is Levi-Civita symbol, and sextets quarks are defined by  

   ,1,2,3=,,
2

1
=)( jiwithijjiij    (52) 

 in accord with the components  

 33(33)622(22)411(11)1 2=:=2,2=:=2,2=:=2   QQQ  

    1331(13)31221(12)2
2

1
=:=,

2

1
=:=   QQ  

   ,
2

1
=:= 2332(23)5  Q  (53) 

 then, one obtains  
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 .

)(
2

1

)(
2

1

)(
2

1

)(
2

1

)(
2

1

)(
2

1

=

6

15

23

51

4

32

23
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1
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
































Q

qQ

qQ

Qq

Q

qQ

qQ

Qq

Q

  (54) 

 Thus, introducing the definition where q  and Q  are respectively the column matrices of triplets and sextets quarks  

 ,==

6

5

4

3

2

1

3

2

1

















































Q

Q

Q

Q

Q

Q

Qand
q

q

q

q  (55) 

 one gets,  

 ,= ),0(),( IntQqQq LLL   (56) 

 where  

 ,)()(=),0( QmiQqmiq QqQq  



 L  (57) 

 in which qm  and Qm  set the masses of triplets and sextets, respectively. The triplets and sextets have symmetry 

transformations given by (47), in which 1,2,...,8)=(/2= at aa   are Gell-Mann matrices, and 1,2,...,8)=(aa  are 

square matrices 66  listed in [2]. Intuitively, one expects massive sextets quarks will appear at higher energies than 

usual QCD .  

  

 Fig.  7: Quarks propagators. 
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The interactions terms involving the triplets, sextets quarks and gluons are  

   q

G
iGGiGG

iGG
G

GiGG

iGGiGG
G

G

qgTGg jij

aa

i

I
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 and  
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 Fig.  8: Vertices of triplets and sextets Quarks interacting with massless gluons. 
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 Fig. 9: Vertices of triplets and sextets Quarks interacting with massive gluons. 

The constants coupling 1g  and 2g  sets the interaction between massless gluons and massive gluons with 

quarks, respectively. These terms show the interaction between triplets quarks intermediates by massless gluons like in 

usual QCD , furthermore the sextets quarks also interact by means of massless gluons. In the case of massive gluons, 

they appear just as mediators of the interactions between triplet and sextets of quarks. 

For end of this section we resume what one has obtained here. Thus we have got a complete effective quantum 

lagrangian for symmetry )()( NSUNSU   governed by transformations (16), where vector fields, Faddeev-Popov and 

quarks sectors are given by  

 .= quarksfixinggaugeFPfieldsvectoreff LLLLL   (60) 

 These composition of fields is a way to introduce sextets of quarks beyond already known triplets of quarks in the particular 

case (3)(3) cc SUSU  . For case (3)(3) cc SUSU  , one gets eight massless gluons plus eight massive gluons by 

self-interacting and with triplets and sextets of quarks. Curiously, anti-triplets and sextets (or anti-sextets and triplets) of 
quarks interact by means of massive gluons only, while the massless gluons are just mediators of the interaction of 
anti-triplets with triplets, or anti-sextets with sextets. 

III. Remarks on renormalization  

In this section one begins an essential program to establish the full renormalization of the model )()( NSUNSU  . We 

have obtained the complete lagrangian invariant by transformations (16), and here, we will analyze the corresponding power 
counting. The structure of the radiative corrections has Feynman integrals divergent that behave like those in the Yang-Mills 
symmetry. 

C. Power counting 

The analysis of power counting is useful to indicate us on behavior of all possible Feynman diagrams that 
contribute to the model in higher order in the perturbation series. Based on structure of propagators and vertices have been 

showed earlier, we shall obtain the superficial divergence degree D  of any Feynman diagrams that those symmetry 

permits. Hence one defines the following notation for external and internal lines, vertices, loops of massless, massive 
gluons, quarks and ghosts :  

 diagramFeynmananyfordegreedivergencelSuperficiaD=  

 dimensiontimeSpace=2  

 loopsofNumberL=  

 gluonsmasslessoflinesinternalofNumberIG=  

 gluonsmassiveoflinesinternalofNumberIC=  

 ghostsoflinesinternalofNumberIg=  

 quarksoflinesinternalofNumberI =  

 gluonsmasslessofvertexlineThreeV G=3  

 gluonsmasslessofvertexlineFourV G=4  

 gluonsmassiveandmasslessmixthatvertexlineThreeV GC=3  
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 gluonsmassiveandmasslessmixthatvertexlineFourV GC=4  

 gluonsmassiveofvertexlineFourV C=4  

 ninteractioghostofVertexVg=  

 ninteractiogluonsmasslessandquarksofVertexV G=  

 ninteractiogluonsmassiveandquarksofVertexV C=  

 gluonsmasslessoflinesexternalofNumberEG=  

 gluonsmassiveoflinesexternalofNumberEC=  

 .= quarksoflinesexternalofNumberE  (61) 

 With all those definitions, the divergence degree of any Feynman graphic has the expression  

 ,2222= 33 gGCGgCG VVVIIIILD    (62) 

 the number of loops is  

 ,1= 44343  CGgCGCGCGGgCG VVVVVVVVIIIIL   (63) 

 and the topological relations  

 ,234=2 3434 gGCGCGGGG VVVVVEI   

 ,422=2 443 CGCGCCC VVVEI   

 ,22=2 CG VVEI    (64) 

 By substituting (63) and (??) in (62), we find the divergence degree D  in terms of external lines and vertices  

,
2

1

2

1

2

1
4)(2

2

1
))((12= 44334 

















 CGCGCgGGCG VVVVVVEEED  

 (65) 

 where we have used that there is no any external ghost, so gg VI = . These result give us a important interpretation in the 

case of the physical dimension 2= . In this case the expression (65) depends on external lines of massless and massive 

gluons only  

 ,
2

3
4= EEED CG   (66) 

 The equation (66) is a great indication that this model is renormalizable in four-dimension, like in the usual Yang-Mills 

symmetry. The dimensionality analysis for constants coupling ),,( 321 ggg  is totally analogous to the )(NSU  case. 

Consider the generator functional  

  ,exp 2

totalxdiCGZ LDDDD:    (67) 

 where we have substituted the physical dimension by the dimensional regularizator. Clearly if the action is dimensionless, 
the fields dimensions are given by  

       ,][=== 1 CG  (68) 

 in which    sets a mass dimension parameter. By using those relations in the interactions terms of (??) and (??) one 

gets the dimension of coupling constants  
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 .][=][=][=][ 2

321

ggg  (69) 

 These relations shows that in the case of physical dimension 2=  all coupling constants of this model are 

dimensionless, it is another statement that establish the renormalizability of the model. In the next subsection one shall 
present the perturbative character of the model by writing all contributions to one-loop for all propagators and vertex. These 
contributions are clearly divergent, but their divergent structure has a behavior controllable like in the usual Yang-Mills case. 

Conclusions 

 We have studied a Yang-Mills extension based on composition of two independents non-abelian groups 

)(NSU . This symmetry is constructed in such a way that fermions are composite of a direct product between others 

fermions and scalars. It yields a gauge sector where fields follow (16) transformations. The first one is just gauge 

transformation of a non-abelian field G  Lie algebra valued in a given basis, while the second is just an unitary massive 

vector field C  Lie algebra valued in a second basis. Under this deduction, one intends to go beyond QCD  through 

lagrangian (60). It introduces new possibilities beyond those already known from usual Yang-Mills symmetry. 

The first effort of this work is to show the lagrangians (33) and (45) validity for perturbation theory. In a previous 
work one has proved on its hamiltonian positivity [2]. Given such stability for perturbative approach a next step should be to 
study on its unitarity and renormalizability. The unitarity at the tree level of model is satisfied by establishing conditions 

between the parameters ),( ca  that set the transversal and longitudinal parts, in accord with positivity of residue into the 

propagator of C . The equation (66) indicates renormalizability in terms of power counting. Thus one gets a health model 

in terms of perturbation theory. Its hamiltonian is not negative, the correspondent power counting analysis supports 
renormalizability, unitarity is satisfied at tree level and free of anomalies. Consequently, it is a model candidate for being 
studied under Callan-Symmanzik equation. 

The full renormalizability of the model is something to be studied in the next paper. Here we have presented the 
BRST symmetry and Slavnov-Taylor identities as a beginning way, in which one shall enable to establish relationship 
between the one-particle irreducible Green functions. Thus as a next effort we will calculate the Feynman diagrams to one 
loop approximation and so to realize a study on renormalization group and the Callan-Symanzik beta function for 

)()( NSUNSU  . Considering the trilinear vertices abundance one expects that in this case it be more asymptotically 

free than those QCD  usual case. The addition of composite scalars quarks on behavior of beta function must also 

analyzed, that is, if this model is asymptotically free in the presence of scalars quarks under a lagrangian 
2)( iD   where 

i  scalar field is constituted by scalar colorful stones jiijki f =  [2]. The calculus of deep inelastic scattering of 

(3)(3) cc SUSU   is something to be investigated and the influence due to the presence of scalar quarks and massive 

gluons on results. 

Thus a new color phenomenology is proposed for LHC . Based on (3)cSU  symmetry there is new 

suggestions for the colorful world. The model (3)(3) cc SUSU   or double (3)cSU  contains QCD  and extends it for 

composite quarks (fermionic and bosonic) in triplets and sextets, massless and massive gluons (transverse and longitudinal) 
as another possibilities derived from the Twelve colorful stones table in [2]. It provides a dynamics for quarks and leptons 

with different spins. In terms of interactions, one expects a weaker running coupling constant than QCD  due to a larger 

number of three and four gluons vertices. This means that there is a colorful weak interaction for being investigated 

theoretically. It is a model where one replaces colorful massive gluons instead of ),( 0ZW 
 as the intermediate bosons for 

flavors exchange. 

Thus, given LHC  new energy range, one expects new experimental possibilities for the colorful world. Instead of 

just following the pattern with quarks in triplets and eight gluons there is a new colorful diversity to be measured from an 

origin based on twelve colorful stones coupled to a double symmetry (3)cSU . As a new phenomenological sector, one 

expects massive gluons, scalar quarks, quarks in sextets with different masses than the usual ones, massive glueballs and 

also a new variety of exotic mesons and barions as 
  to be detected by LHC  [9]. 
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